非线性可积系统及其相关问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的主要内容包括:
     1.从一个3×3矩阵谱问题出发,推导出广义MKdV方程族,构造此方程族Hamilton结构,证明在Liouville意义下是可积的.通过对称约束得到有限维Hamilton系统。通过Lie代数半直和构造可积耦合系统,利用变分恒等式得到可积耦合系统的Hamilton结构。由拟微分算子技术构造非等谱非交换的KP方程族。
     2.首次给出两类变系数非线性演化方程的Frobenius可积分解,包括变系数KdV方程,势KdV方程,Boussinesq方程,Camassa-Holm方程等。把(2+1)维广义KP,cKP,mKP方程分解为(1+1)维可积方程,研究2阶复AKNS方程和3阶复AKNS方程的相容解与广义(2+1)维KP,cKP,mKP方程的解之间的关系,并利用Darboux变换得到它们的孤子解,进而将解表示为双Wronskian行列式形式。
     3.分别利用Hirota方法与Wronskian技术给出五阶KdV方程及其约束方程的精确解,并证明两种解的一致性.将双Wronskian元素满足的条件推广到矩阵情形,导出等谱Levi方程广义双Wronskian行列式解,其中包括孤子解、有理解、Matveev解、complexiton解及混合解。给出非等谱Levi方程的双Wronskian行列式解。研究等谱与非等谱Levi方程孤子解的动力学行为包括单孤子的特征以及双孤子的散射。
The major contents in this dissertation consist of:
     1.The generalized MKdV equation hierarchy is constrcted from a 3×3 matrix spectral problem,then,its Hamilton structure is presented and the Liouville integrability is demonstrated.By establishing binary symmetric constraints,the constrained flows of the hierarchy are presented,which are then reduced to finite-dimension Hamilton systems. Then,an integrable couplings system is obtained by applying a semi-direct sum of Lie algebras.Then the Hamilton structure of the integrable couplings is constructed by the variational identity.The nonisospectral noncommutative KP hierarchy is presented by pseudo-difference operator technique.
     2.Frobenius integrable decompositions are introduced for two classes nonlinear evolution equations with variable coefficients for the first time,including the KdV equation and potential KdV equation,the Boussinesq equation and the Camassa-Holm equation with variable coefficients etc.The generalized(2+1)-dimensional KP,cKP and mKP were decomposed into the(1+1)-dimensional integrable equations.We investigate the relations between the consistent solutions of the 2-order and 3-order complex AKNS equations and the solutions of three(2+1)-dimensional soliton equations.With the help of the Darboux transformation,we get the explicit solutions of the generalized KP equation,cKP equation and mKP equation,and they are presented in double Wronskian form.
     3.The first one is to derive the exact solutions for the fifth-order KdV equation and its constraint equation through Hirota method and Wronskian technique,respectively.Further, the uniformity of these two kinds of exact solutions is proved.The second one is to obtain the general double Wronskian solution of the isospectral Levi equations by generalizing the equation satisfied by Wronskian entries to the matrix equation,including soliton solutions,rational solutions,Matveev solutions,complexiton solutions and interaction solutions. The last part,we derive the double Wronskian solution of the non-isospectral Levi equations.The dynamics including one-soliton characteristics and two-solitons scattering for the isospectral and non-isospectral Levi equations are investingated analytically.
引文
[1]Russell J.S.,Report of the committee on wave,Report on the 14th meeting of British Association for the advancement of science,John Murray,London 1844:311-390.
    [2]Korteweg D.J.,de Vries G.,On the change of form of long waves advanceing in a rectangular canal,and on a new type of long stationary wave,Philos.Mag.Set.,1985,39:422-443.
    [3]Fermi E.,Pasta J.,Ulam S.,Studies of nonlinear problems,L Los,Alamo Report,LA,1995,1940:1955.
    [4]Toda M.,Theory of Nonlinear Lattices,Soliton State Science.Springer-Verlag,New York,1981.
    [5]Zakharov N.J.,Kruskal M.D.,Interaction of " Soliton " in a Collision-less Plasma and the recurrence of initial states,Phys.Rev.Lett.,1965,15:240-243.
    [6]Gardner C.S.,Greene J.M.,Kruskal M.D.,Miura R.M.,Method for solving the KdV equation,Phys.Rev.Lett.,1967,19:1095-1097;
    The Korteweg-de Vries equation and generalizations VI.Methods for exact solution,Comm.Pure Appl.Math.,1974,27:97-133.
    [7]Ablowitz M.J.,Segur H.,Soliton and the Inverse Scattering Transform,SIAM,Philadelphia,PA,1981.
    [8]Ablowitz M.J.,Clarkson P.A.,Solitons,Nonlinear Evolution Equation and Inverse Scattering,Cambridge University Press,Cambridge,1991.
    [9]Ablowitz M.J.,Kaup D.J.,Newell A.C.,Segur H.,The inverse scattering transform-Fourier analysis for nonlinear problems,Stud.Apll.Math.,1974,53:249-315.
    [10]Lin R.L.,Zeng Y.B.,Ma W.X.,Solving the KdV hierarchy with self-consistent sources by inverse scattering method,Phys.Lett.A,2001,291:287-298.
    [11]B(a|¨)cklund A.V.,Concerning surface with consistant negative curvature,Lunds Universites Arsskift,19,1983,Translated by E.M.Coddington of New York.
    [12]谷超豪等著,孤立子理论与应用,浙江科技出版社,1990.
    [13]Hirota R.,A few forms of B(a|¨)cklund transformations and its relation to inverse scattering problem,Pro.Theo.Phys.,1974,52:1498-1512.
    [14]陈登远,B(a|¨)cklund变换与N-孤子解,数学研究与评论,2005,25:479-488.
    [15]Hirota R.,Satsuma J.,Nolinear evolution equations generated from the B(a|¨)cklund transformation for the Boussinesq equation,Prog.Thoer.Phys.,1977,57:797-807.
    [16]Nimmo J.J.C.,A bilinear B(a|¨)cklund transformation for the nonlinear Schr(o|¨)dinger equation,Phys.Lett.A,1983,99:279-281.
    [17]Wahlquist H.D.,Estabrook F.B.,B(a|¨)cklund transformation for solitons of the Korteweg-de Vries equation,Phys.Rev.Lett.,1973,31:1386-1390.
    [18]Cheng Y.,Strampp W.,Zhang Y.J.,Bilinear B(a|¨)cklund transformations for the KP and k-constrained KP hierarchy.Phys.Lett.A,1993,182:71-76.
    [19]Xiao T.,Zeng Y.B.,B(a|¨)cklund transformations for the KP and mKP hierarchies with self-consistent sources,d.Phys.A:Math.Gen.,2006,39:139-156.
    [20]Matveev V.B.,Salle M.A.,Darboux transformations and solitons,Springer Series in Nonlinear Dynamics.Berlin:Springer-Verlag,1991.
    [21]谷超豪,胡和生,周子翔,孤立子理论中的达布变换及几何应用,上海科学技术出版社,1999.
    [22]李翊神,孤子与可积系统,上海教育出版社,1999.
    [23]杜殿楼,从NLS方程和复MKdV方程的相容性到三组2+1维孤立子方程的解,河南科学,2005,23:316-319.
    [24]Li Y.S.,Zhang J.E.,Darboux transformations of classical Boussinesq system and its multisoliton solutions,Phy.Lett.A,2001,284:253-258.
    [25]曾云波,带附加项的AKNS方程族的Darboux变换,数学物理学报,1995,15:337-345.
    [26]Zeng Y.B.,Ma W.X.,Shao Y.,Two binary Darboux transformations for the KdV hierarchy with self-consistent sources,J.Math.Phys.,2001,42:2113-2128.
    [27]Zeng Y.B.,Shao Y.,Ma W.X.,Integral-type Darboux transformations for the mKdV hierarchy with self-consistent sources,Comm.Theor.Phys.,2002,38:641-648.
    [28]Zhou Z.X.,Darboux transformations and exact solutions of two-dimensional C_l~((1)) and C_((l+1))~((2))Toda equations,J.Phys.A:Math.Gen.,2006,39:5727-5737.
    [29]Zhou Z.X.,Darboux transformations and exact solutions of two-dimensional A_(2n)~((2)) Toda equations,J.Math.Phys.,2005,46:033515.
    [30]Hirota R.,Exact soliton of the KdV equtaion for multiple collisions of solitons,Phys.Rev.Lett.,1971,27:1192-1194.
    [31]Hirota R.,Direct method in soliton theory(In English),Edited and translated by Atsnshi Nagai,Jon Nimmo and Claire Gilson,Cambridge University Press,2004.
    [32]Satsuma J.,A Wronskian representation of n-soliton solutions of nonlinear evolution equations,J.Phys.Soc.Jpn,1979,46:359-360.
    [33]Nimmo J.J.C.,Soliton solitons of three differential-difference equations in Wronskian form,Phys.Lett.A,1983,99:281-286.
    [34]Freeman N.C.,Nimmo J.J.C.,Soliton solutions of the Korteweg de Vries and the Kadomtsev-Petviashvili equations:the Wronskian technique,Proc.R.Soc.Lond,1983,389A:319-329.
    [35]Freeman N.C.,Soliton solutions of nonlinear evolution equations,IMA,J.Appl.Math.,1984,32:125-145.
    [36]Nimmo J.J.C.,Freeman N.C.,A method of obtainning the soliton solution of the Boussinesq equation in terms of a Wronskain,Phys.Lett.A,1983,95:4-6.
    [37]Hirota R.,Ohta Y.,Satsuma J.,Wronskian structures of solutions for soliton equations,Prog.Theor.Phys.Suppl.,1988,94:59-72.
    [38]Liu Q.M.,Double Wronskian solutions of the AKNS and the classical Boussinesq hierarchies,J.Phys.Soc.Jpn.,1990,59:3520-3527.
    [39]Freeman N.C.,Nimmo J.J.C.,Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petmiashvili equations:the Wronskian technique,Phys.Lett.,1983,95A:1-3.
    [40]Weiss J.,Tabor M.,Carnvale G.,The Painleve property for partial differential equations,J.Math.Phys.,1983,24:522-526.
    [41]Weiss J.,The Painleve property for partial differential equations.Ⅱ.B(a|¨)cklund transformation,Lax pairs,and the Sehwarzian derivatlve,J.Math.Phys.,1983,24:1405-1413.
    [42]Lou S.Y.,KdV extensions with Painleve property,J.Math.Phys.,1998,39:2112-2121.
    [43]Chen L.L.,Lou S.Y.,Painleve analysis of a(2+1)-dimensional Burgers equation,Commun.Theor.Phys.,1998,29:313-316.
    [44]Conte R.,Invariant painleve analysis of partial differential equations,Phys.Lett.A,1989,140:383-390.
    [45]Jimbo M.,Krnskal M.D.,Miwa T.,Painleve test for the self-daul Yang-Mills equation,Phys.Lett.A,1982,92:59-60.
    [46]Lou S.Y.,Ruan H.Y.,Nonclassical analysis and Painleve property for the Kuper-Shmidt equations,J.Phys.A:Math.Gen.,1993,26:4679-4688.
    [47]Li Z.B.,Wang M.L.,Travelling wave solutions to the two-dimensional KdV-Burgers equation,J.Phys.A:Math.Gen.,1993,26:6027-6032.
    [48]Wang M.L.,Zhou Y.B.,Li Z.B.,Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics,Phys.Lett.A,1996,216:67-75.
    [49]范恩贵,齐次平衡法,Weiss-Tabor-Carnevale及Clarkson-Kruskal约化之间的联系,物理学报,2000,49:1409-1412.
    [50]张解放,长水波近似方程的多孤子解,物理学报,1998,47:1416-1420.
    [51]Yan Z.Y.,Zhang H.Q.,Multiple soliton-like and periodic-like solutions to the generalization of integrable of(2+1)-dimensional dispersive long-wave equations,J.Phys.Soc.Japan,2002,71:437-442.
    [52]Lou S.Y.,Chen L.L.,Formally variable separation approach for nonintegrable models,J.Math.Phys.,1999,40:6491-6500.
    [53]Zhang S.L.,Lou S.Y.,Qu C.Z.,Variable separation and exact solutions to generalized nonlinear diffusion equations,Chin.Phys.Lett.,2002,19:1741-1744.
    [54]Lou S.Y.,On the coherent structures of Nizhnik-Novikov-Veselov equation,Phys.Lett.A,2000,277:94-100.
    [55]Huang G.X.,Lou S.Y.,Dal X.X.,Exact and explicit solitary wave solutions to a model equation for water waves,Phys.Lett.A,1989,139:373-374.
    [56]Li Z.B.,Wu method and solitons,Proc.of ASCM'95 eds Shi H.and Kobayashi H.,(Tokyo:Scientists Incorporated),1995,157.
    [57]李志斌,张善卿,非线性波方程准确孤立波解的符号计算,数学物理学报,1997,17:81-89.
    [58]Fan E.G.,Zhang H.Q.,New exact solutions for a system of coupled KdV equations,Phys.Lett.A,1998,245:389-392.
    [59]Fan E.G.,Extended tanh-function method and its applications to nonlinear equations,Phys.Lett.A,2000,277:212-218.
    [60]Gao Y.T.,Tian B.,Generalized hyperbolic-function method with computerized symbolic computation to construct the solitonic solutions to nonlinear equations of mathematical physics,Comput.Phys.Comm.,2001,133:158-164.
    [61]闫振亚,张鸿庆,具有三个任意函数的变系数KdV-mKdV方程的精确类孤子解,物理学报,1999,48:1957-1961.
    [62]Lu Z.S.,Zhang H.Q.,On a further extended tanh method,Phys.Lett.A,2003,307:269-273.
    [63]Zhang W.G.,Explicit exact solitary wave solutions for generalized symmetric regularized long-wave equations with high-order nonlinear terms,Chin.Phys.,2003,12:144-148.
    [64]田畴,李群及其在微分方程中的应用,科学出版社,2001.
    [65]Olver P.J.,Applications of Lie groups to Differential Equations,Springer Verlag,1986.
    [66]Miura M.R.,B(a|¨)lund transformation,Berlin:Springer-Verlag,1978.
    [67]Darboux G.Compts rendus hebdomadaires des I'Aeademie des sciences.Pairs,1882,94:1456-1459.
    [68]Hirota R.,Ito M.,A direct approach to multi-periodic wave solitons to nonlinear evolution equation,J.Phys.Soc.Jpn,1981,50:338-342.
    [69]Satsuma J.,Ablowitz M.J.,Two dimensional lumps in nonlinear dispersive systems,J.Math.Phys.,1979,20:1496-1503.
    [70]Hu X.B.,Rational solutions of integrable equations via nonliner superposition formulae,J.Phys.A:Math.Gen.,1997,30:8225-8240.
    [71]Matsuno Y.,A new proof of the rational N-soliton solution for the Kadomtsev-Petviashvili equation,J.Phys.Soc.Jpn,1989,28:67-72.
    [72]Hietarinta J.,Hirota R.,Multidromion solutions to the Davey-Stewartson equation,Phys.Lett.A,1990,145:237-244.
    [73]Liu Q.P.,Yang X.X.,Supersymmetric two-boson equation:Bilinearization and solutions,Phys.Lett.A,2006,351:131-135.
    [74]Liu Q.P.,Hu X.B.,Bilinearization of N=1 supersymmetric Korteweg-de Vries equation revisited,J.Phys.A:Math.Gen.,2005,38:371-6378.
    [75]Liu Q.P.,Hu X.B.,Zhang M.X.,Supersymmetric modified Korteweg-de Vries equation:bilinear approach,Nonlinearity,2005,18:1597-1603.
    [76]Deng S.F.,Chen D.Y.,The novel multisoliton solutions of the KP equation,J.Phys.Soc.Jpn,2001,70:3174-3175.
    [77]Chen D.Y.,Zhang D.J.,Deng S.F.,The novel multisoliton solutions of the mKdV-sine-Gordon equation,J.Phys.Soc.Jpn,2002,71:658-659.
    [78]Chen D.Y.,Zhang D.J.,Deng S.F.,Remarks on some solutions of soliton equations,J.Phys.Soc.Jpn,2002,71:2071-2072.
    [79]Zhang Y.,Deng S.F.,Chen D.Y.,The novel multisoliton solutions of equation for shallow water waves,J.Phys.Soc.Jpn,2003,72:763-764.
    [80]Zhang Y.,Chen D.Y.,The novel multi-solitary wave solution for the fifth order KdV equation,Chin.Phys.,2004,13:1606-1610.
    [81]Zhang Y.,Chen D.Y.,The N-soliton-like solution of the Ito equation,Commu.Theor.Phys.,2004,42:641-644.
    [82]陈登远,朱晓英,张建兵,广义双线性导数方程的精确解,第八届全国孤立子会议.
    [83](?)boux G.,Lecons surla theorie generale des surfaces,Vol.Ⅱ,3d ed.New York,Chelsa Pub.Co.1972.
    [84]Nimmo J.J.C.,Freeman N.C.,Rational solutions of the KdV equation in Wronskian form,Phys.Lett.A,1983,96:443-446.
    [85]Ablowitz M.J.,Satsuma J.,Solitons and rational solutions of non-linear evolution equations,J.Math.Phys.,1978,19:2180-2186.
    [86]Sirianunpiboon S.,Howard S.D.,Roy S.K.,A note on the Wronskian form of solutions of the KdV equation,Phys.Lett.A,1988,134:31-33.
    [87]Matveev V.B.,Generalized Wronskian formula for solutions of the KdV equations:first applications,Phys.Lett.A,1992,166:205-208.
    [88]Matveev V.B.,Positon-positon and soliton-positon collisions:KdV case,Phys.Lett.A,1992,166:209-212.
    [89]Ma W.X.,Complexiton solution to the KdV equation,Phys.Lett.A,2002,301:35-44.
    [90]Jaworski M.,Breather-like solutions to the Korteweg-de Vries equation,Phys.Lett.A,1984,104:245-247.
    [91]Wu H.,Zhang D.J.,Mixed rational-soliton solutions of two differential-difference equations in Casorati determinant form,J.Phys.A:Gen.Math.,2003,36:4867-4873.
    [92]Gegenhasi.,Hu X.B.,Levi D.,On a discrete Davey-Stewartson system,Inverse Problems,2006,22:1677-1688.
    [93]Hu X.B.,Wang H.Y.,Construction of dKP and BKP equations with self-consistent sources,Inverse Problems,2006,22:1903-1920.
    [94]Wang H.Y.,Hu X.B.,Tam H.W.,A(2+1)-dimensional Sasa-Satsuma equation with self-consistent sources,J.Phys.Soc.Jpn.,2007,76:024007.
    [95]Wang H.Y.,Hu X.B.,Gegenhasi,2D Toda lattice equation with self-consistent sources:Casoratian type solutions,bilinear B(a|¨)cklund transformation and Lax pair,J.Comput.Appl.Math.,2007,202:133-143.
    [96]Zhang D.J.,The N-soliton solutions for the modified KdV equation with self-consistent sources,J.Phys.Soc.Jpn.,2002,71:2649-2656.
    [97]Zhang D.J.,Chen D.Y.,The N-soliton solutions of the sine-Gordon equation with self-consistent sources,Physica A,2003,321:467-481.
    [98]Zhang D.J.,The N-soliton solutions of some soliton equations with self-consistent sources,Chaos,Solitons and Fractals,2003,18:31-43.
    [99]Deng S.F.,Chen D.Y.,Zhang D.J.,The Multisoliton Solutions of the KP equation with self-consistent sources,J.Phys.Soc.Jpn.,2003,72:2184-2192.
    [100]Deng S.F.,The multisoliton solutions for the mKP equation with self-consistent sources,J.Phys.A:Math.Gen.,2006,72:14929-14945.
    [101]Zhang D.J.,Chen D.Y.,Negatons,positons,rational-like solutions and conservation laws of the KdV equation with loss and nonuniformity terms,J.Phys.A:Gen.Math.,2004,37:851-865.
    [102]Zhang Y.,Deng S.F.,Zhang D.J.,Chen D.Y.,N-soliton solutions for the non-isospectral mKdV equation,Physica A,2004,339:228-236.
    [103]Ning T.K.,Zhang D.J.,Chen D.Y.,Deng S.F.,Exact Solutions and conservation laws for a nonisospectral sine-Gordon equation,Chaos,Solitons and Fractals,2005,25:611-620.
    [104]Ma W.X.,You Y.C.,Solving the Korteweg-de Vries equation by its bilinear form:Wronskian solutions,Transaction Americ.Math.Soc.,2005,357:1753-1778.
    [105]Ma W.X.,Maruno K.I.,Complexiton solutions of the Toda lattice equation,Phys.A,2004,343:219-237.
    [106]Zhang D.J.,Notes on solutions in Wronskian form to soliton equations:KdV-type,arXiv:nlin.SI/0603008.
    [107]Chen D.Y.,Zhang D.J.,Bi J.B.,New double Wronskian solutions fo the AKNS equation,Science in China Series A:Mathematics,2008,51:55-69.
    [108]Arnald V.I.,Mathematical methods of classical mechanics,Springer-Verlag,Berlin,1978.
    [109]屠规彰,一族新的可积系及其Hamilton结构,中国科学,1988,12:1243-1252.
    [110]Tu G.Z.,The trace identity,a powerful tool for constructing the Hamiltonian structure of integrable systems,J.Math.Phys.,1989,30:330-338.
    [111]Tu G.Z.,A trace identity and its applications to the theory of discrete integrable systems,J.Phys.A:Math.Gen.,1990,23:3903-3922.
    [112]马文秀,-个新的Liouville可积系的广义Hamilton方程族及其约化,数学年刊(A),1992,13:115-123.
    [113]Ma W.X.,Zhou R.G.,A coupled AKNS-Kaup-Newell soliton hierarchy,J.Math.Phys.,1999,40:4419-4428.
    [114]Zhang Y.F.,A generalized Boite-Pempinelli-Tu(BPT)hierarchy and its bi-Hamiltonian structure,Phys.Lett.A,2003,317:280-286.
    [115]Zhang Y.F.,A trick loop algebra and a corresponding Liouville integrable hierarchy of evolution equation,Chaos,Solitons and Fractals,2004,21:445-456.
    [116]Fan E.G.,Integrable systems of derivative nonlinear Schr(o|¨)dinger type and their multi-Hamiltonian structure,J.Phys.A:Math.Gen.,2001,34:513-519.
    [117]Zhu Z.N.,Huang H.C.,A new Lax integrable hierarchy and its Hamiltonian form,Chin.Phys.,1998,67:778-783.
    [118]Zhu Z.N.,Huang H.C.,Xue W.M.,et al,The bi-Hamiltonian structures of some new Lax integrable hierarchies associated with 3 × 3 matrix spectral problems,Phys.Lett.A,1997,235:227-232.
    [119]Hu X.B.,A powerful approach to generate new integrable systems,J.Phys.A:Math.Gen.,1994,27:2497-2514.
    [120]Hu X.B.,An approach to generate supperextensions of integrable system,J.Phys.A:Math.Gen.,1997,30:619-623.
    [121]Ma W.X.,He J.S.,Qin Z.Y.,A supertrace identity and its applications to superintegrable systems,J.Math.Phys.,2008,49:033511.
    [122]Santini P.M.,Fokas A.S.,Recursion operators and bi-Hamiltonian structures in multidimensions(Ⅰ),Commun.Math.Phys.,1988,115:375-419.
    [123]Fokas A.S.,Santini P.M.,Recursion operators and bi-Hamiltonian structures in multidimensions(Ⅱ),Commun.Math.Phys.,1988,116:449-474.
    [124]陈登远,孤子引论,科学出版社,2006.
    [125]Chen D.Y.,Zhang D.J.,Lie algebraic structures of(1+1)-dimentional Lax integrable systems,J.Math.Phys.,1996,37:5524-5538.
    [126]Moser J.,Integrable Hamiltonian systems and spectral theory,in Proc.of 1983 Beijing Symp.on Diff.Eq's,Science Press,Beijing,1986:157.
    [127]Ma W.X,Fuchssteiner B.,Integrable theory of the perturbation equations,Chaos,Solitons and Fractals,1996,7:1227-1250.
    [128]Zhang Y.F.,Zhang H.Q.,A direct method for integrable couplings of TD hierarchy,J.Math.Phys.,2002,43:1-7.
    [129]Ma W.X,Enlarging spectral problems to construct integrable couplings of soliton equations,Phys.Lett.A,2003,316:72-76.
    [130]Ma W.X.,Xu X.X.,Zhang Y.F.,Semi-direct sums of Lie algebras and continuous integrable couplings Phys.Lett.A,2006,351:125-130.
    [131]Guo F.K.,Zhang Y.F.,The quadratic-form identity for constructing the Hamiltonian structure of integrable systerms,J.Phys.A:Math.Gen.,2005,38:8537-8548.
    [132]Ma W.X.,Chen M.,Hamiltonian and quasi-Hamiltonian structures associated with semidirect sums of Lie algebras,J.Phys.A:Math.Gen.,2006,39:10787-10801.
    [133]Ma W.X.,Xu X.X.,Zhang Y.F.,Semidirect sums of Lie algebras and discrete integrable couplings,J.Math.Phys.,2006,47:053501.
    [134]You F.C.,Xia T.C.,Integrable couplings of the generalized AKNS hierarchy with an arbitrary function and its Bi-Hamiltonian structure,Int.J.Theor.Phys.,2007,46:3159-3168.
    [135]You F.C.,Xia T.C.,The integrable couplings of the generalized coupled Burgers hierarchy and its Hamiltonian structures,Chaos,Solitons Fract.,2008,36:953-960.
    [136]You F.C.,Xia T.C.,A new loop algebra(?)_5 and its applications to integrable system,Chaos,Solitons Fract.,2008,37:1481-1488.
    [137]You F.C.,Xia T.C.,The multi-component dispersive long wave equation hierarchy,its integrable couplings and their Hamiltonian structures,Appl.Math.Comput.,2008,201:44-55.
    [138]曹策问,AKNS族的Lax组的非线性化,中国科学,1989,7:691-698.
    [139]Konopelchenko B.,Strampp W.,The AKNS hierarchy as symmetry constraint of the KP hierarchy,Inverse Problems,1991,7:L17-L24.
    [140]Cheng Y.,Li Y.S.,The constraint of the Kadomtsev-Petviashvili equation and its special solutions,Phys.Lett.A,1991,157:22-26.
    [141]Cheng Y.,Zhang Y.J.,Bilinear equations for the constrained KP hierarchy,Inverse Problems,1994,10:L11-L17.
    [142]Lou S.Y.,Hu X.B.,Infinitely many Lax pairs and symmetry constraints of the KP equation,J.Math.Phys.,1997,38:6401-6427.
    [143]Liu Q.P.,Modifications of k-constrained KP hierarchy,Phys.Lett.A,1994,187:373-381.
    [144]Liu Q.P.,The constrained mKP hierarchy and the generalized Kupershmidt-Wilson theorem,Lett.Math.Phys.,1998,43:65-72.
    [145]Zhang Y.J.,Cheng Y.,The Wronskian structure for solution of the k-constrained KP hierarchy,J.Phys.A:Math.Gen.,1994,27:4581-4588.
    [146]Ma W.X.,Strampp W.,A explicit symmetry constraint for the Lax pairs and adjoint Lax pairs of AKNS systems,Phys.Lett.A,1994,185:277-286.
    [147]Ma W.X.,Wu H.Y.,He J.S.,Partial differential equations possessing Frobenins integrable decompositions,Phys.Lett.A,2007,364:29-32.
    [148]Ma W.X.,Wu H.Y.,Time-space integrable decompositions of nonlinear evolution equations,J.Math.Annul.Appl.,2006,324:134-149.
    [149]Zhang D.H.,Quantum deformation of KdV hierarchies and their infinitely many conservation laws,J.Phys.A:Math.Gen.,1993,26:2389-2408.
    [150]Wu Z.Y.,Zhang D.H.,Zheng Q.R.,Quantum deformation of KdV hierarchies and their exact solutions:q-deformed solitons,J.Phys.A:Math.Gen.,1994,27:5307-5312.
    [151]Frenkel E.,Deformations of the KdV hierarchy and related soliton equations,Internat.Math.Res.,1996,Notices 2:55-76.
    [152]Adler M.,Horozov E.,Moerbeke P.van,The solution to the q-KdV equation,Phys.Lett.A,1998,242:139-151.
    [153]Wang S.K.,Wu K.,Wu X.N.,Wu D.L.,The q-deformation of AKNS-D hierarchy,J.Phys.A:Math.Gen.,1998,31:L241-L244.
    [154]Iliev P.,Tau function solutions to a q-deformation of the KP hierarchy,Lett.Math.Phys.,1998,44:187- 200.
    [155]Tu M.H.,Shaw E.,Lee J.C.,On Darboux-B(a|¨)cklund transformations for the q-deformed Korteweg-de Vries hierarchy,Lett.Math.Phys.,1999,49:33-45.
    [156]Tu M.H.,Q-deformed KP hierarchy:its additional symmetries and infinitesimal B(a|¨)cklund transformations,Lett.Math.Phys.,1999,49:95-103.
    [157]Tu M.H.,Shaw E.,Lee J.C.,On the q-deformed modified Korteweg-de Vries hierarchy,Phys.Lett.A,2001,266:155-159.
    [158]He J.S.,Li Y.H.,Cheng Y.,Q-deformed KP hierarchy and its constrained sub-hierarchy,SIGMA 2,2006,060.
    [159]Sviratcheva K.D.,Bahri C.,Georgieva A.I.,Draayer J.P.,Physical significance of q-deformation and many-body interactions in nuclei,Phys.Rev.Lett.,2004,93:152501.
    [160]Gurses M.,A super AKNS scheme,Phys.Lett.,1985,108A:437-440.
    [161]Ghosh S.,Sarma D.,Bilinearization of N = 1 supersymmetric modified KdV equations,Nonlinearity,2003,16:411-418.
    [162]Siddiq M.,Hassan M.,Saleem U.,On Darboux transformation of the supersymmetric sin-Gordon equation,J.Phys.A:Math.Gen.,2006,39:7313-7318.
    [163]Morosi C.,Pizzocchero L.,On the biHamiltonian structure of the supersymmetric KdV hierarchy.a Lie superalgebric approach,Commun.Math.Phys.,1993,158:267-288.
    [164]Sarma D.,Constructing a supersymmetric integrable system from the Hirota method in superspace,Nuclear Phys.B,2004,681:351-358.
    [165]Zakharov V.E.,Solitons,eds Bullough and Caudrey,Springer-Verlag,1980.
    [166]Wadati M.,Generalized matrix form of the inverse scattering method in soliton,Springer-verlag Berlin Heideberg New York,1980.
    [167]Zhu G.C.,Chen D.Y.,Zeng Y.B.,Zhang E.T.,Li Y.S.,A class matrix evolution equations,Chin.Ann.of Math.,1982,3:1-11.
    [168]Chen D.Y.,Zhu G.C.,New symmetries for a matrix evolution equation of AKNS type and its Lie algebra,Chin.Ann.of Math.,1991,12:33-42.
    [169]Zheng Z.,He J.S.,Cheng Y.,Determinant representation of Darboux transformations for the matrix AKNS hierarchy,Chin.Ann.of Math.,2004,25:79-88.
    [170]Tsuchida M.,New reductions of integrable matrix PDEs:Sp(m)-invariant systems,arxiv.0712.4373v1.
    [171]Tsuchida T.,Wadatl M.,New integrable systems of derivative nonlinear Sch(o|¨)dinger equations with multiple components,Phys.Lett.A,1999,257:53-64.
    [172]Guo F.K.,Zhang Y.F.,A new loop algebra and a corresponding integrable hierarchy,as well as its integrable coupling,J.Math.Phys.,2003,44:5793-5803.
    [173]Zhang Y.F.,A multi-component matrix loop algebra and a unified expression of the multicomponent AKNS hierarchy and the multi-component BPT hierarchy,Phys.Lett.A,2005,342:82-89.
    [174]Xia T.C.,You F.C.,The multicomponent TA hierarchy and its multicomponent integrable couplings system with six arbitrary functions,Chaos,Solitons and Fractals,2005,26:605-613.
    [175]Yao R.X.,Qu C.Z.,Li Z.B.,Painleve property and conservation laws of multicomponent mKdV equations,Chaos,Solitons and Fractals,2004,22:723-730.
    [176]Qu C.Z.,Yao R.X.,Liu R.C.,Multi-component WKI equations and conservation laws,Phys.Lett.A,2004,331:325-331.
    [177]Iwao M.,Hirota R.,Soliton solutions of a coupled modified KdV equations,J.Phys.Soc.Jpn.,1997,66:577-588.
    [178]Tsuchida T.,Wadati M.,Lax pairs for four-wave interaction systems,J.Phys.Soc.Jpn.,1996,65:3153-3156.
    [179]Tsuchida T.,Ujino H.,Wadati M.,Integrable semi-discretization of the coupled modified KdV equations,J.Math.Phys.,1998,39:4785-4813.
    [180]Tsuchida T.,Ujino H.,Wadati M.,Integrable semi-discretization of the coupled nonlinear Schr(o|¨)dinger equations,J.Phys.A:Math.Gen.,1999,32:2239-2262.
    [181]Habibullin I.T.,Sokolov V.V.,Yamilov R.I.,Multi-component integrable systems and nonassociative structures,in Nonlinear Physics:Theory and Experiment,World Scientific,Singapore,1996,139-168.
    [182]Adler V.E.,On the relation between multifield and multidimensional integrable equations,arXiv:nlin.SI/0011039v1,2000.
    [183]Adler V.E.,Svinolupov S.I.,Yamilov R.I.,Multi-component Volterra and Toda type integrable equations,Phys.Lett.A,1999,254:24-36.
    [184]Sokolov V.V.,Wolf T.,Classification of integrable polynomial vector evolution equations,ZIB-Report 01-34(November 2001).
    [185]Park Q.H.,Shin H.J.,Darboux transformation and Crum's formula for multi-component integrable equations,Physica D,2001,157:1-15.
    [186]Ahn C.,Shigemoto K.,Multi-matrix model and 2D Toda multi-component hierarchy,Phys.Lett.B,1991,263:44-50.
    [187]Sokolov V.V.,Wolf T.,Classification of integrable polynomial vector evolution equations,J.Phys.A:Math.Gen.,2001,34:11139-11148.
    [188]Tsuchida T.,Wolf T.,Classification of polynomial integrable systems of mixed scalar and vector evolution equations:Ⅰ,J.Phys.A:Math.Gen.,2005,38:7691-7733.
    [189]Aratynl H.,Nissimov E.,Pacheva S.,Multi-Component Matrix KP Hierarchies as Symmetry-Enhanced Scalar KP Hierarchies and Their Darboux-B(a|¨)cklund Solutions,solv-int/9904024.
    [190]Dickey L.A.,Additional symmetries of KP,Grassmannian,and the string equation,1992,hep-th/9204092.
    [191]Dickey L.A.,Additional symmetries of KP,Grassmannian,and the string equation Ⅱ,arXiv:hep-th/9210155.
    [192]Dickey L.A.,On tau-functions of Zakharov-Shabat and other matrix hierarchies of integrable equations,arXiv:hep-th/9502063.
    [193]Liu X.J.,Zeng Y.B.,Lin R.L.,A new multi-component KP hierarchy,arXiv:nlin/0406036.
    [194]Olver P.J.,Sokolov V.V.,Integrable evolution equations on associative algebras,Commun.Math.Phys.,1998,193:245-268.
    [195]Tsuchida T.,Wadati M.,Multi-field integrable systems related to WKI-type eigenvalue problems,J.Phys.Soc.Jpn.,1999,68:2241-2245.
    [196]Sato M.,Sato Y.,In:Nonlinear partial differential equations in applied science(Tokyo,1982),259-271.North-Holland,Amsterdam,1983.
    [197]Hamanaka M.,Noncommutative solitons and integrable systems,in Noncommutative geometry and physics,edited by Y.maeda,N.Tose,N.Miyazaki,S.Watamura and D.Sternheimer(World Sci.,)2005,175.
    [198]Tamassia L.,Noncommutative supersymmetric/integrable models and string theory,Ph.D thesis.
    [199]Lechtenfeld O.,Noncommutative solitons,hep-th/0605304.
    [200]Hamanaka M.,Notes on exact multi-soliton solutions of noncommutative integrable hierarchies,hep-th/0610006.
    [201]Wang N.,Wadati M.,Noncommutative extension of(?)-dressing method,J.Phys.Soc.Jpn.,2003,72:1366-1373.
    [202]Wang N.,Wadati M.,Exact multi-line soliton solutions of noncommutative KP equation,J.Phys.Soc.Jpn.,2003,72:1881-1888.
    [203]Wang N.,Wadati M.,Noncommutative KP hierarchy and Hirota triple-product relations,J.Phys.Soc.Jpn.,2004,73:1689-1698.
    [204]Hamanaka M.,On reductions of noncommutative Anti-Self-Dual Yang-Mills equations,hep-th /0507112.[205]Hamanaka M.,Toda K.,Towards noncommutative integrable systems,2003,hep-th/0211148.
    [206]Hamanaka M.,Commuting flows and conservation laws for noncommutative Lax hierarchies,2005,hep-th/0311206.
    [207]Gilson C.R.,and Nimmo J.J.C.,On a direct approach to quasideterminant solutions of a noncommutative KP equation,J.Phys.A:Math.Gen.,2007,40:3839-3850.
    [208]Gilson C.R.,Nimmo J.J.C.,Sooman C.M.,On a direct approach to quasideterminant solutions of a noncommutative modified KP equation,nlin.SI/0711.3733.
    [209]Gilson C.R.,Nimmo J.J.C.,Ohta Y.,Quasideterminant solutions of a non-Abelian Hirota-Miwa equation,J.Phys.A:Math.Gen.,2007,40:12607-12617.
    [210]Paniak L.D.,Exact noncommutative KP and KdV multi-solitons,hep-th/0105185.
    [211]Aristophanes D.,Folkert M.H.,With a Cole-Hopf transformation to solutions of the noncommutative KP hierarchy in terms of Wronski matrices,J.Phys.A:Math.Gen.,2007,40:F321-F329.
    [212]Etingof P.,Gelfand I.,Retakh V.,Factorization of differentioa operators,quasideterminants,and nonabelian Toda field equations,Math.Res.Lett.,1997,4:413-425.
    [213]Gelfand I.,Gelfand S.,Retakh V.,Wilson R.,quasideterminant,Adv.Math.,2005,193:56-141.
    [214]Samsonov B.F.,Pecheritsin A.A.,Chains of Darboux transformations for the matrix Sch(o|¨)dinger equation,J.Phys.A:Math.Gen.,2004,37:239-250.
    [215]Goncharenkoyx V.M.,Veselovyzk A.P.,Monodromy of the matrix Schr(o|¨)dinger equations and Darboux transformations,J.Phys.A:Math.Gen.,1998,31:5315-5326.
    [216]Nimmo J.J.C.,On a non-Abelian Hirota-Miwa equation,J.Phys.A:Math.Gen.,2006,39:5053-5065.
    [217]Mel'nikov V.K.,Integration method of the Kortewed-De Vries equation with a self-consistent source,Phys.Lett.A,1988,133:493-496.
    [218]Mel'nikov V.K.,Interaction of Solitary Waves in the system described by the Kadomtsev-Petviashvili Equation with a self-consistent source,Commun.Math.Phys.,1989,126:201-215.
    [219]Mel'nikov V.K.,Wave emission and absorption in a nonlinear integrable system,Phys.Lett.A,1986,118:22-24.
    [220]Mel'nikov V.K.,Capture and Confinement of solitons in nonlinear integrable systems,Commun.Math.Phys.,1989,120:451-468.
    [221]Burtsev S.P.,Zakharov V.E.,Mikhailov A.V.,Inverse scattering method with variable spectral parameter,Theore.Math.Phys.,1987,70:227-240.
    [222]Chen H.H.,Liu C.S.,Solitons in nonuniform media,Phys.Rev.Lett.,1976,37:693-697.
    [223]Hirota R.,Satsumma J.,N-soliton solution of the K dV equation with loss and nonuniformity terms,J.Phys.Soc.Jpn.,1976,41:2141-2142.
    [224]Calogero F.,Degasperis A.,Extension of the spectral transform method for solving nonlinear evolution equations,Lett.Nuovo Cimento,1978,22:131-137.
    [225]Chan W.L.,Li K.S.,Li Y.S.,Line soliton interactions of a nonisospectral and variable-coefficient KP equation,J.Math.Phys.,1992,33:3759-3773.
    [226]Zhang D.J.,Bi J.B.,Hao H.H.,A modified KdV equation wi.th self-consistent sources in non-uniform media and soliton dynamics,J.Phys.A:Math.Gen.,2006,39:14627-14648.
    [227]Wu J.R.,Keolian R.,Rudnick I.,Observation of a nonpropagating hydrodynamic soliton,Lett.Nuovo Cimento,1984,52:1421-1424.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700