介孔SiO_2/Fe_3O_4中空微球的可控制备及磁性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有高比表面积、高饱和磁化强度和良好单分散性的介孔二氧化硅磁性复合材料有望成为良好的酶固定化和药物控释载体。介孔二氧化硅的表面形貌和孔径大小决定了负载粒子的尺寸,磁性颗粒的尺寸决定了其磁性能的优劣。本文围绕着介孔材料的制备和孔径调节、磁性颗粒微观结构调整以及介孔二氧化硅/磁性复合材料的组装等系列问题展开研究,实现了具有不同微观形貌和性能的介孔二氧化硅磁性材料的可控制备。主要研究结果如下:
     在碱性环境下,以正硅酸乙酯(TEOS)为前驱体,阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)为结构导向剂,通过100℃水热处理和添加扩孔剂1, 3, 5-三甲苯(TMB)实现孔径的调变和孔道取向的控制。在没有TMB的情况下,水热处理可以提高介孔材料的结晶度,孔径稍有增大,且会使介孔材料的孔道取向由平行分布转变为径向分布,颗粒尺寸也有较大增长。不经过水热处理,在室温陈化2h的条件下,介孔材料的孔径随着TMB加入量的增加而增大,样品孔径由3.00nm增大到了6.49nm,同时样品的比表面积与孔容也有较大的增长。而对样品水热处理后,TMB的加入不仅使得介孔材料的结晶度降低而且孔径变化不大,说明晶化过程削弱了TMB的扩孔作用。
     具体讨论了反应pH值、干燥方式与焙烧过程对磁性空心球微观形貌及磁性能的影响。随着溶液pH的增加,纳米磁性颗粒的尺寸增大,饱和磁化强度和矫顽力随之增大,但过大的矫顽力会降低颗粒的再分散性。本论文所制得的纳米结构核壳和空心微球具有良好的单分散性、均匀性、稳定性以及较高的饱和磁化强度和低的矫顽力,实现了磁性微球的可控制备。
     采用两步包覆法和模板法,成功制备得到介孔SiO_2/Fe_3O_4中空磁性复合微球。通过调整磁性核心粒子浓度、TEOS的加入量和氢氧化钠浓度来制备表面形貌均匀、介孔二氧化硅层厚的复合颗粒。实验表明在TEOS为0.053mol·L~(-1)、NaOH浓度为0.122mol·L~(-1)、磁性核心粒子浓度为4g·L~(-1)时制备得到的介孔SiO_2/Fe_3O_4中空磁性微球尺寸均一约为390nm,比表面积为693m~2·g~(-1),孔体积为0.63cm~3·g~(-1),平均孔径为3.6nm且孔径分布窄,有利于对负载粒子的选择吸附。复合微球整体密度低,具有良好的单分散性。介孔SiO_2/Fe_3O_4中空磁性微球的饱和磁化强度可达13.6emu·g~(-1),满足了药物输送的要求,且低的矫顽力利于颗粒的再分散,为其实际应用奠定了基础。
Mesoporous silica magnetic composite material have become good enzyme immobilization and drug carrier due to they possess high surface area, high saturation magnetization and good monodisperse. The surface morphology and pore size of the mesoporous silica determine the size of loading particles and the size of magnetic particles determine their magnetic properties. This thesis focuses on the synthesis of mesoporous silica with different pore size, the adjustment of the sructure of magnetic particles and the preparation of mesoporous silica/magnetic composite core-shell microspheres. A novel method for the preparation of mesoporous silica magnetic composites is proposed. More detail is dicussed as follows:
     The control of pore size and orientation can be achieved by hydrothermal treatment using tetraethyl orthosilicate(TEOS) as precursor, cationic surfactant cetyltrimethyl ammonium bromide(CTAB) as structure directing agent and 1, 3, 5-trimethyl benzene(TMB) as pore size expansion agent under basic conditions. Hydrothermal treatment of mesoporous materials without TMB at 100℃can improve the degree of mesoscopical order, increase the pore size , vary the channel arrangment of mesoporous silica from a parallel orientation to a radial distribution and increase the size of particles. The introduction of TMB leads to a tunable pore size of mesoporous silica from 3.00nm to 6.49nm when sample is aged for 2h at room temperature in basic solution, and the BET surface area and pore volume increase with the increasing amount of TMB. The addition of TMB decreases the order of mesoporous materials and have inefficacy to the expanse of pore size, so the process of hydrothermal treatment impairs the effect of TMB.
     The effect of pH, dry method and calcination on the morphology and magnetic properties of hollow spheres is discussed in detail. The size of nano-magnetic particles increases with increasing solution pH, which cause the increasing of saturation magnetization and coercivity, but high coercivity will influence the redispersion of particles. In this thesis, core-shell nanostructural and hollow microspheres have good monodispersity, uniformity, stability and high saturation magnetization with low coercivity, which provides the foundation for the controllable synthesis of magnetic microspheres.
     Mesoporous SiO_2/Fe_3O_4 hollow magnetic microspheres have been successfully synthesized by two-step coating and templating method. Mesoporous silica composite particles with uniform morphology are obtained via adjusting the concentration of magnetic cores, TEOS and sodium hydroxide. Experiments show that the concentration of 0.053mol·L~(-1), 0.122mol·L~(-1), and 4g·L~(-1) for TEOS, NaOH and core particles respectively, results in mesoporous SiO_2/Fe_3O_4 hollow microspheres with a uniform size of about 390nm, a high specific surface area of 693m~2·g~(-1), a pore volume of 0.63cm~3·g~(-1) and a narrow pore size distribution centered at 3.6nm. The composite microspheres exhibit a low density and good monodispersity. For the mesoporous SiO_2/Fe_3O_4 hollow microspheres, a saturation magnetization up to 13.6emu·g~(-1) can meet the requirements for drug delivery, and a low coercivity is beneficial to the redispersion of particles and the practical application in the field of drug controllable release.
引文
1 H. H. P. Yiu, P. A. Wright. Enzymes Supported on Ordered Mesoporous Solids: A Special Case of An Inorganic-Organic Hybrid. Mater. Chem., 2005, 15(35-36): 3690~3700
    2 Y. M. Wang, Z. Y. Wu, H. J. Wang, J. H. Zhu. Fabrication of Metal Oxides Occluded in Ordered Mesoporous Hosts Via a Solid-State Grinding Route: The Influence of Host-Guest Interactions. Adv. Funct. Mater., 2006, 16(18): 2374~2386
    3 A. Corma. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chem. Rev., 1997, 97(6): 2373~2419
    4 G. ?ye, W. R. Glomm, T. Vr?lstad, S. Volden, H. Magnusson, M. St?cker, J. Sj?blom. Synthesis, Functionalization and Characterisation of Mesoporous Materials and Sol-Gel Glasses for Applications in Catalysis, Adsorption and Photonics. Adv. Colloid Interface Sci., 2006, 123(3): 17~32
    5 IUPAC. Manual of Symbols and Terminology for Physicochemical Quantities and Units. Pure. Appl. Chem., 1972, 31: 578~560
    6 C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck. Ordered Mesoporous Molecular Sieve Synthesized by A Liquid-Crystal Template Mmechanism. Nature, 1992, 359(6397): 710~712
    7曾垂省,陈晓明,闫玉华.介孔材料及其应用进展.化工科技, 2004, 12(5): 48~52
    8陈岗庆,李奠础,李瑞丰.介孔材料合成的研究.山西化工, 2006, 12(4): 21~29
    9刘树信,霍冀川,李炜罡.多孔材料合成制备进展.化工新型材料, 2004, 32(2):13~17
    10徐如人,庞文琴,于吉红,霍启升,陈接胜.分子筛与多孔材料.北京:科学出版社, 2004
    11 J. C. Vartuli, K. D. Schmitt, C. T. Kresge, W. J. Roth, M. E. Leonowicz, S. B. McCullen, S. D. Hellring, J. S. Beck. Effect of Surfactant/Silica Molar Ratios on The Formation of Mesoporous Molecular Sieves: Inorganic Mimicry of Surfactant Liquid-Crystal Phases and Mechanistic Implications. Chem. Mater., 1994, 6(12): 2317~2326
    12 J. C. Vartuli, C. T. Kresge, M. E. Leonowicz, A. S. Chu, S. B. MeCullen, I. D. Johnsen, E. W. Sheppard. Synthesis of Mesoporous Materials-Liquid-Crystal Templating Versus Intercalation of Layered Silicates. Chem. Mater., 1994, 6(11): 2070~2077
    13 C. Y. Chen, H. X. Li, M. E. Davis. Studies on Mesoporous Materials. I. Synthesis and Characterization of MCM-41. Micropopous Mater., 1993, 2: 17~26
    14 C. Y. Chen, S. L. Burkette, H. X. Li. Studies on Mesoporous Materials. II. Synthesim Mechanism of MCM-41. Micropopous Mater., 1993, 2: 27~34
    15 G. D. Stucky, Q. Huo, A. Firouzi, B. F. Chmelka, S. Schacht, I. G. Voigtmartin, F. Schuth. Directed Synthesis of Organic/Inorganic Composite Structures. Stud. Surf. Sci. Catal., 1997: 3~28
    16 Q. S. Huo, D. I. Margoless, U. Ciesla, D. G. Demuth, D. Y. Feng, T. E. Gier, D. Sieger, A. Firouzi, B. F. Chmelka, F. Schuth, G. D. Stucky. Generalized Synthesis of Periodic Surfactant Inorganic Composite Materials. Nature, 1994, 368: 317~321
    17 G. S. Attard, J. C. Glyde, C. G. G?ltner. Liquid-Crystalline Phases as Templates for the Synthesis of Mesoporous Silica. Nature, 1995, 378(6555): 366~368
    18 G. S. Attard, C. G. G?ltner, J. M. Corker, S. Henke, R. H. Templer. Liquid-Crystal Templates for Nanostructured Metals. Angew. Chem. Inter. Ed., 1999, 36(12): 1315~1317
    19 S. A. El-Safty, T. Hanaoka, F. Mizukami. Large-Scale Design of Cubic Ia3d Mesoporous Silica Monoliths with High Order, Controlled Pores, and Hydrothermal Stability. Adv. Mater., 2005, 17(4): 47~53
    20林永兴,孙立军,张文彬.介孔材料的合成机理与应用.材料导报, 2003, 17(1): 193~201
    21 Y. Wan, D. Y. Zhao. On the Controllable Soft-Templating Approach to Mesoporous Silicates. Chem. Rev., 2007, 107(7): 2821~2860
    22 H. B. S. Chan, P. M. Budd, T. D. Naylor. Control of Mesostructured Silica Particle Morphology. J. Mater. Chem., 2001, 11(3): 951~957
    23 J. M. Kim, S. K. Kim, R. Ryoo. Synthesis of MCM-48 Single Crystals. Chem. Commun., 1998, (2): 259~260
    24 G. J. Soler-Illia, A. Louis, C. Sanchez. Synthesis and Characterization of Mesostructured Titania-Based Materials Through Evaporation-Induced Self-Assembly. Chem. Mater., 2002, 14(2): 750~759
    25张扬健,赵杉林,孙桂大. W-MCM-48中孔分子筛的微波合成与表征.催化学报,2000, 21: 345~350
    26 P. Schmidt-Winkel, W. W. Lukens, D. Y. Zhao, P. D. Yang, B. F. Chmelka, G. D. Stucky. Mesocellular Siliceous Foams with Uniformly Sized Cells and Windows. J. Am. Chem. Soc., 1999, 121(1): 254~255
    27 J. S. Lettow, Y. J. Han, P. Schmidt-Winkel, P. D. Yang, D. Y. Zhao, G. D. Stucky, Y. J. Ying. Hexagonal to Mesocellular Foam Phase Transition in Polymer-Templated Mesoporous Silicas. Langmuir, 2000, 16(22): 8291~8295
    28 D. Y. Zhao, Q. S. Huo, J. L. Feng, B. F. Chmelka, G. D. Stucky. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. J. Am. Chem. Soc., 1998, 120(24): 6024~6036
    29 A. Vinu, V. Murugesan, W. Bohlmann, M. Hartmann. An Optimized Procedure for the Synthesis of AlSBA-15 with Large Pore Diameter and High Aluminum Content. J. Phys. Chem. B, 2004, 108(31): 11496~11505
    30 T. Yamada, H. S. Zhou, K. Asai, I. Honma. Pore Size Controlled Mesoporous Silicate Powder Prepared by Triblock Copolymer Templates. Mater. Lett., 2002, 56(1-2): 93~96
    31 A. Sayari, P. Liu, M. Kruk, M. Jaroniec. Characterization of Large-Pore MCM-41 Molecular Sieves Obtained Via Hydrothermal Restructuring. Chem. Mater., 1997, 9(11): 2499~2506
    32 Q. Huo, R. Leon, P. M. Petruff. Mesosture Design with Gemini Surfactants: Supercage in a Three-Dimen Hexagonal Array. Science, 1995, 268:1324~1327
    33 C. Y. Chen, S. L. Burkett, M. E. Davis. Studies on Mesoporous Materials: Synthesis and Characterization of MCM-41. Microporous Materials, 1993, 2: 1~17
    34 K. R. Khushalmai, H. V. Bekkum, C. Jaeobus. Mesoporous Material Containing Frmaework Tectosilieate by Pore Wall Recrystallization. J. Chem. Commun., 1997, 20: 2281~2282
    35 M. Arruebo, M. Galán, N. Navascués, C. Téllez, C. Marquina, M. R. Ibarra, J. Santamaría. Development of Magnetic Nanostructure Silica-Based Materials as Potential Vectors for Drug-Delivery Applications. Chem. Mater., 2006, 18(7): 1911~1920
    36 N. K. Mal, M. Fujiwara, Y. Tanaka. Photocontrolled Reversible Release of Guest Molecules from Coumarin-Modified Mesoporous Silica. Nature, 2003, 421:350~359
    37 Y. F. Zhu, J. Shi, W. H. Shen, X. P. Dong, J. W. Feng, M. Ruan, Y. S. Li. Stimuli-Responsive Controlled Drug Release From a Hollow Mesoporous Silica Sphere/Polyelectrolyte Multilayer Core-Shell Structure. Angew. Chem. Int. Ed., 2005, 32(44): 5083~5090
    38刘冰,王德平,黄文,周萘,姚爱华.核壳结构磁性复合纳米粒的制备及研究进展.材料导报, 2007, 21: 185~188
    39张效岩,王英,张亚非.磁性纳米粒子的制备及应用.磁性材料器件, 2004, 6(35): 14~17
    40 A. Stein. Advances in Microporous and Mesoporous Solids Highlights of Recent Progress. Adv. Mater., 2003, 15(10): 763~775
    41 H. Zhang, M. E. Meyerhoff. Gold-Coated Magnetic Particles for Solid-Phase Immunoassays: Enhancing Immobilized Antibody Binding Efficiency and Analytical Performance. Anal. Chem., 2006, 78: 609~615
    42朱慎林,赵俊琦,刁香,王玉军.磁性介孔氧化硅材料的制备与应用.石油化工, 2009, 38(8): 811~817
    43 S. M. Zhu, Z. Y. Zhou, D. Zhang, C. Jin, Z. Q. Li. Design and Synthesis of Delivery System Based on SBA-15 with Magnetic Particles Formed in Situ and Thermo-Sensitive PNIPA as Controlled Switch. Microporous Mesoporous Mater., 2007, 106(1): 56~61
    44 Y. G. Wang, J. W. Ren, X. H. Liu, Y. Q. Wang, Y. Guo, G. Z. Lu. Facile Synthesis of Ordered Magnetic Mesoporousγ-Fe2O3/SiO_2 Nanocomposites with Diverse Mesostructures. J. Colloid. Interface Sci., 2008, 326(1): 158~165
    45 D. Lee, J. Lee, H. Lee, S. Jin, T. Hyeon, B. M. Kim. Filtration-Free Recyclable Catalytic Asymmetric Dihydroxylation Using a Ligand Immobilized on Magnetic MesocellularMesoporous Silica. Adv. Synth. Catal., 2006, 348(1-2): 41~46
    46王平,朱以华,杨晓玲.介孔二氧化硅微球的扩张及组装磁性纳米铁粒子.过程工程学报, 2008, 8(1): 162~166
    47 A. H. Lu, W. C. Li, A. Kiefer, W. Schmidt, E. Bill, G. Fink, F. Schuth. Fabrication of Magnetically Separable Mesostructured Silica with An Open Pore System. J. Am. Chem. Soc., 2004, 126(28): 8616~8617
    48 R. P. Hodgkins, A. Ahniyaz, K. Parekh, L. M. Belova, L. Bergstrom. Maghemite Nano-Crystal Impregnation by Hydrophobic Surface Modification of Mesoporous Silica. Langmuir, 2007, 23(17): 8838~8844
    49 E. Ruiz-Hernández, A. López-Noriega, D. Arcos, I. Barba, O. Terasaki, M. V. Regi. Aerosol-Assisted Synthesis of Magnetic Mesoporous Silica Spheres for Drug Targeting. Chem. Mater., 2007, 19(14): 3455~3463
    50 T. Sen, I. J. Bruce. Mesoporous Silica-Magnetite Nanocomposites : Fabrication, Characterisation and Applications in Biosciences. Microporous Mesoporous Mater., 2009, 120: 246~251
    51 J. Kim, J. E. Lee, J. Lee, J. H. Yu, B. C. Kim, K. An, Y. Hwang, C. Shin. Magnetic Fluorescent Delivery Vehicle Using Uniform Mesoporous Silica Spheres Embedded with Monodisperse Magnetic and Semiconductor Nanocrystals. J. Am. Chem. Soc., 2006, 128(3): 688~689
    52 L. Zhang, S. Z. Qiao, Y. G. Jin, Z. G. Chen, H.C. Gu, G. Q. Lu. Magnetic Hollow Spheres of Periodic Mesoporous Organosilica and Fe3O4 Nanocrystals: Fabrication and Structure Control. Adv. Mater., 2008, 20: 805~809
    53 W. R. Zhao, J. L. Gu, L. X. Zhang, H. R. Chen, J. L. Shi. Fabrication of Uniform Magnetic Nanocomposite Spheres with a Magnetic Core/Mesoporous Silica Shell Structure. J. Am. Chem. Soc., 2005, 127(25): 8916~8917
    54 Y. H. Deng, D. W. Qi, C. H. Deng, X. M. Zhu, D. Y. Zhao. Superparamagnetic High-Magnetization Microspheres with an Fe3O4@SiO_2 Core and Perpendicularly Aligned Mesoporous SiO_2 Shell for Removal of Microcystin. J. Am. Chem. Soc., 2008, 130:28~29
    55 X. Q. Liu, J. M. Xing, Y. P. Guan. Synthesis of Amino-Silane Modified Superparamagnetic Silica Supports and Their Use for Protein Immobilization. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2004, 238: 127~131
    56 P. Xue, G. Z. Lu, Y. L. Guo, Y. S. Wang, Y. Guo. Novel Support of MCM-48 Molecular Sieve for Immobilization of Penicillin G Acylase. J. Mol. Catal. B: Enzyme. 2004, 30(2): 75~81
    57 B. G. Trewyn, C. M. Whitman, V. S. Lin. Morphological Control of Room-Temperature Ionic Liquid Templated Mesoporous Silica Nanoparticles for Controlled Release of Antibacterial Agents. Nano Letter, 2004, 4(11): 2139~2143
    58 F. Y. Qu, G. S. Zhu, S. Y. Huang, S. G. Li, J. Y. Sun, D. L. Zhang, S. L. Qiu. Controlled Release of Captopril by Regulating the Pore size and Morphology of Ordered Mesoporous Silica. Microporous Mesoporous Mater., 2006, 92: 1~9
    59 J. Kim, H. S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I. C. Song, W. K. Moon, T. Hyeon. Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery. Angew. Chem. Int. Ed., 2008, 44(47): 8438~8441
    60朗宇琪,邢建民,张菊花,王巧巧,刘会洲.磁性氧化铝负载Pd催化剂对硝基苯加氢催化活性的研究.化学通报, 2009, 7: 631~636
    61 K. Mori, Y. Kondo, S. Morimoto, H. Yamashita. Synthesis and Multifunctional Poperties of Super Aramagnetic Iron Oxide Nanoparticles Coated with Mesoporous Silica Involving Single-Site Ti-Oxide Moiety. J. Phys. Chem. C, 2008, 112(2): 397~404
    62 J. Dong, Z. H. Xu, F. Wang. Engineering and Characterization of Mesoporous Silica-Coated Magnetic Particles for Mercury Removal From Industrial Effluents. Appl. Surf. Sci., 2008, 254(11): 3522~3530
    63 J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. Chu, D. H. Olson, E. W. Sheppard. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. Am. Chem. Soc., 1992, 114(27): 10834~10843
    64 Q. Huo, D. I. Margolese, G. D. Stucky. Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials. Chem. Mater., 1996, 8: 1147~1160
    65 S. Namba, A. Mochizuki. Effect of Auxiliary Chemicals on Preparation of Silica MCM-41. Res. Chem. Intermed., 1998, 24(5): 561~570
    66何农跃,红梅.室温强酸性介质合成MCM-41介孔分子筛(II):辅助模板剂对MCM-41介孔分子筛孔径的调变.湘潭大学自然科学学报, 2000, 22(3): 55~61
    67高雄厚,何东旺,王智峰.助模板剂对MCM-41分子筛结构和性能的影响.石油炼制与化工, 1998, 29: 57~61
    68 D. Khushalani, A. Kuperman, G. A. Ozin, K. Tanaka, N. Coombs. Metamorphic Materials: Restructuring Siliceous Mesoporous Materials. Adv. Mater., 1995, 10 (7): 842~846
    69 A. Sayari, Y. Yang. Expanding the Pore Size of MCM-41 Silicas: Use of Amines as Expanders in Direct Synthesis and Postsynthesis Procedures. J. Phys. Chem. B, 1999,103: 3651~3658
    70 A. Sayari. Unprecedented Expansion of the Pore Size and Volume of Periodic Mesoporous Silica. Angew. Chem. Int. Ed., 2000, 16(39): 2920~2922
    71 H. Yang, C. Noombs, I. Sakolov. Free-Standing and Oriented Mesoporous Silica Films Grown at The Air-Water Interface. Nature, 1996, 381: 589~592
    72 B. C. Chen, H. P. Lin, M. C. Chao, C. Y. Mou, C. Y. Tang. Mesoporous Silica Platelets with Perpendicular Nanochannels Via a Ternary Surfaetant System. Adv. Mater., 2004, 16: 1657~1661
    73 D. Y. Zhao, P. D. Yang, D. I. Margolese, G. D. Stucky. Synthesis of Continuous Mesoporous Silica Thin Films with Three-Dimensional Aeeessible Pore Struetures. Chem. Commun., 1998, 22: 2499~2500
    74 S. H. Tolbert, T. E. Sch?ffer, J. Feng, P. K. Hansma, G. D. Stucky. A New Phase of Oriented Mesoporous Silicate Thin Films. Chem. Mater., 1997, 9(9): 1962~1967
    75 H. P. Lin, S. B. Liu, C. Y. Mou, C. Y. Tang. Hollow Spheres of MCM-41 Aluminosilicate with Pinholes. Chem. Commun., 2001, 19: 1970~1971
    76 H. P. Lin, Y. R. Cheng, C. Y. Mou. Hierarehical Order in Hollow Spheres of Mesoporous Silicates. Chem. Mater., 1998, 10: 3772~3776
    77 S. Schacht, Q. Huo, G. Voig-Martin, G. D. Stucky, F. Schuth. Oil-Water Interface Templating of Mesoporous Macroscale Struetures. Science, 1996, 273(5276): 768~771
    78 Q. Y. Sun, P. J. Kooyman, J. G. Grossmann. The Formation of Well-Defined Hollow Silica Spheres with Multilamellar Shell Strueture. Adv. Mater., 2003, 13(15): 1097~1100
    79 B. Pauwels, G. V. Tendeloo, C. Thoelen, W. V. Rhiji, P. A. Jacobs. Structure Determination of Spherical MCM-41 Particles. Adv. Mater., 2001, 13(17): 1317~1320
    80 S. B. Yoon, J. Y. Kim, J. H. Kim, Y. J. Park, K. R. Yoon, S. K. Park, J. S. Yu. Synthesis of Monodisperse Spherical Silica Particles with Solid Core and Mesoporous Shell: Mesopore Channels Perpendicular to the Surface. J. Mater. Chem., 2007, 17: 1758~1761
    81 H. Blas, S. Mave, P. Pasetto, C. Boissiere, C. Sanchez, B. Charleux. Elaboration of Monodisperse Spherical Hollow Particles with Ordered Mesoporous Silica Shells Via Dual Latex/Surfactant Templating: Radial Orientation of Mesopore Channels. Langmuir, 2008, 24:13132~13137
    82 J. P. Hanrahan, M. P. Copley, K. M. Ryan, T. R. Spalding, M. A. Morris, J. D. Holmes. Pore Expansion in Mesoporous Silicas Using Supercritical Carbon Dioxide. Chem. Mater., 2004, 16 (3): 424~427
    83 A. H. Lu, E. L. Salabas, F. Schth. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew. Chem. Int. Ed., 2007, 46: 1222~1244
    84 H. Yan, J. C. Zhang, C. X. You. Influences of Different Synthesis Conditions on Properties of Fe3O4 Nanoparticles. Mater. Chem. Phys., 2009, 113: 46~52
    85杨小玲,姜玉凤,张引莉.磁性淀粉微球药物载体的合成及表.应用化工, 2008, 37(1): 45~47
    86张洪刚,陆书来,成国祥.悬浮聚合法制备磁性分子印迹聚合物微球.功能高分子学报, 2007, 19~20(3): 257~261
    87 D. Amara, I. Felner, I. Nowik, S. Margel. Synthesis and Characterization of Fe and Fe3O4 Nanoparticles by Thermal Decomposition of Triiron Dodecacarbony. Colloid Surf. A, 2009, 1~3(339): 106~110
    88刘献明,刘晶,吉保明. Fe3O4纳米棒的水热法制备及其磁性能研究.电子元件与材料, 2008, 27(12): 47~50
    89 B. C. Cerry, C. A. Surtis. Functionalization of Magnetic Nanoparticles for Applications in Biomedicine. J. Phys. D., 2003, 36: 198~206
    90李享,杨海滨.纳米Fe3O4磁性颗粒的制备进展.材料导报, 2006, 20: 145~148
    91常津.医用磁性纳米材料的制备条件对有效粒径的影响.中国生物医学工程学报, 1996, 15(4): 97~101
    92 T. Hyeon. Chemical Synthesis of Magnetic Nanoparticles. Chem. Commun., 2003, 8: 927~934
    93 J. Park, J. Joo, S. G. Kwon, Y. Jang, T. Hyeon. Synthesis of Monodisperse Spherical Nanocrystals. Angew. Chem. Int. Ed., 2007, 25(46): 4630~4660
    94 X. Wang, Y. Li. Monodisperse Nanocrystals: General Synthesis, Assembly, and their Applications. Chem. Commun., 2007, 28: 2901~2910
    95 B. L. Cushing, V. L. Kolesnichenko, C. J. O'Connor. Recent Advances in the Liquid- Phase Syntheses of Inorganic Nanoparticles. Chem. Rev., 2004, 9(104): 3893~3946
    96 U. Jeong, X. Teng, Y. Wang, H. Yang, Y. Xia. Superparamagnetic Colloids: Controlled Synthesis and Niche Applications. Adv. Mater., 2007, 1(19): 33~60
    97 M. Arruebo, R. Fernández-Pacheco, M. R. Ibarra, J. Santamaría. Magnetic Nanoparticles for Drug Delivery. J. Nano today, 2007, 3(2): 22~32
    98 C. Xu, S. Sun. Monodisperse Magnetic Nanoparticles for Biomedical Applications. Polym. Int., 2007, 7(56): 821~826
    99张阳德,张洋,潘一峰.磁性纳米颗粒靶向性肿瘤热疗的研究进展.中国医学工程, 2006, 14(2): 148~152
    100 S. Sun, H. Zeng. Size-Controlled Synthesis of Magnetite Nanoparticles. J. Am. Chem. Soc., 2002, 124: 8204~8205
    101 S. R. Wan, J. S. Huang, H. S. Yan, K. Liu. Size-Controlled Preparation of Magnetite Nanoparticles in the Presence of Graft Copolymers. J. Mater. Chem., 2006, 16: 298~303
    102 D. Caruntu, G. Caruntu, C. J. O'Connor. Magnetic Properties of Variable-Sized Fe3O4 Nanoparticles Synthesized from Nonaqueous Homogeneous Solutions of Polyols. J. Phy. D: Appl. Phys., 2007, 40: 5801~5809
    103 A. H. Morrish. The Physical Prineiples of Magnetism. New York: Wiley, 1965: Ch. 7
    104 K. M. Unruh, C. L. Chien. Synthesis, Properties and Applieations (Eds: A.S.Edelstein,R.C.Cammarata). Bristol, UK: Instit Ute of Physies Publishing, 1996: Ch.14
    105 D. Weller, M. F. Doerner. Extremely High-Density Longitudinal Magnetic Recording Media. Annu. Rev. Mater. Sci., 2000, 30:611~644
    106 A. Moser, K. Takano, D. T. Margulies, M. Albreeht, Y. Sonobe, Y. Ikeda, S. H. Sun, E. E. Fullerton. Magnetic Recording: Advancing into the Future. J. Phys. D: Appl. Phys., 2002, 35(19): 157~167
    107 A. Jordan, R. Scholz, P. Wust, H. Feling, R. Felix. Magnetic Fluid Hyperthermia(MFM): Cancer Treatment with AC Magnetic Field Induced Excitation of BiocompatibleSuperparamagnetic Nanoparticles. J. Magn. Mater., 1999, 201: 413~419
    108 Q. A. Pankhurst, J. Conolly, S. K. Jones, J. Dobson. Applications of Magnetic Nanoparticles in Biomedicinel. J. Phys. D: Appl. Phys., 2003, 36(13):167~181
    109 T. Neuberger, B. Schf, H. Hofmann, M. Hofmann, B. Rechenber. Superparamagnetic Nanopartieles for Biomedical Applications: Possibilities and Limitations of a New Drug Delivery System. J. Magn. Mater., 2005, 293(l): 483~496
    110 S. C. Tsang, V. Caps, I. Paraskevas, D. Chadwick, D. Thompsett. Magnetically Separable, Carbon-Supported Nanocatalysts for the Manufacture of Fine Chemical. Angew. Chem. Int. Ed., 2004, 43(42): 5645~5649
    111 P. D. Stevens, G. F. Li, J. D. Fan, M. Yen, Y. Gao. Recycling of Homogeneous Pd Catalysts Using Superparamagnetic Nanoparticles as Novel Soluble Suppports for Suzuki, Heck, and Sonogashira Cross-Coupling Reactions. Chem. Commun., 2005, 35: 4435~4437
    112 C. Garcia, Y. M. Zhang, F. DiSalvo, U. Wiesner. Mesoporous Aluminosilicate Materials with Superparamagneticγ-Fe2O3 Particles Embedded in the Walls. Angew. Chem. Int. Ed., 2003, 42, 1526~1530
    113 M. Alvaro, C. Aprile, H. Garcia, C. J. Gómez-García. Synthesis of a Hydrothermally Stable, Periodic Mesoporous Material Containing Magnetite Nanoparticles, and the Preparation of Oriented Films. Adv. Funct. Mater., 2006, 16, 1543~1548
    114 P. Wu, J. Zhu, Z. Xu. Templater-Assisted Synthesis of Mesoporous Magnetic Particles. Adv. Funct. Mater., 2004, 14: 345~351
    115 W. Zhao, J. Gu, L. Zhang, H. Chen, J. Shi. Fabrication of Uniform Magnetic Nanocomposite Spheres with a Magnetic Core/Mesoporous Silica Shell Structure. J. Am. Chem. Soc., 2005, 127, 8916~8917
    116 A. B. Fuertes, S. M. evilla, T. V. Solis, P. Tartaj. Synthetic Route to Nanocomposites Made Up of Inorganic Nanoparticles Confined within a Hollow Mesoporous Carbon Shell. Chem. Mater., 2007, 19: 5418~5423
    117 Q. Y. Li, R. N. Wang, Q. Wei, Z. H. Wang, Z. R. Nie. Preparation and Characterization of Nanostructured Ni(OH)2 and NiO Thin Films by a Simple Solution Growth Process, J. Colloid. Interface Sci., 2008, 320: 254~258
    118 Q. Y. Li,R. N. Wang,Z. R. Nie,Q. Wei, Z. H. Wang. Preparation of Three-Dimensional Flowerlike Ni(OH)2 Nanostructures by a Facile Template-Free Solution Process. J. Alloys Compd., 2010, 496:300~305
    119娄载亮,李群艳,王志宏,韦奇,聂祚仁.α-Ni(OH)2/SiO_2核壳以及α-Ni(OH)2空心微球的制备及表征.无机材料学报, 2009, 24: 345~348
    120 Y. F. Zhu, E. Kockrick, T. Ikoma, N. Hanagata, S. Kaskel. An Efficient Route to Rattle-Type Fe3O4@SiO_2 Hollow Mesoporous Spheres Using Colloidal Carbon Spheres Templates. Chem. Mater., 2009, 21(12): 2547~2553

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700