基于双环耦合的多波长信号缓存系统若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全光缓存器能够在光域内直接完成数据包的存储而不需要经过光-电-光的变换,有效克服了现存通信网络中的电子速率瓶颈,成为全光通信领域的研究热点。随着WDM网络技术的高速发展更是需要能够实现多波长信号缓存的全光缓存器。以半导体光放大器(SOA)为非线性元件的双环耦合全光缓存器(DLOB)是一种新型的全光缓存器,它具有结构紧凑、读写操作简单,可调范围大等优点。基于DLOB的多波长缓存系统也已经被提了出来,虽然成功实现了8个波长随机信号的缓存,但系统中仍存在着若干问题,限制了其工作性能。本文以前人的工作为基础,重新搭建了多波长信号缓存实验系统,对其中存在的若干问题提出了相应的解决方案并通过实验验证方案的可行性,最后利用该系统成功实现8个波长2.5Gps随机叠加信号的缓存。本文的主要工作包括:
     1.研究了多波长信号在SOA中的放大特性以及交叉增益特性,噪声特性;分析了SOA光开关对多波长叠加信号的功率均衡作用。
     2.研究了多波长信号缓存系统功率调节技术:利用反馈结构成功实现了对EDFA的增益和噪声控制,增加线性增益范围,进而改善了EDFA放大器的工作性能,解决了多波长信号缓存系统损耗问题;利用光纤光栅应力调节技术成功实现对光纤光栅反射波长的调节,提高了光栅的反射率并实现各个波长的功率的均衡,解决了光纤光栅的波长偏移问题。
     3.进行了多波长信号的缓存实验,成功实现了8×2.5Gbps4圈7.02us的缓存;简要分析了影响多波长信号缓存系统工作性能的原因。
All-optical buffer can complete the storage of data packets in the optical domain without light-electricity-light transformation, overcoming the electronic speed bottleneck of the existing communication network effectively. It has become one of the research focuses of all-optical communications. With the rapid development of WDM network technology, optical buffer can be used for multi-wavelength is in need. The all-optical buffer based on dual loop optical buffer (DLOB) is a novel optical buffer, which is variable, compact, low cost and easy to operate. DLOB based multi-wavelength caching system has also been raised up, but there still were several problems. In this paper, based on previous work,we rebuilt a multi-wavelength signal buffering system based on DLOB, proposed some corresponding solutions to the problems existing in the system, and at last eight wavelengths 2.5Gps random overlapping signals simultaneous buffering has be achieved. The work of this paper includes:
     1. The multi-wavelength amplification characteristics, cross-gain and noise characteristics of SOA were studied carefully. The power equalization effect of multi-wavelength overlapping signals in SOA switch was studied theoretically and experimentally.
     2. Demonstrated the power control technologies of multi-wavelength signal buffering system. The EDFA gain and noise control was achieved by using feedback structure; the wavelengths of fiber grating were calibrated successful by using stress conditioning technology;
     3. Carried out multi-wavelength signal buffering experiment, successfully achieved 8×2.5Gbps 4 cycles 7.02us buffering; a brief analysis of the impact of multi-wavelength signal caching system performance reasons.
引文
[1]T. El-Bawab and J. Shin. Optical packet switching in core network between vision and reality. IEEE Communication Magazine,2002,40 (9):60-65
    [2]S. Yao, B. Mukherjee and S. Dixit. All-optical packet switching for metropolitan area network:opportunities and challenges. IEEE Communication Magazine,2001,39 (3):142-148
    [3]L. Xu, H. Perros, and G. Rouskas. Techniques for optical packet switching and optical burst switching. IEEE Communication Magazine,2001,39 (1):136-142
    [4]D. Hunter and I. Andonovic. Approaches to optical Internet packet switching. IEEE Communication Magazine,2000,38 (9):116-122
    [5]R. Tucker and W. Zhong. Approaches to optical Internet packet switching. IEEE Transmission Electronics,1999, E82-B (2):254-264
    [6]H. J. S. Dorren, M. T. Hill, Y. Liu, et al. Optical packet switching and buffering by using all-optical signal processing methods. Journal of Lightwave Technology,2003,21 (1):2-12
    [7]Connie J. Chang-Hasnain, Pei-Cheng Ku, Jungho Kim, et al. Variable optical buffer using slow light in semiconductor nanostructures. Proceedings of the IEEE,2003,91 (11):1884-1897
    [8]吴重庆,袁保忠.光速减慢和光缓存技术.物理,2005,34(12):922-926
    [9]吴重庆.光纤型缓存器的研究进展.半导体光电,2007,28(5):601-606
    [10]R. J. Mears, L. Reekie, I. M. Jauncey and D. N. Payne. Low-noise erbium-doped fiber amplifier operating at 1.54 μm. Electron. Lett.,1987,23(19):1026-1028
    [11]吴重庆,袁保忠,光速减慢和光缓存技术,物理,2005,34(12):922-926.
    [12]L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature,1999,397(6720):594-598.
    [13]A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar. Observation of ultralslow and stored light pulse in solid. Phys. Rev. Lett.2002,88 (2):023602-023602-4.
    [14]C. C. Philips. Observation of electromagnetic induced transparency and measurement of subband dynamics in semiconductor quantum well. Physics,2000,166-173.
    [15]Yoshitomo Okawach, Jay E. Sharping, et al. Tunable all-optical delays via Brillouin slow light in an optical fiber.2005 Conference on Lasers & Electro-Optics (CLEO),2005,511-513.
    [16]Govind P. Agrawal编著,贾东方于震虹等译.非线性光纤光学原理及应用.电子工业出版社,2002年第一版,2002:14-15.
    [17]Zhaoming Zhu, Andrew M. C. Dawes and Daniel J. Gauthier.15-GHz-Bandwidht SBS slow light in optical fibers. Optical Fiber Communication 2006,2006, PDP1.
    [18]Jay E. Sharping, Yoshitomo Okawachi and Alexander L. Gaeta. Wide bandwidth slow light using a Raman fiber amplifier. Optics Express,2005,13(16):6092-6098.
    [19]David Dahan, Gadi Eisenstein. Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering. Optics Express,2005,13 (16):6234-6249.
    [20]Chlamtac I, Fumagalli A. QUADRO2-stars:High performance optical WDM star networks [A]. GLOBECOM'91,1991,2:122421229.
    [21]Yong-Kee Yeo, Jianjun Y, Gee-Kung Chang. A Dynamically Reconfigurable Folded-Path Time Delay Buffer for Optical Packets Switching. J. Photon. Technol. Lett.,2004,16(11):2559-2561.
    [22]Nan chi, Zhuoran Wang, Siyuan Yu. A large variable delay, fast reconfigurable optical buffer based on multi-loop configuration and an optical crosspoint switch matrix. OFC2006, OFO7
    [23]Zhuoran Wang, Nan Chi, and Siyuan Yu. Time-Slot Assignment Using Optical Buffer With a Large Variable Delay Range Based on AVC Crosspoint Switch. J. Lightw. Technol.,2006,24(8): 2994-3001.
    [24]Mahmoud S. Rasras, Christi K. Madsen, Mark A., et al. Integrated Resonance-Enhanced Variable Optical Delay Lines. Photonics Technology Letters,2005,17(4):834-836.
    [25]Glen D. Bartolini, Darwin K. Serkland, et al. All-optical storage of picosecond-pulse packets using parametric amplification. IEEE Photon. Technol. Lett.,1997,9 (7):1020-1022.
    [26]Anjali Agarwal, Lijun Wang, Yikai Su, et al. All-optical erasable storage buffer based on parametric nonlinearity in fiber. OFC 2001,2001,1-3.
    [27]Dorran N. J, Wood David. Nonlinear optical loop mirror. Optics Letters,1988,13 (1):56-58
    [28]R. Langenhorst, M. Eiselt, W. Pieper et al. Fiber loop optical buffer. J. Lightw. Technol.,1996, 14 (3):324-335.
    [29]Mu Cheng, Chongqing Wu, et al. A Variable Delay Optical Buffer Based on Nonlinear Polarization Rotation in Semiconductor Optical Amplifier. IEEE PHOTONICS TECHNOLOGY LETTERS, VOL.21, NO.24, DECEMBER 15,2009
    [30]Xinwan Li, Limei Peng, Jianping Chen, et al. A Novel Fast Programmable Optical Buffer with Variable Delays. OFC2008, JThA4.
    [31]Chin-Hui Chen, et al., Programmable Optical Buffering using Fiber Bragg Gratings combined with a Widely-Tunable Wavelength Converter. Optical Fiber Communication Conference,3,3 (2005)
    [32]Mable P. F. et al., Tunable Optical Delay Using Four-Wave Mixing in a 35-cm Highly Nonlinear Bismuth-Oxide Fiber and Group Velocity Dispersion IEEE J. Lightwave Tech.,26, NO.5,pp:499,march (2008)
    [33]Arshad Chowdhury, Yong-kee Yeo, Jianjun Yu, Gee-kung Chang, WDM Reconfigurable Optical Delay Buffer for Optical Packet Switched Networks, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL.18, NO.10,2006:1176-1178
    [34]Jie Yang, Nicolas K. Fontaine et al. Continuously Tunable, Wavelength-Selective Buffering in Optical Packet Switching Networks, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL.20, NO.12,2008:1030-1032
    [35]Nicolas K. Fontaine, IEEE, Jie Yang et al. Continuously Tunable Optical Buffering at 40 Gb/s for Optical Packet Switching Networks, JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 26, NO.23,2008:3776-3783
    [36]Soeren Lykke Danielsen, Benny Mikkelsen et al.WDM Packet Switch Architectures and Analysis of the Influence of Tuneable Wavelength Converters on the Performance, JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL.15, NO.2,1997:219-227
    [37]A. M. Liu, C. Q. Wu, Y. D. Gong. Optical buffer configuration based on 3x3 collinear fiber coupler. Electronics Letters,2004,40(16):1017-1019.
    [38]李亚捷,吴重庆,付松年,基于3×3平行排列耦合器的全光光开关的特性分析,光学技术,2006,32(3):400-402.
    [39]Songnian Fu, P. Shum, Liren Zhang, Chongqing Wu, and A. M. Liu. Design of SOA-Based Dual-Loop Optical Buffer with a 3 × 3 Collinear Coupler:Guideline and Optimizations. Journal of Lightwave Technology,2006,24(7):2768-2778.
    [40]Yongjun Wang, Chongqing Wu et al. A new large variable delay optical buffer based on cascaded Double Loop Optical Buffers (DLOBs). OSA/OFC/NFOEC 2009. OWA4
    [41]C. Y. Tian, C. Q. Wu, Z. Y Li and N. Guo, Dual-Wavelength Packets Buffering in Dual-Loop Optical Buffer. IEEE Photon. Technol. Lett.2008,20(8):578-580.
    [42]C. Tian, C. Wu, G. Sun, Z. Li and Y. Wang. Multichannel data packets buffered in dual loop optical buffer. ELECTRONICS LETTERS 4th June 2009 Vol.45 No.12.
    [43]JS. M. R. Motaghian Nezam, OP. Saghari et al. Experimental Demonstration of OCDMA Transmission Using a Three-Dimensional (Time-Wavelength-Polarization) Codeset. JOURNAL OF LIGHTWAVE TECHNOLOGY,2005,23(10):3282-3289.
    [44]A. Hamie, A. Sharaiha, J. Le Bihan. All-optical non-inverted wavelength conversion based on cross gain modulation in semiconductor optical amplifiers.2005 Conference on Lasers and Electro-Optics Europe,496.
    [45]A. Bilenca, R. Alizon, V. Mikhelashhvili. Broad-band wavelength conversion based on cross-gain modulation and four-wave mixing in InAs-Inp quantum-dash semiconductor optical amplifiers operating at 1550nm. Photonics Technology Letters,2003,15 (4):563-565.
    [46]C. Joergensen, S. L. Danielsen, K. E. Stubkjaer. All-optical wavelength conversion at bit rate above lOGb/s using semiconductor optical amplifiers. Journal of Selected Topics in Quantum Electronics,1997,3 (5):1168-1180.
    [47]Shigeru Nakamura, Yoshiyasu Ueno, Kazuhito Tajima. Ultrafast all-optical switching using a frequency shift accompanied by cross-phase modulation in a semiconductor optical amplifier. Lasers and Elecrtro-Optics,2001:348-349.
    [48]Hanlim Lee, Sungkee Kim and Jichai Jeong. Frequency chirping and dynamic characteristics of wavelength-converted optical siganals by cross-gain and cross-phase modulation in semiconductor optical amplifiers. Lasers and Electro-Optics,1999,3:640-641.
    [49]S.C. Cao, J. C. Cartledge and E. Berolo. Theoretical model of gain-saturated semiconductor optical amplifiers in cross-phase modulation wavelength converters. Lasers and Electro-Optics Society 2000 Annual Meeting,2000,2:778-779.
    [50]J. S. Lee, H. J. Song, W. B. Kim. All-optical harmonic frequency upconversion of radio over fiber signal using cross-phase modulation in semiconductor optical amplifier. Electronics Letters,2004,40 (19):1211-1213.
    [51]Zhihong Li, Yi Dong, Jinyu Mo. Cascaded all-optical wavelength conversion for RZ-DPSK signal based on four-wave mixing in semiconductor optical amplifier. Photonics Technology Letters,2004,16(7):1685-1687.
    [52]Kit Chan, Chun-Kit Chan, Lian Kuan. Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs. Photonics Technology Letters,2004,16(3):897-899.
    [53]H. Simos, A. Argyris, D. Kanakidis. Regenerative properties of wavelength converters based on FWM in a semiconductor optical amplifier. Photonics Technology Letters,2003,15(4): 566-568.
    [54]吴重庆.光通信导论.北京.清华大学出版社.2008:236-237.
    [55]吴重庆.光通信导论.北京.清华大学出版社.2008:245-246.
    [56]吴重庆.光通信导论.北京.清华大学出版社.2008:239-240.
    [57]胡先志.构建高速通信光网络关键技术.北京.电子工业出版社.2008:112-113.
    [58]A. Kerrouche, W.J.O. Boyle et al. Field tests of fibre Bragg grating sensors incorporated into CFRP for railway bridge strengthening condition monitoring. Sensors and Actuators A 148 (2008)68-74.
    [59]T.H.T. Chan, L. Yu et al. Fiber Bragg grating sensors for structural health monitoring of Tsing Ma Bridge:Background and experimental observation. Engineering Structures 28 (2006) 648-659.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700