以二乙胺、二异丙胺为模板剂的磷酸铝分子筛晶化过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子筛类无机微孔晶体材料是研究最早、结构最丰富、应用最成熟的多孔材料之一。这类无机微孔晶体材料具有规则的孔径分布,大的比表面积和较高的热稳定性。微孔分子筛作为催化、吸附、分离以及离子交换材料在石油炼制、石化工业和精细化工等传统工业领域有着极其重要的应用。由于这类材料具有极为重要和广泛的用途,人们极其渴望获得具有特定结构、性能组成的无机微孔晶体材料。而正确理解这类材料的晶化机理是实现定向获取这类材料的可行途径之一。本论文以由二乙胺和二异丙胺为模板剂合成的磷酸铝分子筛为研究对象,通过粉末X-射线衍射分析、固体核磁共振谱和原位拉曼光谱分析对其晶化过程进行了跟踪,研究了其晶化机理。
     以二异丙胺为模板剂在水热条件下合成的磷酸铝分子筛AlPO4-11为研究对象,考察了物料浓度对AlPO4-11晶化过程的影响,发现物料浓度较低时,在晶化过程中出现了磷酸铝分子筛AlPO4-5中间相,而原料浓度较高时,则不出现磷酸铝分子筛AlPO4-5中间相,说明物料的浓度对磷酸铝分子筛AlPO4-11的晶化化学和晶化路径有着显著的影响。此外,还发现在初始凝胶中就已经存在了相当数量的4-配位Al物种以及部分P原子所处的环境同其在晶体中的环境相同,说明在晶化初期形成的无机碎片就已经具有了最终晶体结构中的键长和键角信息。
     以二乙胺为模板剂,保持凝胶中其他组分(A1源、P源及溶剂水)的量不变,通过调变模板剂的量,在水热条件下合成出了三种微孔磷酸铝AlPO4-11, AlPO4-41和JDF-2。利用XRD和固体核磁共振表征技术研究了这三种结构在不同晶化阶段的产物,发现模板剂在初始凝胶中的浓度对A1和P的配位状态有着重要的影响,从而影响最终晶化产物的结构,体现出其特定的模版效应。
Studies on the crystallization mechanism of aluminophosphate molecular sieves templated by diethylamine and diisopropylamine Bin Zhang Supervisor:Prof. Jihong Yu、Prof. Wenfu Yan Major:Inorganic Chemistry
     Zeolites and related microporous crystalline materials, which have periodic three-dimensional framework and well-defined pore structures, have attracted much interest due to their wide applications in catalysis, ion-exchange, chemical separation, adsorption, host/guest chemistry, microelectronic devices, optics, and membranes. In 1982, Wilson and co-workers reported a new class of microporous crystalline aluminophosphates AIPO4-n(n denotes a structure type) with neutral zeolite-like open-frameworks, a high degree of structural diversity, and a wide range of pore sizes and volumes. Even though numerous zeolitic structures have been successfully synthesized via empirical findings or the exploration of synthesis parameters by trial and error, it is of significance to rationally design and synthesize more zeolitic structures with desired architectures and properties, which requires a clear understanding of their formation mechanism and crystallization process. So far, different mechanisms related to the specific synthesis systems have been discussed regarding nucleation and crystal growth, based on experimental evidence obtained with various methods such as X-ray diffraction and scattering, solid-state NMR spectroscopy, atomic force microscopy, and electron microscopy. However, the understanding on the formation mechanism of zeolitic structures is still very limited due to the intrinsic complexity of the synthesis system and imaging the initial stage of zeolite formation has not previously been possible.
     In this thesis, we investigated the crystallization mechanism of AlPO4-11 templated by diisopropylamine and the templating effect of diethylamine in the synthesis of AlPO4-11, AlPO4-41, and JDF-2. In the studies of crystallization mechanism of AlPO4-11, we investigated the influence of the concentration of reactants on the crystallization chemistry and crystallization pathway. It was found that a low concentration of reactants resulted in the formation of crystalline AlPO4-5 intermediate prior the crystallization of AlPO4-11 and a high concentration of reactants led to the direct crystallization of AlPO4-11 from the initial mixture. The NMR data clearly demonstrated that some fragments formed in the initial mixture and the early stage of crystallization contained some special P atoms possessing the environment which is same or very similar to that in the well crystallized AlPO4-11.
     AlPO4-11, AlPO4-41, and JDF-2 can be synthesized from a reaction system of Al2O3-P2O5-diethylamine-H2O by varying the content of diethylamine only. The samples crystallized for different periods were isolated and characterized by XRD and NMR techniques. The results showed that the coordination number of Al and P atoms in the initial mixture was controlled by the concentration of diethylamine, which determined the structure type of the final phase. Thus, the structure directing effect of an organic amine is determined not only by the nature but also by the concentration of the molecule.
引文
[1]www.uop.com
    [2]Everett, D.H., IUPAC, Mannul of Symbols and Terminology, in Pure Appl. Chem. 1972.
    [3]Breck, D. W., Zeolite molecular sieves, structure, chemistry and use; Ed.; John Wiley & Sons, Inc.:New-York,1974.
    [4]Cheetham, A. K.; Ferey, G.; Loiseau, T., Open-framework inorganic materials, Angew. Chem. Int. Ed. Engl.1999,38,3268-3292.
    [5]Cronstedt A. F., Akad. Handl. Stockholm,1756,17,120.
    [6]Deville,H.d.S.C.Compt.Rend.Seances Acad.Sci.1862,54,324.
    [7]Dyer A.,An Introduction to Zeolite Molecular Sieves, John Wiley and Sons, Chichester,1988;
    [8]R. M. Barrer, E. A. D. White, "The hydrothermal chemistry of silicates, Part Ⅱ, synthetic crystalline sodium aluminosilicates.", J. Chem. Soc.,1952,1561.
    [9]R. M. Milton, US Patent.2,882,243,1959.
    [10]D. M. Breck, US Patent.3,216,789,1965.
    [11]R. M. Milton, USPat.2,882,244,1959.
    [12]D. M. Breck, USPat.3,216,789,1965.
    [13]D. M. Breck, USPat.3,130,007,1964.
    [14]L. B. Sand, USPat.3,436,174,1969.
    [15]R. M. Barrer and P. J. Denny, J. Chem. Soc.1961,971.
    [16]Wilson, S.T., et al, J. Am. Chem. Soc.,1982.104:p.1146.
    [17]http://www.iza-structure.org.
    [18]Flanigen E. M., Lok B. M., Patton R. L., et al., Aluminophosphate Molecular Sieves and the periodic Table. Proc. Of the 7th Intl. Zeolite Conf. Kodansha-Elsevier, Murakam Y., Lijima A., Ward J. W. (Eds) 1986,103.
    [19]Davis, M.E., Saldarriaga, C., Montes, C., Garces, J. and Crowder, C., Nature, 331,698-699(1988)
    [20]Q. Huo, R.X., S. Li, Z. Ma, J. M. Thomas, R. H. Jones, A. M. Chippendale, J. Chem. Soc. Chem. Commun.,1992:p.875-876.
    [21]W. Yan, J.Y., R. Xu, G. Zhu, F. Xiao, Y. Han, K. Suglyama, O. Terasak, Chem. Mater.,2000.12:p.2517-2519.
    [22]Cundy, C.S. and Cox, P.A. (2003) Chem.Rev,103,663-701.
    [23]徐如人,庞文琴等,分子筛与多孔材料化学.2004,北京科学出版社.
    [24]Russell E. Morris, Ionothermal Synthesis of Zeolites and Other Porous Materials, Zeolites and Catalysis Synthesis, Reactions and Applications, Wiley
    [25]Aiello, R. and Barrer, R.M. (1970) J.Chem. Soc. A,1470.
    [26]X.W. Song, Y. Li, L. Gan, Z.P. Wang, J.H. Yu, R.R Xu,, Angew. Chem. Int. Ed., 2009,48,314-317.
    [27]C. S. Cundy and P. A. Cox, Microporous Mesoporous Mater.,2005,82,1.
    [28]C. E. A. Kirschhock, S. P. B. Kremer, P. J. Grobet, P. A. Jacobs and J. A. Martens, J. Phys. Chem. B,2002,106,4897.
    [29]C. E. A. Kirschhock, V. Buschmann, S. Kremer, R. Ravishankar, C. J. Y. Houssin, B. L. Mojet, R. A. van Santen, P. J. Grobet, P. A. Jacobs and J. A. Martens, Angew. Chem., Int. Ed.,2001,40,2637.
    [30]C. E. A. Kirschhock, S. P. B. Kremer, J. Vermant, G. Van Tendeloo, P. A. Jacobs and J. A. Martens, Chem.-Eur. J.,2005,11,4306.
    [31]S. L. Burkett and M. E. Davis, J. Phys. Chem.,1994,98,4647.
    [32]S. Gonthier, L. Gora, I. Guray and R. W. Thompson, Zeolites,1993,13,414.
    [33]R. W. Thompson, Zeolites,1992,12,837.
    [34]V. Nikolakis, D. G. Vlacho and M. Tsapatsis, Microporous Mesoporous Mater., 1998,21,337.
    [35]V. P. Valtchev and K. N. Bozhilov, J. Am. Chem. Soc.,2005,127,16171.
    [36]P. K. Dutta, D. C. Shieh and M. Puri, J. Phys. Chem.,1987,91,2332.
    [37]Alexander Aerts, Christine E. A. Kirschhock and Johan A. Martens, Chem. Soc. Rev.,2010,39,4626-4642
    [38]S. Oliver, A. Kuperman, A. Lough, G. A. Ozin, Chem. Mater.,1996,8, 2391-2398.
    [39]S. Oliver, A. Kuperman, G. A. Ozin, Angew. Chem. Int. Ed. Engl.,1998,37, 46-62.
    [40](?). B. Vistad, D. E. Akporiaye, and K. P. Lillerud, J. Phys. Chem. B 2001,105, 12437-12447
    [41](?)rnulv B. Vistad, Duncan E. Akporiaye, Francis Taulelle, and Karl Petter Lillerud Chem. Mater.2003,15,1639-1649
    [42]Didier Grandjean, Andrew M. Beale, Andrei V. Petukhov, and Bert M. Weckhuysen, J. AM. CHEM. SOC.2005,127,14454-14465
    [43]Y.N. Huang, Roger Richer, and Christopher W. KirbyJ. Phys. Chem. B,2003, 107(6),1326-1337
    [44]James G. Longstaffe, B.H. Chen, Y.N. Huang *Microporous and Mesoporous Materials 98 (2007) 21-28
    [45]Y.N. Huang, Bryan A. Demko, and Christopher W. Kirby, Chem. Mater.2003, 15,2437-2444
    [46]Z.M Yan, B.H. Chen, Y.N. Huang Solid State Nuclear Magnetic Resonance 35 (2009) 49-60
    [47]B.H. Chen and Y.N. Huang, J. Phys. Chem. C 2007,111,15236-15243
    [48]B.H. Chen, Christopher W. Kirby, and Y.N. Huang, J. Phys. Chem. C 2009,113, 15868-15876
    [49]J. Xu, L. Chen, D.L. Zeng, J. Yang, M.J. Zhang, C.H. Ye, and F. Deng, J. Phys. Chem. B 2007,111,7105-7113
    [50]J. Xu, D. Zhou, X.W. Song, L. Chen, J.H. Yu, C.H. Ye, F. Deng, Microporous and Mesoporous Materials 115 (2008) 576-584
    [51]F. T. Fan, Z. C. Feng, G. N. Li, K. J. Sun, P. L. Ying and C. Li, Chem.-Eur. J., 2008,14,5125.
    [52]F. T. Fan, Z. C. Feng, K. J. Sun, M. L. Guo, Q. Guo, Y. Song, W.-x. Li and C. Li, Angew. Chem., Int. Ed.,2009,46,8899.
    [53]D. Grandjean, A. M. Beale, A. V. Petukhov and B. M. Weckhuysen, J. Am. Chem. Soc.,2005,127,14454.
    [54]W.F. Yan, X.W. Song, R.R. Xu, Microporous and Mesoporous Materials 123 (2009) 50-62
    [55]W.F. Yan, L. Xin, V. Olman, J.H. Yu, Y. Wang, Y. Xu and R.R. Xu, Microporous Mesoporous Mater.,131 (2010) 148-161.
    [1]S.T. Wilson, B.M. Lok, E.M. Flanigen, U.S. Patent 4,310,440,1982.
    [2]Bennett, J. M.; Richardson, J. W., Jr.; Pluth, J. J.; Smith, J. V. Zeolites 1987,7, 160.
    [3]J.W. Jr.Richardson, J.J. Pluth, J.V. Smith, Acta Crystallogr.1988,B.44,367.
    [4]C. T. O'Connor, E.V. Steen, M.E. Dry, Stud. Surf. Sci.Catal.1996,102,323.
    [5]A.M. Prakash, S.V.V. Chilukuri, R.P. Bagwe, S. Ashtekar, D.K. Chakrabarty, Microporous Mater.1996,6,89.
    [6]J.A. Rabo, R.J. Pellet, P.K. Coughlin, W.S. Shamshoum, Stud. Surf. Sci. Catal. 1989,46,1 and references therein.
    [7]J. K.Hung, T.H. Colle, X. Feng, G. D. Mohr, K.K. Rao, U.S. Pat. Appl. Publ.2005, 12 pp.
    [8]J. I. Hammerman, E. M. Flanigen, G. J. Gajda, J. S. Holmgren, D. A. Lesch, R. L. Patton, T. M. Reynolds, C. M. Roeseler, Eur. Pat. Appl.1996,9 pp.
    [9]Miller, S. J. PCT Int. Appl.1989,32 pp.
    [10]Miller, S. J. PCT Int. Appl.1990,38 pp.
    [11]N. J.Tapp, N.B. Milestone, D.M. Bibby, Zeolites 1988,8,183.
    [12]X.Ren, S. Komarneni, D.M. Roy, Zeolites 1991,11,142.
    [13]N.Li, G.Cao, S.Xing, Stud. Surf. Sci. Catal.2004,154A,1001.
    [14]B. Han, C. H. Shin, P. A. Cox, S. B. Hong, J. Phys. Chem. B 2006,110,8188.
    [15]S. Prasad, R. Vetrivel, J. Phys. Chem.1992,96,3092.
    [16]G. Zhu, S. Qiu, F. Gao, G. Wu, R. Wang, B. Li, Q. Fang, Y. Li,; B. Gao, X. Xu, O. Terasaki, Microporous Mesoporous Mater.2001,50,129.
    [17]S.Oliver, A. Kuperman, G. A. Ozin, Angew. Chem.Int. Ed.1998,37,46.
    [18]B.H. Chen and Y.N. Huang, J. Phys. Chem. C 2007,111,15236-15243
    [19]Y.N. Huang, R. Richer, and C.W. Kirby, J. Phys. Chem. B 2003,107,1326-1337
    [20]B.H. Chen, and Y.N. Huang. J. Am. Chem. Soc.,2006,128 (19),6437-6446
    [21]C.M. Chen and J.M. Jehng, Catalysis Letters Vol.85, Nos.1-2, January 2003
    [22]A. Fernandes, M.F. Ribeiro, C. Borges, J.P. Lourenc, J. Rocha, Z. Gabelica, Microporous and Mesoporous Materials 90 (2006) 112-128
    [23]H.J. Ma, Z.J. Tian, R.S. Xu, B.C. Wang, Y. Wei, L. Wang, Y.P. Xu, W.P. Zhang, and L.W. Lin, J. AM. CHEM. SOC.2008,130,8120-8121.
    [24]Y.N. Huang, B.A. Demko and C.W. Kirby, Chem. Mater.,15 (2003) 2437-2444.
    [25]C.S. Cundy and P.A. Cox, Microporous Mesoporous Mat.,82 (2005) 1-78.
    [26]J.W. Mullin, Crystallization, Butterworth-Heinemann, Oxford,2001.
    [27]W. Ostwald, Z. Phys. Chem.,22 (1897) 289.
    [28]周丹,阴离子骨架磷酸铝的合成与固体核磁共振研究.2006,吉林大学博士论文
    [29]J. Xu, L. Chen, D.L. Zeng, J. Yang, M.J. Zhang, C.H. Ye and F. Deng, J. Phys. Chem. B,111(2007)7105-7113.
    [30]C.A. Fyfe, K.C. WongMoon and Y. Huang, Zeolites,16 (1996) 50-55.
    [31]E.R.H.v. Eck, and W.S. Veeman, J. Am. Chem. SOC.,1993.115:p.1168-1169.
    [32]L. Vidal, C. Pray, J. Patarin, Microporous and Mesoporous Materials 39 (2000) 113±116
    [33]F. T. Fan, Z. C Feng, K. J. Sun, M. L. Guo, Q. Guo, Y. Song, W.X. Li and C. Li, Angew. Chem., Int. Ed.,2009,46,8899.
    [34]R. J. Francis and D. O'Hare, J. Chem. Soc., Dalton Trans.,1998,3133.
    [35]D. Grandjean, A. M. Beale, A.V. Petukhov and B. M. Weckhuysen, J. Am. Chem. Soc.,2005,127,14454.
    [36]M.G. O'Brien, A.M. Beale, C.R.A. Catlow and B.M. Weckhuysen, J. Am. Chem. Soc.,2006,128,11744.
    [37]W.W. Rudolph, R. Mason and C.C Pye, Phys. Chem. Chem. Phys.,2000,2, 5030-5040
    [38]A.J. Holmes, S.J. Kirkby, G..A. Ozin, D. Young, J. Phys. Chem.,1994,98 (17), pp 4677-4682
    [1]徐如人,《分子筛与多孔材料化学》,2003年版
    [2]J. Cejka, A. Corma, and Stacey Zones, Zeolites and Catalysis, WILEY-VCH,2010
    [3]Y.Nakagawa, G.S.Lee, T.V. Haris, L.T. Yuen and S.I. Zones, (1998)Microporous Mesoporous Mater.,22,69-85.
    [4]M E.Davis, R.F. Lobo, Chem. Mater.,1992(4):756-768.
    [5]S. L. Lawton and W. J. Rohrbaugh, Science,1990,247,1319.
    [6]M. E. Davis, C. Saldarriaga. C. Montes, J. Garces, C. Crowder, Nature,1988,331, 698.
    [7]S.T. Wilson, B. M. Lok, and E. M. Flanigen, US Pat.4,310,440,1982.
    [8]闫文付,阴离子骨架磷酸铝的合成,结构及结构设计。2002,吉林大学博士论文,
    [9]N.J. Tapp, N. B. Milestone and D. M. Bibby, Zeolites,1988,8,183.
    [10]H.Y. He and J. Klinowski, J. Phys. Chem.1993,97,10385-10388
    [11]B.D Han, C.H. Shin, P.A. Cox, and S.B. Hong*,J. Phys. Chem. B 2006,110, 8188-8193
    [12]A. Tuel, S. Caldarelli, A. Meden, Ly.B. McCusker, C. Baerlocher, A. Ristic,| N. Rajic, G. Mali and V. Kaucic,J Phys. Chem. B 2000,104,5697-5705
    [13]S. Caldarelli, A. Meden, and A. Tuel, J. Phys. Chem. B 1999,103,5477-5487
    [14]D. Zhou, Lei Chen, J.H. Yu, Y. Li, W.F. Yan, F. Deng, and R.R. Xu, Inorg. Chem.2005,44,4391439
    [15]Y. Z.Khimyak, Klinowski, J. Phys. Chem. Chem. Phys.2001,3,2544.
    [16]E.R.H.v. Eck, and W.S. Veeman, J. Am. Chem. SOC.,1993.115:p.1168-1169.
    [17]周丹,阴离子骨架磷酸铝的合成与固体核磁共振研究.2006,吉林大学博士论文
    [18]S. Caldarelli, A. Meden, and A. Tuel,J. Phys. Chem. B,1999,103 (26), 5477-5487
    [19]S.E. Ashbrook, M. Cutajar, J.M. Griffin, Z.A. D. Lethbridge, R.I. Walton and Stephen Wimperis,J. Phys. Chem. C 2009,113,10780-10789

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700