人骨保护素(hOPG)基因的生物活性及防治人工关节无菌性松动的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:近年来研究发现OPG/RANKL/RANK系统在破骨细胞分化增殖中起着重要的作用,这是骨骼生理研究领域的重大进展之一。骨保护素(osteoprotegerin, OPG)是1997年发现的分泌型糖蛋白,能抑制破骨细胞分化、抑制成熟破骨细胞的活性并诱导其凋亡。成骨细胞、骨髓基质细胞及活化的T淋巴细胞均表达RANKL,与破骨细胞前体细胞或成熟破骨细胞表面上的RANK结合后,促进破骨细胞的分化及骨吸收活性。成骨细胞及骨髓基质细胞分泌表达OPG可与RANKL竞争性结合,从而阻断RANKL与RANK之间的相互作用。体内多种激素或因子如TNF-α、TGF-β、1,25(OH)2D3、雌激素、骨形态发生蛋白-2以及PTH、PGE2、糖皮质激素等均通过影响骨髓微环境内的OPG/RANKL比率来调节骨代谢。
     此外,随着现代人工关节技术与相关研究的飞速发展,人工关节置换术已成为治疗各种关节疾病终末期病变最普遍而有效的方法。但假体周围骨质溶解导致人工关节无菌性松动这一问题尚未得到很好的解决,成为这项技术进一步发展的瓶颈和研究热点。近十年的研究认为:人工关节无菌性松动主要与假体长期磨损或离解产生的颗粒所诱导的生物学反应有关。这生物学反应过程包括:(1)磨损颗粒的产生,(2)假体—骨界面间异物反应膜的形成,(3)破骨细胞性骨溶解,导致假体的骨性支持结构力学性能下降。尤其是破骨细胞性骨溶解在关节假体松动中的作用被认为意义重大。
     研究目的:通过深入研究OPG基因的表达、生物活性以及假体周围破骨细胞性骨溶解的机制,采用基因治疗方法、应用种子细胞工程及ex vivo技术,调控OPG基因在关节松动的假体周围达到较持续的OPG蛋白表达,达到抑制假体周围破骨细胞性骨溶解的目的。可望为防治人工关节无菌性松动提供新的思路和治疗手段。
     本研究工作分为以下三部分:
     1. Ad-hOPG的构建、制备、及表达鉴定;
     2.大鼠骨髓基质细胞(rMSCs)的生物学特性及Ad-hOPG在rMSCs中的表达;
     3.转染Ad-hOPG的rMSCs对大鼠人工关节无菌性松动的防治作用。
     实验方法:
Research background: These years, some researches concerned found that the osteoprotegerin/ receptor activitorof NF-kappa B ligand/ receptor activitorof nuclear factor-kappaB system(OPG/RANKL/RANK system) plays a crucial important role in osteoclast of cytodifferentiation and generation. This is a great improvement in the area of bones physiology. Osteoprotegerin(OPG) is a secretde glycoprotein which was found in 1977 which could restrain not only the differentiation of osteoclast, but the activity of mature osteoclast, what’s more, induce it’s apoptosis. Osteoblast、mesenchymal stem cell and activated T lymphocyte all could express RANKL. When RANKL was combined with RANK, which is in the surface of the osteoclast’s original cell or mature osteoblast, it could accelerate the differentiation of osteoclast and the activity of bone’s absorbtion. OPG which excreted by Osteoblast and mesenchymal stem cell can competitively bind RANK with RANKL,so OPG can block the bindation between RANK and RANKL. . Many hormones or factors in the body regulate the metabolism of bone by influence the rate of OPG/RANKL in the bone marrow’s microenvironment, such as estrogen、TNF-α、TGF-β、1,25(OH)2D3、bone morphogenetic protein-2、PTH、PGE2、glucocorticoid and so on.
     Furthermore, as the flying development of modern artificial joint technique and some researches concerned, artificial joint replacement has become the most popular and effective method to treat every kinds of joint diseases’pathological changes in the last period. However, the problem that the osteolysis around the artificial joint lead to the asepsis looseness of joint have not been solved appropriately, which become the bottleneck for the further development of this technique and also a hotspot for research. The research in this decade confirm that the asepsis looseness of artificial joint due to the biology reaction which is induced by the particle, generated from long period of artificial body’s
引文
1. Patrick Lavigne , Qin Shi , Daniel Lajeunesse, et al. Metabolic activity of osteoblasts retrieved from osteoarthritic patients after stimulation with mediators involved in periprosthetic loosening. Bone, 2004, 34(3): 478-486.
    2. 王爱民,李起鸿。人工关节置换术的现状及其进展。中华创伤杂志,2002,18(11):650-652。
    3. Sabokbar A, Itonaga I, Sun SG, et al. Arthroplasty membrane-derived fibroblasts directly induce osteoclast formation and osteolysis in aseptic loosening. Journal Of Orthopaedic Research, 2005, 23(3):511-519.
    4. Ren, Weiping; Yang, Shang-You; Fang, Hsu-Wei et al. Distinct gene expression of receptor activator of nuclear factor-kappaB and rank ligand in the inflammatory response to variant morphologies of UHMWPE particles. Biomaterials, 2003, 24(26):4819-4826
    5. Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. J Cell, 1997, 89(2):309-319
    6. Yamaguchi K, Kinosaki M, Goto M, et al. Characterization of structural domains of human osteoclastogenesis inhibitory factor. J Biol Chem, 1998, 273(9):5117-5123.
    7. Haynes DR, Potter AE, Atkins GJ, et al. Metal particles stimulate expression of regulators of osteoclast development including RANK/TRANCE, osteoprotegerin M-CSF. J Trans Orthop Res Soc, 1999, 24: 244-247.
    8. Itonaga I, Sabokbar A, Murray DW, et al. Effect of osteoprotegerin and osteoprotegerin ligand on osteoclast formation by arthoplasty membrane derived macrophages. J Ann Rheum Dis, 2000, 59: 26-31.
    9. Kim KJ, Itoh T, Takagi M, et al. Mouse osteoclast formation induced by joint fluids from failed total hip arthoplasty is inhibited by OPG. J Trans Orthop Res Soc, 2000, 37: 218-221.
    10. Mandelin Jami,Liljestr?m Mikko,Li Tian-Fang,et al. Pseudosynovial fluid from loosened total hip prosthesis induces osteoclast formation. Journal Of Biomedical Materials Research, 2005, 74 (1): 582-588.
    11. J. Jeffrey Goater, Regis J, O'Keefe, et al. Efficacy of ex vivo OPG gene therapy inpreventing wear debris induced osteolysis. Journal of Orthopaedic Research, 2002, 20(2): 169-173.
    12. Stuart A. Nicklin, Eugene Wu, Glen R. Nemerow, et al. The influence of adenovirus fiber structure and function on vector development for gene therapy. .Molecular Therapy, 2005, 12(3):384-393.
    13. Schaller S, Henriksen K, Hoegh-Andersen P, In vitro, ex vivo, and in vivo methodological approaches for studying therapeutic targets of osteoporosis and degenerative joint diseases: how biomarkers can assist? Assay And Drug Development Technologies, 2005, 3(5): 553-580.
    14. 王爱民,李起鸿。骨科基因治疗。中华骨科杂志,1997,17(7):464-466。
    15. Christian Jorgensen, Jan Gordeladze, Danielle Noel. Tissue engineering through autologous mesenchymal stem cells. Current Opinion in Biotechnology, 2004, 15(5): 406-410.
    1. Paul J.Kostenuik, Brad Bolon, Sean Morony, et al. Gene therapy with human recombinant osteoprotegerin reverses established osteopenia in ovariectomized mice. Bone, 2004, 34(4): 656-664.
    2. Lacey DL,Timms E,Tan H-L,et al. Osteoprotegerin (OPG) ligand is a cytokine that regulates osteoclast differentiation and activation. Cell,1998,93:165–176.
    3. Bekker PJ, Holloway D, Nakanishi A,et al.The effect of a single dose of osteoprotegerin in postmenopausal women. J Bone Miner Res.2001,16:348–360.
    4. Bolon B, Carter C, Daris M, et al. Adenoviral delivery of osteoprotegerin ameliorates bone resorption in mouse ovariectomy model of osteoporosis. Mol. Ther. 2001,3: 197–205.
    5. Campagnuolo G, Bolon B, Feige U,et al. Kinetics of bone protection by recombinant osteoprotegerin therapy in Lewis rats with adjuvant arthritis. Arthritis Rheum. 2002,46 : 1926–1936.
    6. 医学分子生物学,研究生教学用书。
    7. J 萨姆布鲁克,E F 弗里奇,T 曼尼阿蒂斯著,金冬雁,黎孟枫等释。分子克隆实验指南(第二板)。北京,科学出版社。
    8. AdEasy? XL Adenoviral Vector System 说明书。
    9. Graham F,Prevec L. Methods for construction of adenovirus vectors.Mol. Biotechnol. 1995,3: 207–220.
    10. Seon HK,Christopher HE, Sunyoung K,et al.Gene therapy for established murine collagen-induced arthritis by local and systemic adenovirus-mediated delivery of interleukin-4. Arthritis Research , 2000;2 (4): 293-302.
    11. Smith P, Shuler FD, Georgescu HI, et al. Genetic enhancement of matrix synthesis by articular chondrocytes: comparison of different growth factor genes in the presence and absence of interleukin-1. Arthritis Rheum, 2000; 43 (5):1156-1162
    12. Musgrave DS, Bosch P, Lee JY, et al. Ex vivo gene therapy to produce bone using different cell types. Clin Orthop, 2000; 378:290-298.
    13. Lubberts E, Joosten LA, Chabaud M, et al. IL-4 gene therapy for collagen arthritis suppresses synovial IL-17 and osteoprotegerin ligand and prevents bone erosion. J Clin Invest. 2000; 105(12):1697
    14. Woods JM, Katschke KJ, Volin MV, et al. IL-4 adenoviral gene therapy reduces inflammation, proinflammatory cytokines, vascularization, and bony destruction in rat adjuvant-induced arthritis. J Immunol , 2001; 15;166(2):1214
    15. Nixon AJ, Brower-Toland BD, Bent SJ, et al. Insulinlike growth factor-I gene therapy applications for cartilage repair. Clin Orthop, 2000 ; 379 (Suppl):201
    16. Nishida K, Kang JD, Gilbertson LG, et al. Modulation of the biologic activity of the rabbit intervertebral disc by gene therapy: an in vivo study of adenovirus-mediated transfer of the human transforming growth factor beta 1 encoding gene. Spine, 1999; 24(23):2419
    17. Schaller S, Henriksen K, Hoegh-Andersen P, In vitro, ex vivo, and in vivo methodological approaches for studying therapeutic targets of osteoporosis and degenerative joint diseases: how biomarkers can assist? Assay And Drug Development Technologies, 2005, 3(5): 553-580.
    18. Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell, 1997, 89(2):309-19.
    19. Benigni A, Tomasoni S, Lutz J, et al. Nonviral and viral gene transfer to the kidney in the context of transplantation. Nephron, 2000, 85:307-316.
    20. Danthinne X, Imperiale MJ. Production of first generation adenovirus vectors: a review. Gene Ther, 2000, 7:1707-1714.
    21. Williams DA, Smith FO. Progress in the use of gene transfer methods to treat genetic blood diseases. Hum Gene Ther, 2000, 11:2059-2066.
    22. Zhang WW, Fang X, Barnch CD,et al. Generatiuon and identification of recombinant adenovirus by liposome-mediated transfection and PCR analysis. Biol techniques, 1993, 15:868-872.
    23. Helm GA, Alden TD, Beres EJ, et al. Use of bone morphogenetic protein-9 gene therapy to induce spinal arthrodesis in the rodent. J Neurosurg, 2000; 92 (2 ):191-200.
    24. Alden TD, Pittman DD, Hankins GR,et al.In vivo endochondral bone formation using a bone morphogenetic protein-2 adenoviral vector. Human Gene Thr, 1999, 10(13): 2245-2253.
    25. Kurata H, Liu CB, Valkova J, et al. Recombinant adenovirus vectors for cytokine gene therapy in mice. J Allergy Clin Immunol , 1999;103: 471-481.
    26. Bolon B, Carter C, Daris M, et al. Adenoviral delivery of osteoprotegerin ameliorates bone resorption in mouse ovariectomy model of osteoporosis. Mol. Ther. 2001, 3: 197–205.
    1. Stuart A. Nicklin, Eugene Wu, Glen R. Nemerow, et al. The influence of adenovirus fiber structure and function on vector development for gene therapy. .Molecular Therapy, 2005, 12(3):384-393.
    2. Schaller S, Henriksen K, Hoegh-Andersen P, In vitro, ex vivo, and in vivo methodological approaches for studying therapeutic targets of osteoporosis and degenerative joint diseases: how biomarkers can assist? Assay And Drug Development Technologies, 2005, 3(5): 553-580.
    3. Christian Jorgensen, Jan Gordeladze, Danielle Noel. Tissue engineering through autologous mesenchymal stem cells. Current Opinion in Biotechnology, 2004, 15(5): 406-410.
    4. Peng HR and Huard J. Stem cells in the treatment of muscle and connective tissue diseases. Current Opinion in Pharmaology. 2003, 3:329-333.
    5. Zhuoran Zhao, Ming Zhao, Guozhi Xiao et al. Gene Transfer of the Runx2 Transcription Factor Enhances Osteogenic Activity of Bone Marrow Stromal Cells in Vitro and in Vivo. Molecular Therapy, 2005, 12(2): 247-253
    6. Riew KD, Wright NM, Cheng S, et al. Induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene in a rabbit spinal fusion model. Calcif Tissue Int, 1998; 63(4): 357
    7. Lieberman JR, Daluiski A, Stevenson S, et al. The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats. J Bone Joint Surg (Am). 1999; 81(7): 905
    8. 张丽华主编,细胞生物学及细胞培养技术。(2003 年 1 月 第一版)。人民卫生出版社。
    9. Friedenstein AJ, Shapiro-Piatetzky II, Petrakova KV. Osteogenesis in transplants of bone marrow cells [J]. J Embryol Exp Morphol, 1996; 16:381-390.
    10. Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells [J]. Science, 1999, 284:143-147.
    11. Kitano Y,Radu A,Shabban A,et al. Selection,enrichment,and culture expansion of murine mesenchymal progenitor cells by retroviral transduction of cycling adherent bone marrow cells[J]. Exp Hematol, 2000, 28 (12):1460-1469.
    12. Van Vlasselaer P,Falla N,Snoeck H. Characterization and purification of osteogenic cells from murine bone marrow by two- color cell sorting using anti- sca 1 monoclonal antibody and wheat germ agglutinin[J].Blood,1994,84(3):753-763.
    13. 刘晓丹,郭子宽,李秀森 等。人骨髓间充质干细胞分离与培养方法的建立。军事医学科学院院刊,2000;2 4(4):282-284。
    14. Encina NR, Billotte WG, Hofmann MC.Immunomagnetic isolation of osteoprogenitors from human bone marrow stroma [J]. Lab Invest, 1999, 79(4):449- 457.
    15. Oreffo ROC, Virdi AS, Triffitt JT. Retroviral marking of human bone marrow fibroblasts:in vitro expansion and localization in calvarial sites after subcutaneous transplantation in vivo[J]. J Cell Physiol, 2001, 186(2 ):201-209.
    16. Xi Mao, Chen-Ling Chu, Zhao Mao, et al. The development and identification of constructing tissue engineered bone by seeding osteoblasts from differentiated rat marrow stromal stem cells onto three-dimensional porous nano-hydroxylapatite bone matrix in vitro. Tissue and Cell, 2005, 37(5):349-357.
    17. D. S. Musgrave, R. Pruchnic, V. Wright, et al. The effect of bone morphogenetic protein-2 expression on the early fate of skeletal muscle-derived cells. 2001, Bone, 28(4): 499-506.
    18. Camargo FD, Chambers SM, Goodell MA. Stem cell plasticity:from transdifferentiation to macrophage fusion.Cell Prolif,2004, 37:55–65.
    19. Tuli R, Seghatoleslami MR, Tuli S, et al. A simple, high-yield method for obtaining multipotential mesenchymal progenitor cells from trabecular bone. Mol. Biotechnol, 2003, 23:37.
    20. Lovell MJ, Mathur A. The role of stem cells for treatment of cardiovascular disease. Cell Prolif, 2004, 37: 67–87.
    21. Otto WR, Rao J.Tomorrow’s skeleton staff: mesenchymal stem cells and the repair of bone and cartilage. Cell Prolif, 2004, 37:97–110.
    22. Wolfram J, DAVID JP, Candace E, et al. Increased bone formation and osteosclerosisin mice overexpressing the transcription factor Fra-1. Nature America Inc, 2000, 6(8):980-984.
    23. Sabatakos G, Sims NA, Chen J, et al. Overexpression of .FosB transcription factor(s) increases bone formation and inhibits adipogenesis. Nature America Inc, 2000, 6(8):985-990.
    1. Sabokbar A, Itonaga I, Sun SG, et al. Arthroplasty membrane-derived fibroblasts directly induce osteoclast formation and osteolysis in aseptic loosening. Journal Of Orthopaedic Research, 2005, 23(3):511-519.
    2. Eva G, Fran?oise R,Dominique H,et al. Osteoprotegerin:A new therapeutic agent for the treatment of bone disease.Drug Discovery Tody.2001,6(23):1241-1242.
    3. Cao J, Venton L, Sakata T, et al.Expression of RANKL and OPG correlates with age-related bone loss in male C57BL/6 mice. J Bone Miner Res. 2003 Feb;18(2):270-7.
    4. Kostenuik PJ, Shalhoub V. Osteoprotegerin: a physiological and pharmacological inhibitor of bone resorption. Curr. Pharm. Des. 2001, 7: 613–635.
    5. Simonet WS, Lacey DL, Dunstan CR, et al.Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell ,1997,89:309–319.
    6. Kostenuik PJ, Capparelli C, Morony S,et al., OPG and PTH-(1–34) have additive effects on bone density and mechanical strength in osteopenic ovariectomized rats. Endocrinology, 2001, 142:4295–4305.
    7. Bolon B, Campagnuolo G, Feige U,et al. Duration of bone protection by a single osteoprotegerin injection in rats with adjuvant-induced arthritis. Cell. Mol. Life Sci. 2002, 59 :1569–1576.
    8. Campagnuolo G, Bolon B, Feige U,et al. Kinetics of bone protection by recombinant osteoprotegerin therapy in Lewis rats with adjuvant arthritis. Arthritis Rheum. 2002, 46 : 1926–1936.
    9. Morony S, Capparelli C, Sarosi I, et al. Osteoprotegerin inhibits osteolysis and decreases skeletal tumor burden in syngeneic and nude mouse models of experimental bone metastasis. Cancer Res. 2001, 61:4432–4436.
    10. Capparelli C, Kostenuik PJ, Morony S, et al. Osteoprotegerin prevents and reverses hypercalcemia in a murine model of humoral hypercalcemia of malignancy. Cancer Res2000. 60:783–787.
    11. Bekker PJ, Holloway D, Nakanishi A,et al.The effect of a single dose of osteoprotegerin in postmenopausal women. J Bone Miner Res. 2001, 16:348–360.
    12. Bolon B, Carter C, Daris M, et al. Adenoviral delivery of osteoprotegerin ameliorates bone resorption in mouse ovariectomy model of osteoporosis. Mol. Ther. 2001,3: 197–205.
    13. 伍贤平,寥二元,陆泽元,等。双能 X 线吸收法测定大鼠骨量的评价及去卵巢丢失敏感区的选择。中华内分泌代谢杂志,2000,16(4):212-215。
    14. 陈孟诗,赖胜祥,李良,等。大鼠的骨生物力学指标选取及测试。生物医学工程学杂志,2001,18(4):547-551。
    15. 唐六丁,赵为民,李秉哲。股骨-人工假体之间的界面生物力学分析。医用生物力学。2004,19(2):112-116。
    16. 王以进,王介麟编著,骨科生物力学,北京,人民军医出版社,1989,156-207。
    17. 蔡文琴主编,现代实用细胞与分子生物学实验技术,北京,人民军医出版社,2003,66-76。
    18. Shalhoub V,Zhaopo G,Christopher C,et al.Osteoprotegerin and osteoprotegerin ligand effects on osteoclast formation from human peripheral blood mononuclear cell precursors.Cell Biochem,1999,72:251-261.
    19. 于明香,金慰芳,王洪复。应用抗酒石酸酸性磷酸酶(TRAP)染色观察体外培养破骨细胞的生存时间。泰山医学院学报,1996,17(2):91-93。
    20. Giuseppe Cirino, Mario Misasi, Amedeo Loffredo, et al. The synovial - like membrane at the bone interface in loose total hip replacements contains high levels of extracellular group II phospholipase A2. Life Sciences, 1996, 59(7):181-186
    21. Michael J, Archibeck, Joshua J, et al. The basic science of periprosthetic osteolysis. J Bone Joint Surg(Am), 2000, 82:1478-1489.
    22. Yao J, Gabriella CS-SZABQ, Joshua J, et al. Suppression of osteoblast function by titanium particles. J Bone Joint Surg(Am), 1997,79:107-112.
    23. Haynes DR, Potler AE, Atkins GJ, et al. Metal particles stimulate expression of regulators of osteoclast development including RANKL/TRANCE osteoprotegerin and M-CSF. Trans Orthop Res Soc, 1999,24:244-249.
    24. Itonaga A, Sabokbar SG Sun O, et al. Transforming growth factor-β induces osteoclast formation in the absence of RANKL. Bone, 2004, 34(1): 57-64.
    25. Kim KJ, Itoh J, Takagi M, et al. Mouse osteoclast formation incluced by joint fluids from failed total hip arthoplasty is inhibited by OPG. Trans Orthop Res Soc.2000,37:218-223.
    26. Howie DW, Vernon RB, Oakeshott R, et al. A rat model of resorption bone at the cement-bone interface in the presence of polyethylene wear particles. J Bone Joint Surg, 1988, 70A:257-261.
    27. Schaller S, Henriksen K, Hoegh-Andersen P, In vitro, ex vivo, and in vivo methodological approaches for studying therapeutic targets of osteoporosis and degenerative joint diseases: how biomarkers can assist? Assay And Drug Development Technologies, 2005, 3(5): 553-580.
    28. Takahashi N, Yamana H, Yoshiki S, et al. Osteoclast-like cell formation and its regulation by osteotropic hormones in mouse bone marrow cultures. Endocrinology, 1988, 122(4):1373-1382
    29. Spadaro JA,Bergstrom WH.In ivo and in vitro effects of a pulsed electromagnetic field on net calcium flux in rat clvarial bone.Calcif Tissue Int,2002,70(6):496-502.
    30. Charnley J. Low friction arthroplasty of the hip. Theory and practice. Berlin:Springer, 1979 : 3-15
    31. Qiu MJ, Beckman J, Qian, et al. Simultaneous labeling of mast cell proteases and protease mRNAs at the bone–implant interface of aseptically loosened hip implants. Journal of Orthopaedic Research, 2005, 23(4):942-948
    32. L Baldwin, B F Flanagan, P J McLaughlin, et al. A study of tissue interface membranes from revision accord knee arthroplasty: the role of T lymphocytes. Biomaterials, 2002, 23(14):3007-3014.
    33. Hanna Schell, Jasmin Lienau, Devakara R. Epari, et al. Osteoclastic activity begins early and increases over the course of bone healing. Bone, 2006, 38, (4):547-554
    34. Athanasios M, Patricia B, JH. David. Production of human osteoclasts in a three-dimensional bone marrow culture system. Biochemical Engineering Journal, 2004, 20, (2-3):189-196.
    35. Crotti TN, Loric M, Dalidjan M et al. Expression of RANK, RANKL and OPG is associated with rheumatoid arthritic, periodontal and periprosthetic tissue [J ]. Bone, 2000 , 27 ( Suppl) : 1-54.
    1. Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell, 1997; 89(2):309.
    2. Yasuda H, Shima N, Nakagawa N, et al. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. J Endocrinology,1998,139(3):1329-1337.
    3. Yamaguchi K, Kinosaki M, Goto M, et al. Characterization of structural domains of human osteoclastogenesis inhibitory factor. J Biol Chem, 1998, 273(9):5117-5123.
    4. Tomoyasu A, Goto M, Fujise N, et al. Characterization of monomeric and homodimeric forms of osteoclastogenesis inhibitory factors. J Biochem Biophys Res Com, 1998, 245:382-387.
    5. Tsuda E, Goto M, Mochizuki S I, et al. Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. J Biochemical and BiophysicalResearch Communications,1997, 234:137–142.
    6. Bucay N, Sarosi I, Dunstan CR, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. J Genes Dev,1998,12:1260 –1268.
    7. Malyankar UM, Scatena M, Suchland KL, et al. Osteoprotegerin is an v ?3-induced, NF- B-dependent survival factor for endothelial cells. J Biol Chem, 2000, 275:20959–20962.
    8. Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. J Proc Natl Acad Sci , 1998, 95:3597–3602.
    9. Gao Y-H, Shinki T, Yuase T, et al. Potential role of cbfa1, an essential transcriptional factor for osteoblast differentiation, in osteoclastogenesis: Regulation of mRNA expression of osteoclast differentiation factor (ODF). J Biochemical and Biophysical Research Communications, 1998, 252: 697–702.
    10. Lacey DL, Timms E, Tan H-L, et al. Osteoprotegerin (OPG) ligand is a cytokine that regulates osteoclast differentiation and activation. J Cell ,1998, 93:165–176.
    11. Wong BR, Rho J, Arron J, et al. TRANCE is a novel ligand of the tumor necrosis factor receptorfamily that activates c-jun N-terminal kinase in T cells. J Biol Chem,1997, 272: 25190–25194.
    12. Katagiri T, Takahashi N. Regulary mechanisms of osteoblast and osteoclast differentiation. J Oral disease, 2002, 8:147-159.
    13. Zhang YH, Heulsmann A, Tondravi MM, et al. Tumor necrosis factor-alpha stimulates osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways. J Biol Chem, 2001, 276:563-568 .
    14. Azuma Y, Kaji K, Katogi R, et al. Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclast. J Biol Chem, 2001, 275:4858-4864.
    15. Pandey R, Quinn J, Joyner C, et al. Arthroplasty implant biomaterial particle associated macrophages differentiate into lacunar bone resorbing cells. J Ann Rheum Dis, 1996, 55: 388-395.
    16. Yao J, Gabriella CS-SZABQ, Joshua, et al. Suppression of osteoblast function by titanium particles. J Bone Joint Surg(Am), 1997, 79; 107-112.
    17. Haynes DR, Potter AE, Atkins GJ, et al. Metal particles stimulate expression of regulators of osteoclast development including RANK/TRANCE, osteoprotegerin M-CSF. J Trans Orthop Res Soc, 1999, 24: 244-247.
    18. Itonaga I, Sabokbar A, Murray DW, et al. Effect of osteoprotegerin and osteoprotegerin ligand on osteoclast formation by arthoplasty membrane derived macrophages. J Ann Rheum Dis, 2000, 59: 26-31.
    19. Crotti TN, Loric M, Dalidjan M, et al. Expression of RANK, RANKL and OPG is associated with rheumatoid arthritic, periodontal and periprosthetic tissue. J Bone, 2000, 27(suppl): 1-54.
    20. Kim KJ, Itoh T, Takagi M, et al. Mouse osteoclast formation induced by joint fluids from failed total hip arthoplasty is inhibited by OPG. J Trans Orthop Res Soc, 2000, 37: 218-221.
    21. Sakai H, Jingushi S, Shuto T, et al. Fibroblasts from the inner granulation tissue of the pseudocapsule in hips at revision arthoplasty induce osteoclast differentiation, as do stromal cells. J Ann Rheum Dis, 2002, 61: 103-109.
    1. Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell, 1997; 89(2):309
    2. Bekker PJ, Hollow D, Nakanishi A, et al. The effect of a single dose of osteoprotegerin in postmenopausal women. J Bone Miner Res. 2001; 16(2):348
    3. Rodan GA, Martin TJ. Therapeutic Approaches to Bone Diseases. Science, 2000 ; 289: 1508
    4. Jolly D. Viral vector systems for gene therapy. Cancer Gene Ther. 1994 ; 1(1):51
    5. Lieberman JR, Daluiski A, Stevenson S, et al. The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats. J Bone Joint Surg (Am). 1999; 81(7):905
    6. Sommer B, Kuznetsov SA, Robey PG, et al. Efficient gene transfer into normal human skeletal cells using recombinant adenovirus and conjugated adenovirus-DNA complexes. Calcif Tissue Int , 1999; 64(1):45
    7. Nishida K, Kang JD, Suh JK, et al. Adenovirus-mediated gene transfer to nucleus pulposus cells. Implications for the treatment of intervertebral disc degeneration. Spine, 1998;15, 23(22):2437
    8. Tanaka S, Takahashi T, Takayanagi H, et al. Modulation of osteoclast function by adenovirus vector-induced epidermal growth factor receptor. J Bone Miner Res, 1998, 13(11):1714
    9. Okubo Y, Bessho K, Fujimura K, et al. In vitro and in vivo studies of a bone morphogenetic protein-2 expressing adenoviral vector. J Bone Joint Surg (Am) 2001;83(Suppl):99
    10. Conget PA, Minguell JJ. Adenoviral-mediated gene transfer into ex vivo expanded human bone marrow mesenchymal progenitor cells. Exp Hematol, 2000 ; 28(4):382
    11. Kurata H, Liu CB, Valkova J, et al. Recombinant adenovirus vectors for cytokine gene therapy in mice. J Allergy Clin Immunol ,1999;103(Suppl): 471
    12. Seon Hee Kim , Christopher H Evans , Sunyoung Kim , et al. Gene therapy for established murine collagen-induced arthritis by local and systemic adenovirus-mediated delivery of interleukin-4. Arthritis Research , 2000;2 (4): 293
    13. Smith P, Shuler FD, Georgescu HI, et al. Genetic enhancement of matrix synthesis by articular chondrocytes: comparison of different growth factor genes in the presence and absence of interleukin-1. Arthritis Rheum, 2000; 43 (5):1156
    14. Musgrave DS, Bosch P, Lee JY, et al. Ex vivo gene therapy to produce bone using different cell types. Clin Orthop, 2000; 378:290
    15. Bolon B, Carter C, Daris M, et al. Adenoviral delivery of osteoprotegerin ameliorates bone resorption in a mouse ovariectomy model of osteoporosis. Mol Ther, 2001; 3(2):197
    16. Lubberts E, Joosten LA, Chabaud M, et al. IL-4 gene therapy for collagen arthritis suppresses synovial IL-17 and osteoprotegerin ligand and prevents bone erosion. J Clin Invest. 2000; 105(12):1697
    17. Woods JM, Katschke KJ, Volin MV, et al. IL-4 adenoviral gene therapy reduces inflammation, proinflammatory cytokines, vascularization, and bony destruction in rat adjuvant-induced arthritis. J Immunol , 2001; 15;166(2):1214
    18. Nixon AJ, Brower-Toland BD, Bent SJ, et al. Insulinlike growth factor-I gene therapy applications for cartilage repair. Clin Orthop, 2000 ; 379 (Suppl):201
    19. Nishida K, Kang JD, Gilbertson LG, et al. Modulation of the biologic activity of the rabbit intervertebral disc by gene therapy: an in vivo study of adenovirus-mediated transfer of the human transforming growth factor beta 1 encoding gene. Spine, 1999; 24(23):2419
    20. Uusitalo H, Hiltunen A, Ahonen M, et al. Induction of periosteal callus formation by bone morphogenetic protein-2 employing adenovirus-mediated gene delivery. Matrix Biol 2001; 20(2):123
    21. Baltzer AW, Lattermann C, Whalen JD, et al. Potential role of direct adenoviral gene transfer in enhancing fracture repair. Clin Orthop, 2000 ; 379 (Suppl): 120
    22. Franceschi RT, Wang D, Krebsbach PH, et al. Gene therapy for bone formation: in vitro and in vivo osteogenic activity of an adenovirus expressing BMP7. J Cell Biochem, 2000 ; 78(3):476
    23. Helm GA, Alden TD, Beres EJ, et al. Use of bone morphogenetic protein-9 gene therapy to induce spinal arthrodesis in the rodent. J Neurosurg, 2000; 92 (2 ):191
    24. Riew KD, Wright NM, Cheng S, et al. Induction of bone formation using arecombinant adenoviral vector carrying the human BMP-2 gene in a rabbit spinal fusion model. Calcif Tissue Int, 1998; 63(4): 357
    25. Lieberman JR, Daluiski A, Stevenson S, et al. The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats. J Bone Joint Surg (Am). 1999; 81(7): 905
    26. Kirschner RE, Karmacharya J, Ong G, et al. Synthetic hybrid grafts for craniofacial reconstruction: sustained gene delivery using a calcium phosphate bone mineral substitute. Ann Plast Surg, 2001; 46(5):538

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700