RNA二级结构拓扑特征化关键技术及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核糖核酸(RNA)是一类重要的生物大分子,在生命活动中发挥着重要的作用。对RNA分子的研究不仅具有重要的理论和应用价值,而且还将导致对生命本质问题的深入认识。在此背景下,Filipowicz于2000年提出了RNA组学的概念。RNA组学的兴起对RNA高级结构的分析方法提出了新的要求,其中特别需要发展RNA二级结构的量化方法,即RNA二级结构的拓扑特征化方法。本文建立了RNA二级结构的拓扑特征化方法,并应用于RNA构象空间的可视化、RNA有害突变预测、RNA结构稳健性的定量评估、多稳态RNA分子设计,以及RNA进化动力学模拟,其主要内容和创新之处包括:
     (1)RNA二级结构拓扑特征化方法的研究
     RNA二级结构拓扑特征化方法的目的是构建能够定量表征RNA二级结构特征的拓扑指数,它是最近几年RNA结构分析领域新兴的研究方向。为了给RNA二级结构提出一个完备且精细的模型,本文首先发展了RNA树的模型,提出了RNA二级结构的茎环元件连接图的表示方法。基于这种新的表示,构建了三种表征能力强、简并度低的拓扑指数,并分析了它们的适用性。随后,在RNA二级结构山形图表示的基础上,定义了RNA二级结构的分形维指数。并对RNA二级结构的弱自相似性(WSA)进行了深入分析,建立了基于WSA函数表示的RNA分子的功能域识别的方法。
     (2)RNA二级结构拓扑特征化方法的基本应用研究
     前面构造的RNA二级结构拓扑指数为RNA构象空间的定量描述奠定了基础,但在应用中,可能会造成“维数灾难”的问题。为此,本文将流形学习用于RNA构象空间的可视化,建立了以拓扑指数为特征、基于流形学习降维的RNA构象空间的可视化方法,将该方法应用于交互式的miRNA识别与聚类,以及非编码RNA聚类中,取得了良好的效果。同时,本文提出了两种RNA有害突变预测的方法,一种是基于结构差异的方法;另外一种是基于结构差异与多序列序列比对的方法。并实现了RNA有害突变预测与分析的Web计算。最后,将RNA有害突变预测方法应用于流感病毒减活疫苗的设计,取得了良好的效果。
     (3)RNA结构稳健性分析与多稳态RNA分子设计研究
     稳健性的定量评估一直是进化生物学家长期关注的一个问题,而RNA二级结构是研究稳健性的一个很好的平台。本文将中性值的概念引入到RNA结构元件稳健性的定量评估中,建立了RNA结构元件遗传稳定性的定量评估方法,并以miRNA为研究对象,分析了miRNA的结构元件遗传稳健性。同时,本文扩展了中性值的定义,建立了RNA二级结构遗传稳定性的定量评估方法,同样以miRNA为研究对象,分析了miRNA二级结构的遗传稳健性。并讨论了miRNA遗传稳健性的进化及其起源,提出了miRNA的遗传稳健性与环境稳健性协同进化的假设。为了方便RNA结构稳健性的研究,本文实现了其Web计算。
     本文在现有双稳态分子设计理论及其算法框架下,将多稳态RNA分子设计问题转化为与预定结构相容的RNA序列集上的组合优化问题,采用基于图论的数学模型,该问题可以简化为依赖图上的点着色问题。本文解决了多稳态RNA分子的可设计性问题,并提出了多稳态RNA分子设计的算法。在优化设计的代价函数中,除了热力学性质之外,还融入了RNA稳健性的信息。双稳态和多稳态RNA分子设计算例的结果表明所设计出的RNA序列很好地满足了设计要求。
     (4)RNA进化动力学模拟及其理论建模研究
     RNA分子进化动力学模拟及其理论建模一直是理论生物学家长期关注的一个问题。本文采用蒙特卡罗方法模拟RNA分子进化过程,建立了RNA分子进化的结构和自由能景观图。以miRNA为研究对象,分析了结构和自由能景观图的自相关性。利用高斯混合模型及其相关算法,本文建立了RNA景观图的理论模型。为了方便RNA进化动力学的研究,本文实现了其Web计算。
As one of the most important macromolecules,Ribonucleic Acid(RNA) plays various indispensable roles in life.Researches on RNA molecules will result in deep recognitions of the core problems in the life science,as well as important applications. RNomics,which aims to reveal sequences and structure of all types of RNAs,has been proposed by Filipowicz in 2000.The emergence of RNomics present new requests for new methods for computational analysis of RNA high structure,topologization of RNA secondary structure,i.e.quantitative methods of RNA secondary structure are especially required.
     Some new methods for RNA secondary structure topologization are presented in this dissertation and applied to many researches,including visualization of RNA configuration space,RNA deleterious mutation prediction,quantitative evaluation of RNA structural robustness,multistable RNA molecules design,and RNA evolutionary dynamics.The main contents and contributions of the dissertation are summarized as follows:
     (1) RNA secondary structure topologization
     Topologization of RNA secondary structure aims at constructing topological indices which can describe RNA secondary structure quantitatively.RNA secondary structure topologization is a newly emerging direction in the field of RNA structural analysis.To provide a complete and fine scheme for RNA secondary structure,a combination of three vertex-weighted element-contact graphs(ECGs) is first proposed. Both the stem and loop topologies are completely encoded in ECG groups.Three typical topological index families defined on ECGs are investigated.The numerical features of these indices for possible RNA topologies are explored.
     Fractal dimensions based on mountain representation of RNA secondary structure are also presented.Using the weakly self-affine(WSA) model of RNA secondary structure,a functional domain recognition method is presented in this dissertation.
     (2) Basic applications of RNA secondary structure topologization
     The RNA topological indices establish the foundation for the quantitative description of RNA configuration space.However,the use of these indices may result in "Dimension Disaster" in applications.A method of visualization of RNA configuration space based on manifold learning is presented,where RNA secondary structures are quantitatively described by these bopological indices.The method is successfully applied in interactive recognition and clustering of miRNAs,and clustering of ncRNAs.
     Two methods of RNA deleterious mutation prediction are proposed.One is based on the structural difference,and the other is based on the structural difference and multiple sequence alignment.Also,a web server of RNA deleterious mutation analysis is implemented.These methods are successfully applied in the design of LAIV(Live Attenuated Influenza Vaccine).
     (3) RNA structural robustness and muitistable RNA molecules design
     Evolutionary biologists have a long-standing interest in quantitative measure of robustness.Many merits of RNA secondary structure make them an ideal system to study robustness.A method of quantitatively measuring robustness of structural elements based on neutrality is first developed,and the robustness of structural elements in miRNAs is analyzed using this method.This dissertation presents a method of quantitatively measuring robustness of RNA secondary structure,and investigates the structural robustness of miRNAs.Furthermore,this dissertation discusses the evolution of genetic robustness in miRNAs,and proposes the hypothesis of congruent evolution of genetic and environmental robustness.Finally,a web server of RNA structural robustness evaluation is implemented for the study of robustness.
     Based on the theory and algorithm of the design of bistable RNA molecules,the design of multistable RNA molecules can be described as the combinatorial optimization problem on the set of compatible sequences.Using the graph theory,this problem can be reduced into a vertex coloring problem of dependency graph.An algorithm for multistable RNA molecular design is presented,where the cost function involves the information of thermodynamic stability and genetic robustness of RNA molecules.The designed RNA sequences satisfy the requests well.
     (4) Simulation of RNA evolutionary dynamics and its theory model
     Theoretical biologists have paid close attention to the study of simulation and theoretical model of RNA evolutionary dynamics.Using Monte Carlo method,this dissertation simulates the process of RNA evolution,and establishes the corresponding structural and free energy landscape.The landscapes of miRNAs have been analyzed in detail.Furthermore,a theoretical model of RNA landscape is developed based on Gaussian mixture model.Finally,a simulation platform is implemented for the study of RNA evolutionary dynamics.
引文
[1] S.R.Eddy. Non-coding RNA genes and the modern RNA world,Nat.Rev.Genet., 2, (2001) 919-929.
    
    [2] GStorz. An expanding universe of noncoding RNAs, Science, 296, (2002)1260-1263.
    
    [3] T.Schlick. Molecular Modeling and Simulation: An Interdisciplinary Guide,Springer-Verlag, New York, 2002.
    
    [4] W.Filipowicz. Imprinted expression of small nucleolar RNAs in brain: time for RNomics, Proc.Natl.Acad.Sci.U.S.A, 97, (2000) 14035-14037.
    
    [5] D.Barash. Spectral Decomposition for the Search and Analysis of RNA Secondary Structure, Journal of Computational Biology, 11, (2004) 1169-1174.
    
    [6] D.Barash. Deleterious mutation prediction in the secondary structure of RNAs,NucI.Acids Res., 31, (2003) 6578-6584.
    
    [7] G.Benedetti, S.Morosetti. A graph-topological approach to recognition of pattern and similarity in RNA secondary structures, Biophys.Chem., 59, (1996)179-184.
    
    [8] C.I.Bermudez, E.E.Daza, E.Andrade. Characterization and comparison of Escherichia coli transfer RNAs by graph theory based on secondary structure,J.Theor.Biol., 197, (1999) 193-205.
    
    [9] T.Haynes, D.Knisley, E.Seier, Y.Zou. A quantitative analysis of secondary RNA structure using domination based parameters on trees, BMC Bioinformatics, 7, (2006) 108.
    
    [10] S.Y.Le, R.Nussinov, J.V.Maizel. Tree graphs of RNA secondary structures and their comparisons, Comput.Biomed.Res., 22, (1989) 461-473.
    
    [11] N.Kim, N.Shiffeldrim, H.H.Gan, T.Schlick. Candidates for novel RNA topologies, J.Mol.Biol., 341, (2004) 1129-1144.
    
    [12] E.R.van Dam, W.H.Haemers. Which graphs are determined by their spectrum?,Linear Algebra and its Applications, 373, (2003) 241-272.
    
    [13] D.Fera, N.Kim, N.Shiffeldrim, J.Zorn, U.Laserson, H.Gan, T.Schlick. RAG:RNA-As-Graphs web resource, BMC Bioinformatics, 5, (2004) 88.
    
    [14] S.Pasquali, H.H.Gan, T.Schlick. Modular RNA architecture revealed by computational analysis of existing pseudoknots and ribosomal RNAs,NucI.Acids Res., 33, (2005) 1384-1398.
    [15] H.H.Gan, D.Fera, J.Zorn, N.Shiffeldrim, M.Tang, U.Laserson, N.Kim, T.Schlick.RAG: RNA-As-Graphs database—concepts, analysis, and features,Bioinformatics, 20, (2004) 1285-1291.
    
    [16] H.H.Gan, S.Pasquali, T.Schlick. Exploring the repertoire of RNA secondary motifs using graph theory; implications for RNA design, Nucl.Acids Res., 31,(2003) 2926-2943.
    
    [17] D.O.Perkins, C.Jeffries, P.Sullivan. Expanding the 'central dogma': the regulatory role of nonprotein coding genes and implications for the genetic liability to schizophrenia, Mol.Psychiatry, 10, (2005) 69-78.
    
    [18] M.Eder, M.Scherr. MicroRNA and Lung Cancer, The New England Journal of Medicine, 352, (2005) 2446-2448.
    
    [19] C.Z.Chen. MicroRNAs as Oncogenes and Tumor Suppressors, The New England Journal of Medicine, 353, (2005) 1768-1771.
    
    [20] GA.Calin, M.Ferracin, A.Cimmino, G.Di Leva, M.Shimizu, S.E.Wojcik,M.V.Iorio, R.Visone, N.I.Sever, M.Fabbri, R.Iuliano, T.Palumbo, F.Pichiorri,C.Roldo, R.Garzon, C.Sevignani, L.Rassenti, H.Alder, S.Volinia, C.g.Liu,T.J.Kipps, M.Negrini, C.M.Croce. A MicroRNA Signature Associated with Prognosis and Progression in Chronic Lymphocytic Leukemia, The New England Journal of Medicine, 353, (2005) 1793-1801.
    
    [21] A.Yassin, K.Fredrick, A.S.Mankin. Deleterious mutations in small subunit ribosomal RNA identify functional sites and potential targets for antibiotics,PNAS, 102, (2005) 16620-16625.
    
    [22] M.L.Herlocher, H.F.Maassab, R.G.Webster. Molecular and Biological Changes in the Cold-Adapted "Master Strain" A/AA/6/60 (H2N2) Influenza Virus, PNAS,90,(1993)6032-6036.
    
    [23] F.A.Kondrashov. Prediction of pathogenic mutations in mitochondrially encoded human tRNAs, Hum.Mol.Genet., 14, (2005) 2415-2419.
    
    [24] M.Lynch, J.Blanchard, D.Houle, T.Kibota, S.Schultz, L.Vassilieva, J.Willis.Perspective: spontaneous deleterious mutation, Evolution, 53, (1999) 645-663.
    
    [25] A.A.Margolin, M.N.Stojanovic. Boolean calculations made easy (for ribozymes), Nat.Biotechnol., 23, (2005) 1374-1376.
    
    [26] Y.Benenson. Programmable and autonomous computing machine made of biomolecules, Nature, 414, (2001) 430-434.
    
    [27] Y.Benenson, R.Adar, T.Paz-Elizur, Z.Livneh, E.Shapiro. DNA molecule provides a computing machine with both data and fuel, Proc.Natl.Acad.Sci.USA,100,(2003)2191-2196.
    
    [28] J.A.Doudna. Structural genomics of RNA, Nat.Struct.Biol., 7 Suppl, (2000) 954-956.
    
    [29] H.M.A1 Hashimi, A.Gorin, A.Majumdar, Y.Gosser, D.J.Patel. Towards structural genomics of RNA: rapid NMR resonance assignment and simultaneous RNA tertiary structure determination using residual dipolar couplings, J.Mol.Biol., 318, (2002) 637-649.
    
    [30] R.J.Carter, I.Dubchak, S.R.Holbrook. A computational approach to identify genes for functional RNAs in genomic sequences, Nucleic Acids Res., 29, (2001)3928-3938.
    
    [31] T.M.Lowe, S.R.Eddy. A computational screen for methylation guide snoRNAs in yeast, Science, 283, (1999) 1168-1171.
    
    [32] T.M.Lowe, S.R.Eddy. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence, Nucleic Acids Res., 25, (1997)955-964.
    
    [33] N.el Mabrouk, F.Lisacek. A Very fast identification of RNA motifs in genomic DNA. Application to tRNA search in the yeast genome, J.Mol.Biol., 264, (1996)46-55.
    
    [34] A.T.Balaban, O.Ivanciuc. Historical Development of Topological Indices., in:J.Devillers, A.T.Balaban (Eds.), Topological Indices and Related Descriptors in QSAR and QSPR, Gordon and Breach Science Publishers, Netherlands, 1999,pp. 21-57.
    
    [35] J.A.N.A.Gevertz, H.H.Gan, T.A.M.A.Schlick. In vitro RNA random pools are not structurally diverse: A computational analysis, RNA, II, (2005) 853-863.
    
    [36] Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN. The nuclear RNase III Drosha initiates microRNA processing,Nature, 425, (2003)415-419.
    
    [37] Y.Zeng, B.R.Cullen. Structural requirements for pre-microRNA binding and nuclear export by Exportin 5, Nucleic Acids Res., 32, (2004) 4776-4785.
    
    [38] Y.Zeng, R.Yi, B.R.Cullen. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha, EMBO J., 24, (2005)138-148.
    
    [39] Y.Zeng, B.R.Cullen. Sequence requirements for micro RNA processing and function in human cells, RNA., 9, (2003) 112-123.
    
    [40] A.Churkin, D.Barash. RNAmute: RNA secondary structure mutation analysis tool, BMC.Bioinformatics., 7, (2006) 221.
    
    [41] B.D.James, G.J.Olsen, N.R.Pace. Phylogenetic comparative analysis of RNA secondary structure, Methods Enzymol., 180, (1989) 227-239.
    [42] S.Y.Le, K.Zhang, J.V.Maizel, Jr. A method for predicting common structures of homologous RNAs, Comput.Biomed.Res., 28, (1995) 53-66.
    
    [43] L.Chan, M.Zuker, A.B.Jacobson. A computer method for finding common base paired helices in aligned sequences: application to the analysis of random sequences, Nucleic Acids Res., 19, (1991) 353-358.
    
    [44] D.K.Chiu, T.Kolodziejczak. Inferring consensus structure from nucleic acid sequences, Comput.Appl.Biosci., 7, (1991) 347-352.
    
    [45] R.R.Gutell, A.Power, G.Z.Hertz, E.J.Putz, GD.Stormo. Identifying constraints on the higher-order structure of RNA: continued development and application of comparative sequence analysis methods, Nucleic Acids Res., 20, (1992)5785-5795.
    
    [46] R.R.Gutell, N.Larsen, C.R.Woese. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective, Microbiol.Rev., 58, (1994)10-26.
    
    [47] S.Winker, R.Overbeek, C.R.Woese, G.J.Olsen, N.Pfluger. Structure detection through automated covariance search, Comput.Appl.Biosci., 6, (1990) 365-371.
    
    [48] R.Nussinov, R.Nussinov, GPieczenik, GPieczenik, J.R.Griggs, J.R.Griggs,D.J.Kleitman, D.J.Kleitman. Algorithms for Loop Matchings,SIAMJ.Appl.Math., 35, (1978) 68-82.
    
    [49] E.Rivas, S.R.Eddy. A dynamic programming algorithm for RNA structure prediction including pseudoknots, J.Mol.Biol., 285, (1999) 2053-2068.
    
    [50] D.H.Turner, N.Sugimoto. RNA structure prediction,Annu.Rev.Biophys.Biophys.Chem., 17, (1988) 167-192.
    
    [51] M.Zuker. Calculating nucleic acid secondary structure, Curr.Opin.Struct.Biol.,10,(2000)303-310.
    
    [52] M.Zuker, P.Stiegler. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information, Nucleic Acids Res., 9, (1981)133-148.
    
    [53] M.Zuker. On finding all suboptimal foldings of an RNA molecule, Science,244,(1989)48-52.
    
    [54] M.S.Waterman. Secondary structure of single stranded nucleic acids, Advan.in Math.Suppl.Studies., 1, (1978) 167-212.
    
    [55] B.S.David. The Linguistics of DNA, American Scientist, 80, (1992) 579-591.
    
    [56] B.S.David. The computational linguistics of biological sequences, American Association for Artificial Intelligence, 1993, pp. 47-120.
    [57] S.R.Eddy, R.Durbin. RNA sequence analysis using covariance models,Nucleic Acids Res., 22, (1994) 2079-2088.
    
    [58] B.Knudsen, J.Hein. RNA secondary structure prediction using stochastic context-free grammars and evolutionary history, Bioinformatics., 15, (1999)446-454.
    
    [59] Y.Sakakibara, M.Brown, R.Hughey, I.S.Mian, K.Sjolander, R.C.Underwood,D.Haussler. Stochastic context-free grammars for tRNA modeling, Nucleic Acids Res., 22, (1994) 5112-5120.
    
    [60] J.S.McCaskill. The equilibrium partition function and base pair binding probabilities for RNA secondary structure, Biopolymers, 29, (1990) 1105-1119.
    
    [61] B.A.Shapiro, J.C.Wu. An annealing mutation operator in the genetic algorithms for RNA folding, Comput.Appl.Biosci., 12, (1996) 171-180.
    
    [62] S.Y.Le, M.Zuker. Common structures of the 5' non-coding RNA in enteroviruses and rhinoviruses. Thermodynamical stability and statistical significance, J.Mol.Biol., 216, (1990) 729-741.
    
    [63] Zhuozhi, Wang and Kaizhong, Zhang. Finding Common RNA Secondary Structures from RNA Sequences. 258-269.
    
    [64] D.Sankoff. Simultaneous Solution of the RNA Folding, Alignment and Protosequence Problems, SIAM Journal on Applied Mathematics, 45, (1985)810-825.
    
    [65] J.H.Chen, S.Y.Le, J.V.Maizel. Prediction of common secondary structures of RNAs: a genetic algorithm approach, Nucleic Acids Res., 28, (2000) 991-999.
    
    [66] W.Fontana, D.A.Konings, P.F.Stadler, P.Schuster. Statistics of RNA secondary structures, Biopolymers, 33, (1993) 1389-1404.
    
    [67] D.Sankoff, J.Kruskal, S.Mainville, R.Cedergren. Fast algorithms to determine RNA secondary structures containing multiple loops, in: D.Sankoff, J.Kruskal (Eds.), Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison, Addison-Wesley Publishing Co., Reading,Massachusetts, 1983, pp. 93-120.
    
    [68] K.Han, H.J.Kim. Prediction of common folding structures of homologous RNAs, Nucleic Acids Res., 21,(1993) 1251-1257.
    
    [69] D.W.Mout. Bioinformatics: Sequence and Genome Analysis, Cold Spring Harbor Laboratory Press, New York, 2001.
    
    [70] R.Durbin, S.R.Eddy, A.Krogh, GMitchison. Biological Sequence Analysis:Probabilistic Models of Proteins and Nucleic Acids, Cambridge University Press,Cambridge UK, 1998.
    [71] P.Hogeweg, B.Hesper. Energy directed folding of RNA sequences, Nucl.Acids Res., 12,(1984)67-74.
    
    [72] D.A.Konings, P.Hogeweg. Pattern analysis of RNA secondary structure similarity and consensus of minimal-energy folding, J.Mol.Biol., 207, (1989)597-614.
    
    [73] B.A.Shapiro. An algorithm for comparing multiple RNA secondary structures,Comput.Appl.Biosci., 4, (1988) 387-393.
    
    [74] B.A.Shapiro, K.Z.Zhang. Comparing multiple RNA secondary structures using tree comparisons, Comput.Appl.Biosci., 6, (1990) 309-318.
    
    [75] A.Avihoo, D.Barash. Shape Similarity Measures for the Design of Small RNA Switches, Biomolecular Structure and Dynamics, 24, (2006) 17-24.
    
    [76] Avihoo, Asaf and Barash, Danny. Prediction of Small RNA Conformational Switching Using Fine-Grain Graph Representations and the Wiener Index. Fifth Haifa Workshop on Interdisciplinary Applications of Graph theory,Combinatorics, and Algorithms.
    
    [77] Gutman, Ivan and Lepovic, Mirko. Choosing the exponent in the definition of the connectivity index. Journal of the Serbian Chemical Society 66(9), 605-611.
    
    [78] Zmazek, Blaz and Zerovnik, Janez. Computing the Weighted Wiener and Szeged Number on Weighted Cactus Graphs in Linear Time. Croatica Chemica Acta 76(2), 137-143.
    
    [79] K.Ohmori, E.Tanaka. A unified view on tree metrics, Springer-Verlag New York, Inc., 1988, pp. 85-100.
    
    [80] Kuo-Chung Tai. The tree-to-tree correction problem, J.ACM, 26, (1979)422-433.
    
    [81] D.Sankoff, J.Kruskal. Time Warps, String Edits, and Macromolecules the Theory and Practice of Sequence Comparison, Addison-Wesley, Reading, MA.,1983.
    
    [82] P.Hogeweg, B.Hesper. Energy directed folding of RNA sequences, Nucleic Acids Res., 12,(1984)67-74.
    
    [83] S.Griffiths-Jones, S.Moxon, M.Marshall, A.Khanna, S.R.Eddy, A.Bateman.Rfam: annotating non-coding RNAs in complete genomes, Nucl.Acids Res., 33,(2005)D121-D124.
    
    [84] B.B.Mandelbrot. The Fractal Geometry of Nature, W. H. Freeman , New York,1982.
    
    [85] H.StapIeton. Proteins as Fractais in "Protein Structure", Springer-Verlag, New York, 1987.
    [86] M.A.Gates. A simple way to look a DNA, J.Theor.Biol., 119, (1986) 319-328.
    
    [87] Roueff, F. and Levy-Vehel, J. A. A Regularization approach to fractional dimension estimation.
    
    [88] J.J.Cannone, S.Subramanian, M.N.Schnare, J.R.Collett, L.M.D'Souza, Y.Du,B.Feng, N.Lin, L.V.Madabusi, K.M.Muller, N.Pande, Z.Shang, N.Yu, R.R.Gutell.The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs,BMC.Bioinformatics., 3, (2002) 2.
    
    [89] J.W.Brown. The Ribonuclease P Database, Nucleic Acids Res., 27, (1999) 314.
    [90] M.F.Barnsley. Fractals Everywhere, AK Peters, New York, 1993.
    
    [91] K.Daoudi, J.A.Levy-Vehel, Y.Meyer. Construction of Continuous Functions with Prescribed Local Regularity, Constructive Approximation, 14, (1998)349-386.
    
    [92] Levy-Vehel, J. and Daoudi, K. Generalized IFS for Signal Processing.498-501.
    
    [93] S.Jaffard. Multifractal formalism for functions part I: results valid for all functions, SIAM J.Math.Anal., 28, (1997) 944-970.
    
    [94] S.Jaffard. Multifractal formalism for functions part II: self-similar functions,SIAM J.Math.Anal., 28, (1997) 971-998.
    
    [95] Levy-Vehel, J. Weakly Self Affine Functions and Applications in Signal Processing.
    
    [96] J.Beran. Statistics for long-memory processes, Chapman and Hall, 1994.
    
    [97] K.Daoudi, J.Levy-Vehel. Signal representation and segmentation based on multifractal stationarity, Signal Process, 82, (2002) 2015-2024.
    
    [98] B.Felden, H.Himeno, A.Muto, J.P.McCutcheon, J.F.Atkins, R.F.Gesteland.Probing the structure of the Escherichia coli 10Sa RNA (tmRNA), RNA., 3,(1997)89-103.
    
    [99] R.Gillet, B.Felden. Emerging views on tmRNA-mediated protein tagging and ribosome rescue, Mol.Microbiol., 42, (2001) 879-885.
    
    [100] J.Wower, C.W.Zwieb, D.W.Hoffman, I.K.Wower. SmpB: a protein that binds to double-stranded segments in tmRNA and tRNA, Biochemistry, 41, (2002)8826-8836.
    
    [101] J.B.Tenenbaum, S.de, V, J.C.Langford. A global geometric framework for nonlinear dimensionality reduction, Science, 290, (2000) 2319-2323.
    [102] S.T.Roweis, L.K.Saul. Nonlinear dimensionality reduction by locally linear embedding, Science, 290, (2000) 2323-2326.
    
    [103] M.Belkin, P.Niyogi. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation, Neural Computation, 15, (2003) 1373-1396.
    
    [104] R.R.Coifman, S.Lafon, A.B.Lee, M.Maggioni, B.Nadler, F.Warner, S.W.Zucker.Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps, Proc.Natl.Acad.Sci.U.S.A, 102, (2005) 7426-7431.
    
    [105] R.R.Coifman, S.Lafon, A.B.Lee, M.Maggioni, B.Nadler, F.Warner, S.W.Zucker.Geometric diffusions as a tool for harmonic analysis and structure definition of data: multiscale methods, Proc.Natl.Acad.Sci.U.S.A, 102, (2005) 7432-7437.
    
    [106] Donoho, D. L. and Grimes, C. Hessian Eigenmaps: new tools for nonlinear dimensionality reduction. 5591-5596.
    
    [107] Z.Y.Zhang, H.Y.Zha. Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment, SIAM Journal on Scientific Computing,26,(2005)313-338.
    
    [108] Bregler, C. and Omohundro, S. M. Nonlinear manifold learning for visual speech recognition. 494-499.
    
    [109] Hadid, A., Kouropteva, O., and Pietikainen, M. Unsupervised Learning Using Locally Linear Embedding: Experiments with Face Pose Analysis. 1, 111-114.
    
    [110] Jenkins, O. C. and Mataric, M. J. Deriving action and behavior primitives from human motion data. 3, 2552-2556.
    
    [111] Niskanen, M. and Silven, O. Comparison of dimensionality reduction methods for wood surface inspection. Kenneth, W., Tobin, Jr., and Meriaudeau, F. 5132,178-188.
    
    [112] H.Hotelling. Analysis of a complex of statistical variables into principal components, Journal of Educational Psychology, 24, (1933) 417-441.
    
    [113] T.Cox, M.Cox. Multidimensional Scaling,Chapman & Hall,2001.
    
    [114] C.K.I.Williams. On a Connection between Kernel PCA and Metric Multidimensional Scaling, Machine Learning, 46, (2002) 11-19.
    
    [115] Nadler, B., Lafon, S., Coifman, R. R., and Kevrekidis, I. G. Diffusion Maps,Spectral Clustering and Eigenfunctions of Fokker-Planck operators. 955-962.
    
    [116] J.Yang, F.X.Li, J.Wang. A better scaled local tangent space alignment algorithm, Journal of Software, 16, (2005) 1584-1590.
    
    [117] Belkin, M. and Niyogi, P. Using Manifold Structure for Partially Labelled Classification. 15, 929-936.
    [118] Ham, J. H., Lee, D. D., Mika, s., and Scholkopf, B. A kernel view of the dimensionality reduction of manifolds. 47-54.
    
    [119] Y.Ponty, M.Termier, A.Denise. GenRGenS: software for generating random genomic sequences and structures, Bioinformatics., 22, (2006) 1534-1535.
    
    [120] D.R.Tanner, J.D.Dewey, M.R.Miller, A.R.Buskirk. Genetic analysis of the structure and function of transfer messenger RNA pseudoknot 1, J.Biol.Chem.,281,(2006)10561-10566.
    
    [121] J.E.Coronado, O.Attie, S.L.Epstein, W.GQiu, P.N.Lipke.Composition-modified matrices improve identification of homologs of saccharomyces cerevisiae low-complexity glycoproteins, Eukaryot.Cell, 5,(2006) 628-637.
    
    [122] R.Knight, H.De Sterck, R.Markel, S.Smit, A.Oshmyansky, M.Yarus.Abundance of correctly folded RNA motifs in sequence space, calculated on computational grids, Nucleic Acids Res., 33, (2005) 5924-5935.
    
    [123] J.C.Striggles, M.B.Martin, F.J.Schmidt. Frequency of RNA-RNA interaction in a model of the RNA World, RNA., 12, (2006) 353-359.
    
    [124] F.Aranishi, T.Okimoto. Genetic relationship between cultured populations of Pacific oyster revealed by RAPD analysis, J.Appl.Genet., 45, (2004) 435-443.
    
    [125] A.P.Johnston, H.Mitomo, E.S.Read, F.Caruso. Compositional and structural engineering of DNA multilayer films, Langmuir, 22, (2006) 3251-3258.
    
    [126] D.Matsukuma, K.Yamamoto, T.Aoyagi. Stimuli-responsive properties of N-isopropylacrylamide-based ultrathin hydrogel films prepared by photo-cross-linking, Langmuir, 22, (2006) 5911-5915.
    
    [127] Sean Eddy. Squid, http://www.genetics.wustl.edu/eddy/software/#squid .
    
    [128] E.Coward. Shufflet: shuffling sequences while conserving the k-let counts,Bioinformatics., 15, (1999) 1058-1059.
    
    [129] B.A.Butler. Sequence analysis using GCG, Methods Biochem.Anal., 39, (1998)74-97.
    
    [130] A.Rambaut, N.C.Grassly. Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees,Comput.Appl.Biosci., 13, (1997) 235-238.
    
    [131] N.C.Grassly, J.Adachi, A.Rambaut. PSeq-Gen: an application for the Monte Carlo simulation of protein sequence evolution along phylogenetic trees,Comput.Appl.Biosci., 13, (1997) 559-560.
    
    [132] E.Gasteiger, A.Gattiker, C.Hoogland, I.Ivanyi, R.D.Appel, A.Bairoch. ExPASy:The proteomics server for in-depth protein knowledge and analysis, Nucleic Acids Res., 31, (2003) 3784-3788.
    
    [133] S.F.Altschul, B.W.Erickson. Significance of nucleotide sequence alignments: a method for random sequence permutation that preserves dinucleotide and codon usage, Mol.Biol.Evol., 2, (1985) 526-538.
    
    [134] P.Clote, F.Ferre, E.Kranakis, D.Krizanc. Structural RNA has lower folding energy than random RNA of the same dinucleotide frequency, RNA., 11, (2005)578-591.
    
    [135] E.C.Lai, RTomancak, R.W.Williams, GM.Rubin. Computational identification of Drosophila microRNA genes, Genome Biol., 4, (2003) R42.
    
    [136] M.Lagos-Quintana, R.Rauhut, W.Lendeckel, T.Tuschl. Identification of novel genes coding for small expressed RNAs, Science, 294, (2001) 853-858.
    
    [137] R.C.Lee, V.Ambros. An extensive class of small RNAs in Caenorhabditis elegans, Science, 294, (2001) 862-864.
    
    [138] R.C.Lee, R.L.Feinbaum, V.Ambros. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, 75, (1993)843-854.
    
    [139] BJ.Reinhart, F.J.Slack, M.Basson, A.E.Pasquinelli, J.C.Bettinger, A.E.Rougvie,H.R.Horvitz, GRuvkun. The 21 -nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans, Nature, 403, (2000) 901-906.
    
    [140] L.P.Lim, M.E.Glasner, S.Yekta, C.B.Burge, D.P.Bartel. Vertebrate microRNA genes, Science, 299, (2003) 1540.
    
    [141] L.P.Lim, N.C.Lau, E.G.Weinstein, A.Abdelhakim, S.Yekta, M.W.Rhoades,C.B.Burge, D.P.Bartel. The microRNAs of Caenorhabditis elegans, Genes Dev., 17,(2003)991-1008.
    
    [142] J.W.Nam, K.R.Shin, J.Han, Y.Lee, V.N.Kim, B.T.Zhang. Human microRNA prediction through a probabilistic co-learning model of sequence and structure,Nucleic Acids Res., 33, (2005) 3570-3581.
    
    [143] M.Yousef, M.Nebozhyn, H.Shatkay, S.Kanterakis, L.C.Showe, M.K.Showe.Combining multi-species genomic data for microRNA identification using a Naive Bayes classifier, Bioinformatics., 22, (2006) 1325-1334.
    
    [144] Y.Grad, J.Aach, GD.Hayes, BJ.Reinhart, G.M.Church, GRuvkun, J.Kim.Computational and experimental identification of C. elegans microRNAs,Mol.Cell, 11,(2003)1253-1263.
    
    [145] X.Wang, J.Zhang, F.Li, J.Gu, T.He, X.Zhang, Y.Li. MicroRNA identification based on sequence and structure alignment, Bioinformatics., 21, (2005)3610-3614.
    [146] M.J.Weber. New human and mouse microRNA genes found by homology search, FEBS J., 272, (2005) 59-73.
    
    [147] C.Workman, A.Krogh. No evidence that mRNAs have lower folding free energies than random sequences with the same dinucleotide distribution,Nucl.Acids Res., 27, (1999) 4816-4822.
    
    [148] E.Bonnet, J.Wuyts, P.Rouze, P.Y.Van de. Evidence that microRNA precursors,unlike other non-coding RNAs, have lower folding free energies than random sequences, Bioinformatics., 20, (2004) 2911-2917.
    
    [149] L.Katz, C.B.Burge. Widespread selection for local RNA secondary structure in coding regions of bacterial genes, Genome Res., 13, (2003) 2042-2051.
    
    [150] C.Workman, A.Krogh. No evidence that mRNAs have lower folding free energies than random sequences with the same dinucleotide distribution, Nucleic Acids Res., 27, (1999) 4816-4822.
    
    [151] M.C.Brandon, M.T.Lott, K.C.Nguyen, S.Spolim, S.B.Navathe, P.Baldi,D.C.Wallace. MITOMAP: a human mitochondrial genome database-2004 update, NucLAcids Res., 33, (2005) D611-D613.
    
    [152] H.Margalit, B.A.Shapiro, A.B.Oppenheim, J.V.Maizel, Jr. Detection of common motifs in RNA secondary structures, Nucleic Acids Res., 17, (1989)4829-4845.
    
    [153] I.L.Hofacker. Vienna RNA secondary structure server, Nucleic Acids Res., 31,(2003)3429-3431.
    
    [154] I.L.Hofacker, W.Fontana, P.F.Stadler, L.S.Bonhoeffer, M.Tacker, P.Schuster.Fast folding and comparison of RNA secondary structures, Monatshefte fur Chemie / Chemical Monthly, 125, (1994) 167-188.
    
    [155] M.S.Waterman, T.H.Byers. A dynamic programming algorithm to find all solutions in the neighborhood of the optimum, Math.Biosci., 77, (1985)179-188.
    
    [156] M.Zuker, D.Sankoff. RNA secondary structures and their prediction,Bull.Math.Biol., 46, (1984) 591-621.
    
    [157] M.S.Waterman. General methods of sequence comparison, Bulletin of Mathematical Biology, 46, (1984) 473-500.
    
    [158] D.GHiggins, P.M.Sharp. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer, Gene, 73, (1988) 237-244.
    
    [159] D.GHiggins, J.D.Thompson, T.J.Gibson. Using CLUSTAL for multiple sequence alignments, Methods Enzymol., 266, (1996) 383-402.
    
    [160] J.D.Thompson, D.GHiggins, T.J.Gibson. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., 22, (1994) 4673-4680.
    
    [161] T.D.Schneider, G.D.Stormo, L.Gold, A.Ehrenfeucht Information content of binding sites on nucleotide sequences, J.Mol.Biol., 188, (1986) 415-431.
    
    [162] T.D.Schneider, R.M.Stephens. Sequence logos: a new way to display consensus sequences, Nucleic Acids Res., 18, (1990) 6097-6100.
    
    [163] S.Kullback, R.A.Leibler. On information and sufficiency, Annual Mathematical Statistics, 22, (1951) 79-86.
    
    [164] J.Gorodkin, L.J.Heyer, S.Brunak, G.D.Stormo. Displaying the information contents of structural RNA alignments: the structure logos, Comput.Appl.Biosci.,13,(1997)583-586.
    
    [165] Smith, W., Andrewes, C. H., and Laidlaw, R R A virus obtained from influenza patients. Lancet 2, 66-68.
    
    [166] E.K.France, J.M.Glanz, S.Xu, R.L.Davis, S.B.Black, H.R.Shinefield,K.M.Zangwill, S.M.Marcy, J.P.Mullooly, L.A.Jackson, R.Chen. Safety of the trivalent inactivated influenza vaccine among children: a population-based study,Arch.Pediatr.Adolesc.Med., 158, (2004) 1031-1036.
    
    [167] J.J.Treanor, R.F.Betts, GE.Smith, E.L.Anderson, C.S.Hackett, B.E.Wilkinson,R.B.Belshe, D.C.Powers. Evaluation of a recombinant hemagglutinin expressed in insect cells as an influenza vaccine in young and elderly adults,J.Infect.Dis., 173,(1996) 1467-1470.
    
    [168] N.T.Parkin, P.Chiu, K.Coelingh. Genetically engineered live attenuated influenza A virus vaccine candidates, J.Virol., 71, (1997) 2772-2778.
    
    [169] A.K.Hilbert, U.Fritzsche, T.Kissel. Biodegradable microspheres containing influenza A vaccine: immune response in mice, Vaccine, 17, (1999) 1065-1073.
    
    [170] G.J.Gorse, R.B.Belshe, N.J.Munn. Superiority of live attenuated compared with inactivated influenza A virus vaccines in older, chronically ill adults, Chest,100,(1991)977-984.
    
    [171] G.Gibson, M.Wemple, S.van Helden. Potential variance affecting homeotic Ultrabithorax and Antennapedia phenotypes in Drosophila melanogaster,Genetics, 151,(1999) 1081-1091.
    
    [172] J.L.Hartman, B.Garvik, L.Hartwell. Principles for the buffering of genetic variation, Science, 291, (2001) 1001-1004.
    
    [173] S.L.Rutherford, S.Lindquist. Hsp90 as a capacitor for morphological evolution,Nature, 396, (1998)336-342.
    [174] GGibson, G.Wagner. Canalization in evolutionary genetics: a stabilizing theory?, Bioessays, 22, (2000) 372-380.
    
    [175] S.F.Elena, P.Carrasco, J.A.Daros, R.Sanjuan. Mechanisms of genetic robustness in RNA viruses, EMBO Rep., 7, (2006) 168-173.
    
    [176] R.Montville, R.Froissart, S.K.Remold, O.Tenaillon, P.E.Turner. Evolution of mutational robustness in an RNA virus, PLoS.Biol., 3, (2005) e381.
    
    [177] A.Wagner, P.F.Stadler. Viral RNA and evolved mutational robustness,J.Exp.Zool., 285, (1999) 119-127.
    
    [178] R.Sanjuan, J.Forment, S.F.Elena. In silico predicted robustness of viroids RNA secondary structures. I. The effect of single mutations, Mol.Biol.Evol., 23, (2006)1427-1436.
    
    [179] R.Sanjuan, J.Forment, S.F.Elena. In Silico Predicted Robustness of Viroids RNA Secondary Structures. II. Interaction Between Mutation Pairs,Mol.Biol.Evol., 23, (2006) 2123-2130.
    
    [180] E.Bonnet, J.Wuyts, P.Rouze, Y.Van de Peer. Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences, Bioinformatics, 20, (2004) 2911-2917.
    
    [181] E.Borenstein, E.Ruppin. Direct evolution of genetic robustness in microRNA,Proc.Natl.Acad.Sci.U.S.A, 103, (2006) 6593-6598.
    
    [182] H.Kitano. Biological robustness, Nat.Rev.Genet., 5, (2004) 826-837.
    
    [183] J.A.de Visser, J.Hermisson, G.P.Wagner, M.L.Ancel, H.Bagheri-Chaichian,J.L.Blanchard, L.Chao, J.M.Cheverud, S.F.Elena, W.Fontana, G.Gibson,T.F.Hansen, D.Krakauer, R.C.Lewontin, C.Ofria, S.H.Rice, G.von Dassow,A.Wagner, M.C.Whitlock. Perspective: Evolution and detection of genetic robustness, Evolution Int.J.Org.Evolution, 57, (2003) 1959-1972.
    
    [184] R.A.Fisher. The possible modifications of the response of the wild type to recurrent mutations, Amer.Nat, 62, (1928) 115-116.
    
    [185] R.A.Fisher. Two further notes on the origin of dominance, Amer.Nat., 62,(1928) 571-574.
    
    [186] R.A.Fisher. The evolution of dominance, Biological reviews, 6, (1931)345-368.
    
    [187] C.H.Waddington. The genetic assimilation of an acquired charcter, Evolution,7,(1953) 118-126.
    
    [188] C.H.Waddington. The strategy of the genes, MacMillan, New York, 1957.
    [189] O.Mayo, R.Burger. The Evolution of Dominance: a theory whose time has passed?, Biological Reviews, 72, (1997) 97-110.
    
    [190] I.I.Schmalhausen. Factors of evolution: the theory of stabilizing selection,University of Chicago Press, Chicago, 1949.
    
    [191] J.M.Rendel, B.L.Sheldon. Selection for canalization of the scute phenotype in Drosophila melanogaster, Aust.J.Biol.Sci., 13, (1959) 36-47.
    
    [192] V.Debat, P.David. Mapping phenotypes: canalization, plasticity and developmental stability, Trends in Ecology & Evolution, 16, (2001) 555-561.
    
    [193] S.Wright. Fisher's theory of dominance, Am.Nat., 63, (1929) 274-279.
    
    [194] S.Wright. Physiological and evolutionary theories of dominance, Am.Nat., 68,(1934)25-53.
    
    [195] Wright, S. The evolution of dominance. 3, 498-526.
    
    [196] J.W.Porteous. Dominance-one hundred and fifteen years after Mendel's paper,J.Theor.Biol, 182, (1996) 223-232.
    
    [197] C.D.Meiklejohn, D.L.Haitl. A single mode of canalization, Trends in Ecology& Evolution, 17, (2002) 468-473.
    
    [198] P.D.Keightley. A metabolic basis for dominance and recessivity, Genetics, 143,(1996)621-625.
    
    [199] D.Bourguet. The evolution of dominance, Heredity, 83 (Pt 1), (1999) 1-4.
    
    [200] M.A.Savageau. Dominance according to metabolic control analysis: major achievement or house of cards?, J.Theor.Biol., 154, (1992) 131-136.
    
    [201] S.W.Omholt, E.Plahte, L.Oyehaug, K.Xiang. Gene regulatory networks generating the phenomena of additivity, dominance and epistasis, Genetics, 155,(2000) 969-980.
    
    [202] J.B.S.Haldane. A note on Fisher's theory of dominance, Am.Nat., 64, (1930)87-90.
    
    [203] Muller, H. J. Further studies on the nature and causes of gene mutations. Jones,D.F. 213-255.
    
    [204] G.P.Wagner, GBooth, H.Bagheri-Chaichian. A population genetic theory of canalization, Evolution, v51, (1997) 329-347.
    
    [205] L.W.Ancel, W.Fontana. Plasticity, evolvability, and modularity in RNA,J.Exp.Zoot., 288, (2000) 242-283.
    
    [206] C.Queitsch, T.A.Sangster, S.Lindquist. Hsp90 as a capacitor of phenotypic variation, Nature, 417, (2002) 618-624.
    [207] M.A.Fares, M.X.Ruiz-Gonzalez, A.Moya, S.F.Elena, E.Barrio. Endosymbiotic bacteria: groEL buffers against deleterious mutations, Nature, 417, (2002) 398.
    
    [208] D.Boffelli, J.McAuliffe, D.Ovcharenko, K.D.Lewis, I.Ovcharenko, L.Pachter,E.M.Rubin. Phylogenetic Shadowing of Primate Sequences to Find Functional Regions of the Human Genome, Science, 299, (2003) 1391-1394.
    
    [209] E.Berezikov, V.Guryev, B.J.van de, E.Wienholds, R.H.Plasterk, E.Cuppen.Phylogenetic shadowing and computational identification of human microRNA genes, Cell, 120,(2005)21-24.
    
    [210] Y.Zeng, R.Yi, B.R.Cullen. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms, Proc.Natl.Acad.Sci.U.S.A, 100,(2003) 9779-9784.
    
    [211] S.Griffiths-Jones. The microRNA Registry, Nucleic Acids Res., 32, (2004)D109-D111.
    
    [212] S.Griffiths-Jones, R.J.Grocock, S.van Dongen, A.Bateman, A.J.Enright.miRBase: microRNA sequences, targets and gene nomenclature, Nucleic Acids Res., 34, (2006) D140-D144.
    
    [213] E.Bonnet, J.Wuyts, P.Rouze, P.Y.Van de. Evidence that microRNA precursors,unlike other non-coding RNAs, have lower folding free energies than random sequences, Bioinformatics., 20, (2004) 2911-2917.
    
    [214] C.Workman, A.Krogh. No evidence that mRNAs have lower folding free energies than random sequences with the same dinucleotide distribution, Nucleic Acids Res., 27, (1999) 4816-4822.
    
    [215] S.Wuchty, W.Fontana, I.L.Hofacker, P.Schuster. Complete suboptimal folding of RNA and the stability of secondary structures, Biopolymers, 49, (1999)145-165.
    
    [216] E.Bonnet, J.Wuyts, P.Rouze, P.Y.Van de. Evidence that microRNA precursors,unlike other non-coding RNAs, have lower folding free energies than random sequences, Bioinformatics., 20, (2004) 2911-2917.
    
    [217] C.Workman, A.Krogh. No evidence that mRNAs have lower folding free energies than random sequences with the same dinucleotide distribution, Nucleic Acids Res., 27, (1999) 4816-4822.
    
    [218] J.R.Wyatt, I.Jr.Tinoco. RNA structural elements and RNA function, in:R.F.Gesteland, J.F.Atkins (Eds.), The RNA World, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1993, pp. 465-496.
    
    [219] Y.Lee, C.Ahn, J.Han, H.Choi, J.Kim, J.Yim, J.Lee, P.Provost, O.Radmark,S.Kim, V.N.Kim. The nuclear RNase III Drosha initiates microRNA processing, Nature, 425, (2003) 415-419.
    [220] GHutvagner, J.McLachlan, A.E.Pasquinelli, E.Balint, T.Tuschl, P.D.Zamore. Acellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA, Science. 293, (2001) 834-838.
    
    [221] E.Lund, S.Guttinger, A.Calado, J.E.Dahlberg, U.Kutay. Nuclear export of micro RNA precursors, Science, 303, (2004) 95-98.
    
    [222] Y.Lee, C.Ahn, J.Han, H.Choi, J.Kim, J.Yim, J.Lee, P.Provost, O.Radmark,S.Kim, V.N.Kim. The nuclear RNase III Drosha initiates microRNA processing, Nature, 425, (2003) 415-419.
    
    [223] E.Bonnet, J.Wuyts, P.Rouze, P.Y.Van de. Evidence that microRNA precursors,unlike other non-coding RNAs, have lower folding free energies than random sequences, Bioinformatics., 20, (2004) 2911-2917.
    
    [224] E.Bornberg-Bauer, H.S.Chan. Modeling evolutionary landscapes: mutational stability, topology, and superfunnels in sequence space,Proc.Natl.Acad.Sci.U.S.A, 96, (1999) 10689-10694.
    
    [225] Y.Lee, C.Ahn, J.Han, H.Choi, J.Kim, J.Yim, J.Lee, P.Provost, O.Radmark,S.Kim, V.N.Kim. The nuclear RNase III Drosha initiates microRNA processing, Nature, 425, (2003) 415-419.
    
    [226] Y.Zeng, E.J.Wagner, B.R.CulIen. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells,Mol.Cell, 9, (2002) 1327-1333.
    
    [227] E.Bonnet, J.Wuyts, P.Rouze, P.Y.Van de. Evidence that microRNA precursors,unlike other non-coding RNAs, have lower folding free energies than random sequences, Bioinformatics., 20, (2004) 2911-2917.
    
    [228] E.Bonnet, J.Wuyts, P.Rouze, P.Y.Van de. Evidence that microRNA precursors,unlike other non-coding RNAs, have lower folding free energies than random sequences, Bioinformatics., 20, (2004) 2911-2917.
    
    [229] C.Workman, A.Krogh. No evidence that mRNAs have lower folding free energies than random sequences with the same dinucleotide distribution, Nucleic Acids Res., 27, (1999) 4816-4822.
    
    [230] K.C.Pang, M.C.Frith, J.S.Mattick. Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function, Trends Genet., 22, (2006) 1-5.
    
    [231] Y.Lee, C.Ahn, J.Han, H.Choi, J.Kim, J.Yim, J.Lee, P.Provost, O.Radmark,S.Kim, V.N.Kim. The nuclear RNase III Drosha initiates microRNA processing, Nature, 425, (2003) 415-419.
    
    [232] J.Hermisson, G.P.Wagner. Evolution of phenotypic robustness, in: Erica Jen (Ed.), Robust Design: A Repertoire from Biology, Ecology, and Engineering ,Oxford University Press, 2004, pp. 47-70.
    [233] D.P.Bartel. MicroRNAs: genomics, biogenesis, mechanism, and function, Cell,116,(2004)281-297.
    
    [234] E.Berezikov, E.Cuppen, R.H.Plasterk. Approaches to microRNA discovery,Nat.Genet., 38 Suppl, (2006) S2-S7.
    
    [235] V.N.Kim, J.W.Nam. Genomics of microRNA, Trends Genet., 22, (2006)165-173.
    
    [236] I.Bentwich, A.Avniel, Y.Karov, R.Aharonov, S.Gilad, O.Barad, A.Barzilai,P.Einat, U.Einav, E.Meiri, E.Sharon, Y.Spector, Z.Bentwich. Identification of hundreds of conserved and nonconserved human microRNAs, Nat.Genet., 37,(2005) 766-770.
    
    [237] C.Tuerk, L.Gold. Systematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage T4 DNA polymerase, Science, 249, (1990)505-510.
    
    [238] A.D.Ellington, J.W.Szostak. In vitro selection of RNA molecules that bind specific ligands, Nature, 346, (1990) 818-822.
    
    [239] J.R.Fresco, A.Adams, R.Ascione, D.Henley, T.Lindahl. Tertiary structure in transfer ribonucleic acids, Cold Spring Harb.Symp.Quant.Biol., 31, (1966)527-537.
    
    [240] E.R.Hawkins, S.H.Chang, W.L.Mattice. Kinetics of the renaturation of yeast tRNA3 leu, Biopolymers, 16, (1977) 1557-1566.
    
    [241] V.L.Emerick, S.A.Woodson. Self-splicing of the Tetrahymena pre-rRNA is decreased by misfolding during transcription, Biochemistry, 32, (1993)14062-14067.
    
    [242] T.Baumstark, A.R.Schroder, D.Riesner. Viroid processing: switch from cleavage to ligation is driven by a change from a tetraloop to a loop Econformation, EMBO J., 16, (1997) 599-610.
    
    [243] A.T.Perrotta, M.D.Been. A toggle duplex in hepatitis delta virus self-cleaving RNA that stabilizes an inactive and a salt-dependent pro-active ribozyme conformation, J.Mol.Biol., 279, (1998) 361-373.
    
    [244] J.Tang, R.R.Breaker. Rational design of allosteric ribozymes, Chem.Biol., 4,(1997)453-459.
    
    [245] S.Thore, M.Leibundgut, N.Ban. Structure of the eukaryotic thiamine pyrophosphate riboswitch with its regulatory ligand, Science, 312, (2006)1208-1211.
    
    [246] R.K.Montange, R.T.Batey. Structure of the S-adenosylmethionine riboswitch regulatory mRNA element, Nature, 441, (2006) 1172-1175.
    [247] C.K.Biebricher, S.Diekmann, R.Luce. Structural analysis of self-replicating RNA synthesized by Qbeta replicase, J.Mol.Biol., 154, (1982) 629-648.
    
    [248] C.K.Biebricher, R.Luce. In vitro recombination and terminal elongation of RNA by Q beta replicase, EMBO J., 11, (1992) 5129-5135.
    
    [249] H.Zamora, R.Luce, C.K.Biebricher. Design of artificial short-chained RNA species that are replicated by Q beta replicase, Biochemistry, 34, (1995) 1261-1266.
    
    [250] J.Johansson, P.Mandin, A.Renzoni, C.Chiaruttini, M.Springer, P.Cossart. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes, Cell, 110, (2002) 551-561.
    
    [251] M.T.Morita, Y.Tanaka, T.S.Kodama, Y.Kyogoku, H.Yanagi, T.Yura.Translational induction of heat shock transcription factor sigma32: evidence for a built-in RNA thermosensor, Genes Dev., 13, (1999) 655-665.
    
    [252] F.Narberhaus, R.Kaser, A.Nocker, H.Hennecke. A novel DNA element that controls bacterial heat shock gene expression, Mol.Microbiol., 28, (1998)315-323.
    
    [253] J.S.Lodmell, A.E.Dahlberg. A conformational switch in Escherichia coli 16S ribosomal RNA during decoding of messenger RNA, Science, 277, (1997)1262-1267.
    
    [254] von Ahsen U. Translation fidelity: error-prone versus hyper-accurate ribosomes, Chem Biol, 5, (1998) R3-R6.
    
    [255] GE.Soukup, R.R.Breaker. Engineering precision RNA molecular switches,Proc.Natl.Acad.Sci.USA, 96, (1999) 3584-3589.
    
    [256] E.A.Schultes, D.P.Bartel. One sequence, two ribozymes: implications for the emergence of new ribozyme folds, Science, 289, (2000) 448-452.
    
    [257] R.Giegerich, D.Haase, M.Rehmsmeier. Prediction and visualization of structural switches in RNA, Pac.Symp.Biocomput., (1999) 126-137.
    
    [258] C.Reidys, P.F.Stadler, P.Schuster. Generic properties of combinatory maps:Neural networks of RNA secondary structures, Bull.Math.Biol., 59, (1997)339-397.
    
    [259] C.Flamm, I.L.Hofacker, S.Maurer-Stroh, P.F.Stadler, M.Zehl. Design of multistable RNA molecules, RNA., 7, (2001) 254-265.
    
    [260] H.Whitney. Non-Separable and Planar Graphs, Trans.Amer.Math.Soc, 34,(1932) 339-362.
    
    [261] L.Lovasz, M.D.Plummer. Matching theory, Annals of Discrete Mathematics,29,(1986).
    [262] L.Euler. Elementa doctrin?solidorum, Novi.Comm.Acad.Sci.Imp.Petropol., 4,(1952) 109-140.
    [263] V.Ramachandran. Parallel Open Ear Decomposition with Applictions to Graph Biconnectivity and Triconnectivity, in: M.Kaufmann (Ed.), Synthesis of Parallel Algorithms, 1932.
    
    [264] R.Tarjan, R.Tarjan. Depth-First Search and Linear Graph Algorithms, SIAM J.Comput., 1,(1972)146-160.
    
    [265] C.Flamm, W.Fontana, I.L.Hofacker, P.Schuster. RNA folding at elementary step resolution, RNA., 6, (2000) 325-338.
    
    [266] Flamm, Christoph, Hofacker, Ivo L., Stadler, Peter F., and Wolfinger, Michael T.Barrier Trees of Degenerate Landscapes.
    
    [267] M.T.Wolfinger, W.A.Svrcek-Seiler, C.Flamm, I.L.Hofacker, P.F.Stadler.Efficient computation of RNA folding dynamics, Journal of Physics A:Mathematical and General, 37, (2004) 4731-4741.
    
    [268] W.Shu, X.Bo, Z.Zheng, S.Wang. RSRE: RNA structural robustness evaluator, Nucleic Acids Res., 35, (2007) W314-W319.
    
    [269] Kauffman, S. A. The Origin of Order.
    
    [270] W.Fontana, P.Schuster. Shaping space: the possible and the attainable in RNA genotype-phenotype mapping, J.Theor.Biol, 194, (1998) 491-515.
    
    [271] Wright, S. The roles of mutation.inbreeding,crossbreeding and selection in evolution. 1, 356-366.
    
    [272] S.Kauffman, S.Levin. Towards a general theory of adaptive walks on rugged landscapes, J.Theor.Biol., 128, (1987) 11-45.
    
    [273] S.A.Kauffman. Adaptation on Rugged Fitness Landscapes, in: D.L.Stedin (Ed.),Lectures in the Science of Complexity, Reading: Addison-Wesley, Redwood City,1989, pp. 527-618.
    
    [274] S.A.Kauffman, S.Johnsen. Coevolution to the edge of chaos: coupled fitness landscapes, poised states, and coevolutionary avalanches, J.Theor.Biol., 149,(1991)467-505.
    
    [275] C.A.Macken, A.S.Perelson. Protein evolution on rugged landscapes,Proc.Natl.Acad.Sci.U.S.A, 86, (1989) 6191-6195.
    
    [276] GWeisbuch. A shape space approach to the dynamics of the immune system,J.Theor.Biol., 143, (1990) 507-522.
    
    [277] W.Fontana, W.Schnabl, P.Schuster. Physical aspects of evolutionary optimization and adaptation, PHYSICAL.REVIEW.A, 40, (1989) 3301-3321.
    [278]W.Fontana,P.Schuster.A computer model of evolutionary optimization,Biophys.Chem.,26,(1987) 123-147.
    [279]W.Fontana,T.Griesmacher,W.Schnabl,P.F.Stadler,P.Schuster.Statistics of Landscapes Based on Free Energy,Replication and Degradation Rate Constants of RNA Secondary Structures,Chemical Monthly,122,(1991) 819.
    [280]R.W.Hamming.Coding and information theory,Prentice Hall,1986.
    [281]D.Avis.Hypermetric Spaces and the Hamming Cone,Canad.J.Math.,33,(1981) 795-802.
    [282]M.Eigen,J.S.McCaskill,P.Scbuster.The molecular quasi-species,Adv.Chem.Phys.,75,(1989) 149-263.
    [283]E.D.Weinberger.Correlated and uncorrelated fitness landscapes and how to tell the difference,Biol.Cybern.,63,(2007) 325-336.
    [284]W.Fontana,P.F.Stadler,E.G.Bornberg-Bauer,T.Griesmacher,I.L.Hofacker,M.Tacker,P.Tarazona,E.D.Weinberger,P.Schuster.RNA folding and combinatory landscapes,PHYSICAL.REVIEW.E.STATISTICAL.PHYSICS.,PLASMAS.,FLUIDS,AND RELATED.INTERDISCIPLINARY.TOPICS.,47,(1993) 2083-2099.
    [285]E.Berezikov,F.Thuemmler,L.W.van Laake,I.Kondova,R.Bontrop,E.Cuppen,R.H.A.Plasterk.Diversity of microRNAs in human and chimpanzee brain,Nat Genet,38,(2006) 1375-1377.
    [286]K.Chen,N.Rajewsky.Natural selection on human microRNA binding sites inferred from SNP data,Nat Genet,38,(2006) 1452-1456.
    [287]B.Everitt,D.Hand.Finite Mixture Distributions,in:Monographs on Applied Probability and Statistics,Chapman & Hall,London,1981.
    [288]R.Duda,P.Hart,D.Stork.Pattern Classification,Wiley,New York,2001.
    [289]S.Theodoridis,K.Koutroumbas.Pattern Recognition,Academic Press,New York,1999.
    [290]A.T.F.Mario,K.J.Anil.Unsupervised Learning of Finite Mixture Models,IEEE Trans.Pattern Anal.Mach.Intell.,24,(2002) 381-396.
    [291]J.J.Verbeek,N.Vlassis,B.Krose.Efficient greedy learning of gaussian mixture models,Neural Comput.,15,(2003) 469-485.
    [292]Nagy,I.,Nedoma,P.,and Karny,M.Factorized EM algorithm for mixture estimation.402-405.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700