碱浸—电解法从含铅废物和贫杂氧化铅矿中提取铅工艺及机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在有色金属冶炼等工业过程中产生大量的含铅危险废物,不当堆存于环境中将会对生态环境和人类健康造成严重危害,但同时这些废物也是可回收再生金属的重要的二次资源,对其进行无害化与资源化处理,对我国经济实现可持续发展作用重大。另外,我国氧化铅矿储量丰富,但结构复杂,品位低,其选冶过程回收率较低,且使用大量的化学药剂,由此带来复杂严重的环境问题。同时,传统火法炼铅过程中也存在铅尘污染严重、对原料含铅品位要求高的缺点。本文以含铅废物和贫杂氧化铅矿为原料,提出碱浸——溶液净化——电解的湿法冶炼清洁生产工艺提取金属铅,并对该工艺的相关理论基础进行了系统研究。
     铅在NaOH溶液中选择性浸出的可行性是该工艺的基础,通过热力学分析和溶解度实验,并绘制Pb-H_2O系、PbS-H_2O系、Pb-SO_4~(2-)-H_2O系、Pb-CO_3~(2-)H_2O系的E-pH图,得出结论:常温下在5 mol·L~(-1)NaOH溶液中,铅的溶解度为25.56 g·L~(-1)。PbO、PbSO_4和PbCO_3均可自发溶于强碱溶液中,但PbS却不溶。
     在热力学分析的基础上,研究了氧化铅矿和含铅废物在NaOH溶液中的浸出动力学。氧化铅矿的浸出速率,在铅浸出率较低的条件下,受NaOH溶液通过固体残留物层的扩散控制,而在浸出率较高的条件下,受表面化学反应控制。含铅烟尘比氧化铅的浸出过程更加容易进行,速率较快。确定了含铅烟尘和氧化铅矿在NaOH溶液中浸出的最佳工艺条件,并分析了杂质金属的浸出行为。
     采用循环伏安法研究了铅在NaOH溶液中的电极反应动力学过程,碱液中铅在阴极上为配合物直接得电子析出金属铅,电极反应为准可逆过程,铅的析出受扩散控制,扩散系数为:1.15×10~(-6)cm~2.s~(-1)。铅在阴极上的析出电位随铅浓度的降低,扫描速度、NaOH浓度和温度的增加而负移。阳极反应主要为析氧的反应,但电解液中的铅会在阳极被氧化生成PbO_2、Pb_3O_4和PbO_3~(2-),氧化速率随铅浓度和温度的降低,NaOH浓度的增加而降低。
     研究了铅电积各工艺参数,包括铅浓度、温度、电流密度、NaOH浓度、极距、电极材料等对电流效率和能耗的影响,得出了最佳的工艺条件:电解液中铅初始浓度20 g·L~(-1),电解结束时溶液中剩余铅浓度5 g·L~(-1),温度50℃,电流密度400 A·m~(-2),NaOH浓度5 mol·L~(-1),电极材料为不锈钢。
     计算了Zn、As、Sb、W、Cu和Sn在碱液中析出的平衡电位,并采用循环伏安和整体电解的方法系统研究了溶液中存在的离子对铅电积过程和工艺的影响,发现:溶液中即使存在较高浓度的锌也不会对铅电积过程造成影响,然而铜却可优先于铅在阴极上首先析出,因此在电积铅之前必须予以净化处理。溶液中锡的存在会影响铅在阴极上沉积的电流效率,As、Sb、W等的影响则不大。PO_4~(3-),SO_4~(2-),SO_3~(2-),SiO_3~(2-),SCN~-,CO_3~(2-),Cl~-和AC~-对电流效率和能耗基本上没有影响,但C_4H_4O_6~(2-),C_2O_4~(2-)和明胶的存在会降低电流效率、增加能耗。
     对强碱浸出液中铜的净化采用铅粉置换的方法去除,研究了该方法的可行性并得到了最佳的置换净化工艺条件:Pb/Cu摩尔比2:1,净化时间15 min,反应温度30℃。
     采用Na_2S和CaO作为净化剂去除溶液中的杂质离子,结果表明Na_2S可有效沉淀浸出液中的Cu和Cd,并可部分沉淀Mn,Zn,W,Sb,Sn等杂质,但同时也使溶液中的铅发生沉淀,加入CaO可共沉淀部分的Sb和Sn。在以上理论研究的基础上,提出了利用氧化铅矿和含铅烟尘(渣)生产金属铅以及从含铅锌烟尘中综合回收铅和锌的工艺流程。采用碱浸-净化-电解工艺,利用氧化铅矿和含铅烟尘两种原料进行的提取铅的实验均取得了较好的结果,铅的纯度>97%,能耗≤0.7kWh·kg~(-1)铅,同时设计了中试方案。
A huge quantity of lead-bearing wastes,which is classified as hazardous wastein most countries,has been generated in the industries such as hydrometallurgicalprocess of zinc,batteries manufacture,and chemical process.In general,the contentsof lead in the wastes may be quite low and usually are disposed of at dumping sites.In addition,thousands of millions of tailings containing low grade lead are also beingstored at the dumping sites in the mining plants.The concentration of lead from thesesecondary resources may be quite difficult and their recycling as raw materials hasbeen limited due to the unavailability of cost-effective technologies.Pyrometallurgical process may be one option for the lead extraction from the wastes,but its lead dust pollution has caused environmental constraints.Considering thedissolution of lead in the alkaline solution,a cleaner hydrometallurgical process usingalkaline leaching and electrowinning had been developed for the extraction of leadfrom the wastes and low-grade lead ores in this work.
     Thermodynamics of alkaline leaching of lead was calculated.The solubility oflead in 5 mol·L~(-1) NaOH solution at 25℃was observed to be 25.56 g·L~(-1).Meanwhile,the E-pH diagrams of Pb-H_2O,PbS-H_2O,Pb-SO_4~(-2-)-H_2O and Pb-CO_3~(2-)-H_2O systemswere calculated and plotted.It was found that PbO,PbSO_4 and PbCO_3 can bedissolved in concentrated NaOH solutions while the dissolution of PbS may benegligible.Leaching kinetics of lead oxide ore and lead bearing wastes in NaOHsolution were also investigated.The leaching of lead oxide may be controlled bydiffusion of NaOH solution passing through the solid phase layer at lowertemperature and less NaOH concentration,and by surface chemical reaction at hightemperature and high NaOH concentration.Generally;lead bearing wastes can bemore easily and quickly leached than lead oxide ores did.
     Electrode reaction kinetics of lead electrodeposition from NaOH solution wasstudied by cyclic voltammetry.The reduction of lead occurs entirely through thecomplex species Pb(OH)_3~- but not Pb~(2+).The catholic reaction is a quasi-reversible process controlled by mass transfer with a diffusion coefficients of 1.15×10~(-6) cm~2·s~(-1).Lead electrodeposition potential shifts towards negative values as the decrease of Pbconcentration and the increase of scanning rate,NaOH concentration and temperature.Anodic process is mainly the oxygen evolution reaction,but lead complex in thesolution will be oxidized to PbO_2、Pb_3O_4 and PbO_3~(2-) in the anode.The oxidizationrate decreases as the increase of NaOH concentration and the decrease of Pbconcentration and the temperature.
     The effects of several parameters including lead concentration,temperature,current density,NaOH concentration,electrode distance and electrode material oncurrent efficiency and energy consumption of lead electrodeposition wereinvestigated.The optimum conditions were 20 g·L~(-1) of lead concentration,5 g·L~(-1) oflead concentration left in the electrolyte,50℃of temperature,400 A·m~(-2) of currentdensity,5 mol·L~(-1)of NaOH concentration,and stainless steel of electrode material.
     Equilibrium potential of Zn、As、Sb、W、Cu and Sn electrodeposition fromNaOH solution is calculated.The effects of impurities in the solution on leadelectrodeposition process were studied by cyclic voltammetry and electrowinningmethods.The results show that relatively high zinc concentration in the solution hasno effect on the lead electrodeposition process.Copper in the solution must bepurified before lead electrodeposition because it will be electrodeposited prior to leadin the cathode.Tin,C_4H_4O_6~(2-),C_2O_4~(2-) and glutin in the solution decrease the currentefficiency of the lead electrodeposition process,while As,Sb and W,as well asPO_4~(3-),SO_4~(2-),SO_3~(2-),SiO_3~(2-),SCN~-,CO_3~(2-),Cl~- and AC~- have no influence.
     Cu can be removed from the leaching solution by Pb power replacement.Theoptimum condition is Pb/Cu ratio of 2:1,reaction time of 15 min,temperature of:30℃.Na_2S and CaO were used to remove impurities,and found all the Cu,Cd,Pb andmost Mn,Zn,W,Sb,and Sn in the leaching solution can be removed.Addition ofCaO can co-deposit part of Sb and Sn.
     The lead production flowsheet using lead oxide ore and lead bearing wastes andthe process of comprehensive recovery of lead and zinc from lead and zinc bearingwastes were put forward based on the bench-scale results.The purity of lead thusprepared can be over 97%,with an energy consumption below 0.7 kWh·kg~(-1). Pilot-scale project was also designed.It has been concluded that the processdeveloped in this work is cost-effective.
引文
[1]天津大学无机化学教研室.无机化学(下册).北京:高等教育出版社,1992
    [2]彭容秋.铅冶金.长沙:中南大学出版社,2004
    [3]朱安云,田淑平.由2006年我国铅市场分析所想到的.中国金属通报,2007,(20):15~16
    [4]产量、消费量统计:全球精铅产量.中国铅锌锡锑,2007,(8):62~68
    [5]戴自希.世界铅锌资源的分布和潜力.地震出版社,2005
    [6]葛振华.我国铅锌资源现状及未来的供需形势.世界有色金属,2003,(9):4~7
    [7]熊亚.环境铅接触对健康的影响.微量元素与健康研究,2003,20(1):48~50
    [8]顾永祚,顾兴平.环境铅污染与健康.四川环境,1998,17(1):1~7
    [9]王琳莉,胡沛,黄兴国等.我国工业铅污染控制对策的进展.劳动保护科学技术,1998,18(6):46~48
    [10]宋庆双.铅的生产与应用.世界有色金属,2005,(1):55~61
    [11]Chaudhuri K B,Gluns L,Kawalec J.KIVCET technology for complex lead concentrates smelting.113th Annual Meeting-Metallurgical Society of AIME,Los Angeles,CA,USA,1984
    [12]Kulenov A S,Sannikov Y I,Slobodkin L V,et al.KIVCET process—a unique technology for the smelting of raw material containing lead,zinc and/or copper.Journal for Exploration,Mining and Metallurgy,1998,51(4):273~279
    [13]窦明民.基夫赛特(Kivcet)直接熔炼工艺的发展及现状.云南冶金,1998,27(2):37~42
    [14]王辉.基夫赛特直接炼铅法的现状与进展.世界有色金属,1995,(8):26~30
    [15]Queneau P,Schuhmann Jr.Metallurgical process using oxygen,U.S.3941587,1976,3
    [16]Queneau P,Schuhmann Jr.Metallurgical process using oxygen,U.S.3988149,1976,10
    [17]黄作仁.QSL炼铅工艺的新进展.湖南有色金属,1997,13(1):34~38
    [18]李炬,李东波.西北铅锌冶炼厂QSL法炼铅工艺的技术改造.有色冶炼,1997,(3):1~8
    [19]蒋继穆.顶吹浸没熔炼技术在我国的进展.有色冶炼,2001,(5):1~4
    [20]李炬,王忠实.顶吹炼铅及其实践.有色冶炼,2001,(6):9~12
    [21]舒见义,何醒民.卡尔多炉炼铅工艺在国外的生产应用.湖南有色金属,2002,18(1):11~13
    [22]刘万灵.卡尔多炉炼铅技术.有色金属(冶炼部分),1999,(4):13~15
    [23]李东波,张兆祥.氧气底吹熔炼——鼓风炉还原炼铅新技术及应用.有色金属(冶炼部分),2003,(5):12~17
    [24]周敬元,游力挥.国内外铅冶炼技术进展及发展动向.世界有色金属,1999,(6):7~12
    [25]何蔼平,魏昶,黄波,等.面向21世纪我国铅冶炼技术的改造和发展思考.有色金属(冶炼部分),2000,(6):2~6
    [26]宋光辉.瓦纽科夫法直接炼铅及其进展.湖南有色金属,2004,20(2):21~23,58
    [27]郭明,许惟玲,刘中华,等.瓦纽科夫熔炼炉直接炼铅新工艺探讨.有色金属(冶炼部分),2003,(6):24~34
    [28]宋光辉,张乐如.氧气侧吹直接炼铅新工艺的开发与应用.有色金属(冶炼部分),2005,(3):2~5
    [29]蔺公敏,宾万达.硫化铅精矿氧气侧吹熔池熔炼直接炼铅新技术.中国有色冶金,2005,(1):15~17
    [30]刘青.电炉低温直接炼铅.湖南有色金属,1996,12(6):45~46
    [31]徐盛明,吴延军.碱性直接炼铅法的应用.矿产保护与利用,1996,(6):31~33
    [32]Morin D,Gaunand A,Renon H.Representation of the kinetics of leaching of galena by ferric chloride in concentrated sodium chloride solutions by a modified mixed kinetics model.Metallurgical Transactions B(Process Metallurgy),1985,16B(1):31~39
    [33]Dutrizac J E.The leaching of sulphide minerals in chloridemedia.Hydrometallurgy,1992,29:1~45
    [34]Pritzker M.Model for the ferric chloride leaching of galena.Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,1998,29(5):953~960
    [35]尹文新,韩跃新,王德全.湿法炼铅研究进展.矿冶,2005,14(3):49~52,15
    [36]Dutrizac J E,Chen T T.Effect of the elemental sulfur reaction product on the leaching of galena in ferric chloride media.Metallurgical Transactions B(Process Metallurgy),1990,21(6):935~943
    [37]Sohn H Y,Baek H D.Mixed-control kinetics of ferric chloride leaching of galena.Metallurgical Transactions B(Process Metallurgy),1989,20(1):107~110
    [38]Kobayashi M,Dutrizac J E,Toguri J M.Critical review of the ferric chloride leaching of galena.Canadian Metallurgical Quarterly,1990,29(3):201~211
    [39]Wong M M.Leach—electrolysis method for producing lead.Journal of the Iron and Steel Institute of Japan,1976,2:603~621
    [40]Murphy J E,Eichbaum B R,Eisele J A.Continuous ferric chloride leaching of galena.Transactions of the American Institute of Mining,Metallurgical,and Petroleum Engineers,Society,1985,278:38~42
    [41]Murphy J E,Haver F P,Wong M M.Preparation of lead by fiased-salt electrolysis.International Symposium on Metal-Slag-Gas React and Processes,Proceeding of Electrochemical Society,Spring Meet,Toronto,Ontario,Canada,1975,5,11~16
    [42]Murphy J E,Chambers M F,Eisele J A.Molten-salt electrolysis of lead chloride in a 3000 -ampere cell with an improved electrode design.Electrochemical Society Extended Abstracts,1985,85(2):744
    [43]Haver F P,Elges C H,Bixby D L,Wong M M.Recovery of lead from lead chloride by fused-salt electrolysis.US.Bureau of Mines,1976,n8166
    [44]Phillips T A.Economic evaluation of a leach—electrolysis process for recovering lead from galena concentrate.US.Bureau of Mines,1978,n8733
    [45]Fleck D C,Sandberg R G,Wong M M.Effects of impurities in electrolytes on electrowinning of lead from lead chloride.US.Bureau of Mines,1983
    [46]Murphy J E,Chambers M F.Production of lead metal by molten-salt electrolysis with energy
    ??-efficient electrodes.1991.RI 9335.
    [47]Haver F P,Bixby D L,Wong M M.Aqueous electrolysis of lead chloride.US.Bureau of Mines,1978,n 8276,
    [48]Sandberg R G,Huiatt J L.Ferric chloride thiourea and brine leach recovery of Ag,Au AND Pb from complex sulfides.Journal of Metals,1986,38(6):18~22
    [49]吴锡平.湿法炼铅新工艺研究.有色矿冶,1996,(5):32~37,61
    [50]王德全,付一鸣.湿法炼铅的发展状况.有色金属(冶炼部分),1998,(6):5~7
    [51]Lee A Y,Wethington A M,Cole E R.Pressure leaching of galena concentrates to recover lead Metal and elemental sulfur.US.Bureau of Mines,1990,RI 9314
    [52]Lee A Y,Cole E R,Paulson D L.Electrolytic method for recovery of lead from scrap batteries.Scale-up study using 20-liter multielectrode cell.US.Bureau of Mines,1984
    [53]Lee A Y,Wethington A M,Cole E R.Hydrometallurgical process for producing lead and elemental sulfur from galena concentrates.US.Bureau of Mines,1986
    [54]Taylor,P R,Choi Y,Vidal E E.Fluosilicic acid leaching of galena.Hydrometallurgy 2003 Proceedings of the 5th International Symposium,Vancouver,BC,Canada,2003,8,24~27
    [55]Chen A A,Dreisinger D B.Ferric fluosilicate leaching of lead concentrates:Part Ⅰ.Kinetic studies.Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,1994,25(4):473~480
    [56]Paramguru R K,Kuezeci E,Kammel R.Direct electrowinning of lead from suspension galena concentrate anode in different electrolytes.Metallurgical Transactions B(Process Metallurgy),1988,19B(1):59~65
    [57]杨显万,张英杰,邓纶浩等.矿浆电解过程的浸出机理.中国工程科学,2000,2(6):49~58
    [58]Jansz JJ C,de Jong E J.Nonoxidative chloride leaching of complex pyretic zinc-lead sulphide materials.Extraction Metallurgy,London,England,1985
    [59]Awakura Y,Kamei S,Majima,H.Kinetic study on nonoxidative dissolution of galena in aqueous acid solution.Metallurgical Transactions B(Process Metallurgy),1980,11B(3):377~381
    [60]Nunez C,Espiell F,Garcia-Zayas J.Kinetics of galena leaching in hydrochloric acid-chloride solutions.Metallurgical Transactions B(Process Metallurgy),1990,21(1):11~17
    [61]Nunez C,Espiell F,Garcia-Zayas J.Kinetics of nonoxidative leaching of galena in perchloric.hydrobromic,and hydrochloric acid solutions.Metallurgical Transactions B(Process Metallurgy),1988,19(4):541~546
    [62]Dutrizac J E.Leaching of galena in cupric chloride media.Metallurgical Transactions B (Process Metallurgy),1989,20(4):475~483
    [63]Dutrizac J E,Chen T T.Leaching of galena in ferric sulfate media.Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,1995,26(2):219~227
    [64]Mikhlina E V,Pashkov G L et al.Effect of temperature and nitric acid concentration on the
    ??breakdown of lead concentrate.Russian Journal of Applied Chemistry,1998,71:363~366
    [65]Pashkov G L,Mikhlina E V,Kholmogorov A G et al.Effect of potential and ferric ions on lead sulfide dissolution in nitric acid.Hydrometallurgy,2002,63:171~179
    [66]Kholmogorov A G,Pashkov G L,Mikhlina E V.Electrochemical aspects of the nitric acid leaching of lead sulfide concentrates:On the way to a highly effective method for Pb recovery.7th International Symposium on Electrochemistry in Mineral and Metal Processing -209th Meeting of the Electrochemical Society,Denver,CO,US.,2006,5
    [67]Ke-Yuan Lu,Chia-Yung Chen.Conversion of galena to lead carbonate in ammonium carbonate solution—a new approach to lead hydrometallurgy.Hydrometallurgy,1986,17(1):73~83
    [68]东北工学院有色重金属冶炼教研室.铅冶金.1976
    [69]S S Bang,S S Deshpande,K N Han.The oxidation of galena using Thiobacillus ferrooxidans.Hydrometallurgy,1995,37(1):181~192
    [70]Tomizuka N,Yagisawa M.Optimum condition s for leaching of uranium and oxidation of lead sulfide with Thiobacillus ferrooxidans and recovery of metals from bacterial leaching solution with sulfate-reducing bacteria.Metallurgical Application of Bacteria Leaching and Related Microbial Phenomena,New York,US,1978,321~344
    [71]G Silva.Kinetics and mechanism of the bacterial and ferric sulphate oxidation of galena Hydrometallurgy,2004.75:99~110
    [72]张麟.青海宏源氧化铅锌矿可选性试验研究.湖南有色金属,2004,20(1):1~4
    [73]韦华祖.新疆某氧化铅锌矿选矿试验研究.有色金属(选矿部分),1998,(6):7~11
    [74]王化军,吴砚,红张强.锡铁山氧化铅锌矿选矿工艺研究.有色金属(选矿部分),2002,(6):4~6
    [75]李松春.某氧化铅锌矿选矿试验研究与生产实践.有色矿山,2002,31(2):25~28
    [76]Onal G,Bulut G,Kangal O,et al.Flotation of Aladag oxide lead-zinc ores.Minerals Engineering,2005,18(2):279~282
    [77]谭欣,李长根.国内外氧化铅锌矿浮选研究进展.国外金属矿选矿,2000,(3):7~11
    [78]张曙光,李晓阳,张杰.兰坪难选氧化铅锌矿浮选工艺研究.云南冶金,2005,34(5):11~13.27
    [79]张心平,周秀英,王淑秋等.兰坪氧化铅锌矿浮选新工艺研究.矿冶,1995,4(3):38~43,107
    [80]周廷熙.兰坪氧化铅锌矿的处理工艺探讨.国外金属矿选矿,2004,(4):10~13,18
    [81]梁冬云,何晓娟,徐晓萍等.兰坪氧化铅锌矿石中石膏的发现以及对选矿工艺的影响.有色金属(选矿部分),2005,(5):1~3
    [82]李绍云.兰坪铅锌矿选矿工艺流程的设计.云南冶金,2001,30(5):14~20
    [83]邵广全,李颖,张心平等.低品位复杂难处理氧化铅锌矿选矿工艺研究.矿冶,2006,15(3):21~26
    [84]李学清.兰坪难选氧化铅锌矿选矿试验研究.有色金属(选矿部分),2003,(1):1~2,13
    [85]Amin A S,Abdallah M,Omar A A.Hydrometallurgical treatment of Egyptian zinc-lead oxide ore.Modelling,Measurement & Control C,1995,49(1-3):1~12
    [86]郭天立,潘恒礼,魏凤华等.竖罐炼锌残渣的综合回收技术.CN1460725A,2003,12.
    [87]叶江.立德粉浸出渣的碱法处理.云南冶金,2006,35(4):21~23
    [88]顾立民,付一鸣等.含铅烟灰的处理方法.CN 1210896A,1999
    [89]陈家镛,杨守志等.湿法冶金的研究与发展.冶金工业出版社,1998
    [90]McDonald H D.Method of recovering lead values from battery sludge.US 4229271,1980,10
    [91]Prengaman R D.Recovering lead from batteries.Journal of Metals,1995,47(1):31~33
    [92]Prengaman,et al.Process for reducing lead peroxide formation during lead electrowinning.US 4230545,1980,10
    [93]Cole Jr,Ernest R,Lee A Y,Paulson D L.Update on recovering lead from scrap batteries.Journal of Metals,1985,37(2):79~83
    [94]Cole Jr,Ernest R,Lee A Y,Paulson D L.Electrowinning of lead from H_2SiF_6 solution.US 4272340,1981,6
    [95]陈维平,龚建森,黎七中.Fe~(2+)还原废蓄电池泥渣中PbO_2的试验研究.湖南大学学报,1995,22(6):53~58
    [96]陈维平.一种湿法回收废铅蓄电池填料的新技术.湖南大学学报,1996,23(6):111~116
    [97]Olper M,Fracchia P.Hydrometallurgical process for all overall recovery of the components of exhausted lead-acid batteries,US 4769116,1988,9
    [98]Olper M,Maccagni M,Buisman CJN,et al.Electrowinning of lead battery paste with the production of lead and elemental sulphur using bioprocess technologies.in:Dutrizac JE,Gonzalez JA.et al.LEAD—ZINC 2000 symposium.PITTSBURGH PENNSYLVANIA USA:Minerals Met & Mat Soc.2000:803~813
    [99]Jan W,Klaas de H,Wobby B,Henk D.Biological conversion of anglesite(PbSO_4)and lead waste from spent car batteries to galena(PbS),Biotechnology Progress,2002,18:770~775
    [100]Ginatta,Marco V.Method for the electrolytic production of lead.US 4451340,1984,5
    [101]D Andrews,A Raychaudhuri,C Frias.Environmentally sound technologies for recycling secondary lead.Journal of Power Sources,2000,88:124~129
    [102]佟永顺,王懋钏.废铅蓄电池回收铅技术.CN1470675A,2004,1
    [103]陈维平.从废铅蓄电池中湿法回收铅技术的述评.中国物资再生,1994,9:6~8
    [104]奚长生,陈国生,易飞鸿等.含铅废渣生产硬脂酸铅的研究.广东化工,2001,(6):44~46
    [105]R Raghavan,P K Mohanan,S R Swamkar.Hydrometallurgical processing of lead-bearing materials for the recovery of lead and silver as lead concentrate and lead metal.Hydrometallurgy,2000.58:103~116
    [106]M D Turana,H S Altundogan,F Tumen.Recovery of zinc and lead from zinc plant residue.Hydrometallurgy.2004,75:169~176
    [107]M A Barakat.Recovery of lead,tin and indium from alloy wire scrap.Hydrometallurgy,1998,49:63~73
    [108]李文郁,王良芥.从立德粉酸浸废渣制取硫酸铅的研究.湖南化工,1992,1:32~34
    [109]李正山.氯盐法从硫酸渣中回收铅.成都科技大学学报,1994,5:58~64
    [110]陈槐隆.综合利用铅渣湿法生产优质黄丹.有色金属(冶炼部分),1992,1:5~8
    [111]L Nathalie,M Eric,L Jean-Marie.Hydrometallurgical recovery of zinc and lead from electric arc furnace dust using mononitrilotriacetate anion and hexahydrated ferric chlorideeclerc.Journal of Hazardous Materials,2002,91:(1-3),257~270
    [112]S Nagib,K Inoue.Recovery of lead and zinc from fly ash generated from municipal incineration plants by means of acid and/or alkaline leaching.Hydrometallurgy,2000,56:269~292
    [113]L C.Ferracin,A E Chacon-Sanhueza,RA Davoglio et al.Lead recovery from a typical Brazilian sludge of exhausted lead-acid batteries using an electrohydrometallurgical process,Hydrometallurgy,2002,65:137~144
    [114]K A Chouzadjian,S J Roden,G J Davis et al.Development of a process to produce lead oxide from Imperial smelting furnace copper/lead dross.Hydrometallurgy,1991,26(3):347~359
    [115]S M Abdel Basir,M A Rabah.Hydrometallurgical recovery of metal values from brass melting slag.Hydrometallurgy,1999,53:31~44
    [116]刘清.碱浸-电解法从含锌废料和贫杂氧化锌矿中制各金属锌粉.上海:同济大学,2007
    [117]Zhang Chenglong,Zhao Youcai,Guo Cuixiang et al.Leaching of zinc sulfide in alkaline solution via chemical conversion with lead carbonate.Hydrometallurgy,2008,90:19~25
    [118]J A迪安.兰氏化学手册.北京:科学出版社,2003
    [119]杨显万,何蔼平,袁宝州.高温水溶液热力学数据计算手册.北京:冶金工业出版社,1983
    [120]沈庆峰.低压催化氧化处理铅阳极泥工艺研究.昆明:昆明理工大学,2003
    [121]Ramachandran P,Venkateswaran K V,Srinivasan R.Inhibition of PbO_2 formation during lead electrowinning.Journal of Applied Electrochemistry,1985,15(6):937~945
    [122]Cole E R,Lee A Y,Paulson D L.Electrowinning of Lead from H_2SiF_6 Solution.Report:US.Bureau of Mines,PAT-APPL-6-164 759;DOCKET/MIN-2966/3015,1980
    [123]张英杰.云南元阳金精矿矿浆电解基础理论研究.昆明:昆明理工大学,1999
    [124]朱炳辰.化学反应工程.北京:化学工业出版社,2001
    [125]张家芸.冶金物理化学.北京:冶金工业出版社,2004
    [126]E Exposito,J Iniesta,J Gonzalez-Garcia et al.Lead electrowinning in an acid chloride medium.Journal of Power Sources,2001,(92):260~266
    [127]E Exposito,J Iniesta,J Gonzalez-Garcia et al.Use of hydrogen diffusion anodes during lead electrowinning in a chloride medium.Journal of Power Sources,2001,(101):103~108
    [128]Das S C,SubbaiahT,SahooP K et al.Electrowinning of lead from its chloride bath
    ??containing organic additives.Hydrometallurgy,1989,21(3):373~383
    [129]G Magdy,G Edward.Electrochemical phenomena in aqueous electrowinning of lead.Journal of Applied Electrochemistry,1987 17(6):1234~1245
    [130]J.J.C.Jansz.Thermodynamics of aqueous solutions——calculation of ionic activities and distribution data for chlorocomplexes.Proceedings of the 113th AIME annual Meeting,Los Angeles,USA,1984
    [131]T Dobrev,S Rasjkov.Process during the electrofinning and electrowinning of lead.Hydrometallurgy,1996,(40):277~291
    [132]陈维平,田一庄.Pb~(2+)SiF_6~(2-)体系电冶铅的阴极过程.化工冶金,1996,17(3):224~228
    [133]陈维平,龚建森,陈范才.PbSiF_6-H_2SiF_6体系电沉积铅的电化学.中国有色金属学报,1996,6(3):43~46
    [134]E Exposito,J Gonzalez-Garcia,P Bonete et al.Lead electrowinning in a fluoborate medium.Use of hydrogen diffusion anodes.Journal of Power Sources,2000,(87):137~143
    [135]P Zhang,J O Thomas,P Yu.Electrochemical characterization of the effects of impmities and organic additives in lead electrowinning from fluoborate electrolyte.Hydrometallurgy,2001,(61):207~221
    [136]Silaimani S M,Muralidharan V S,Narasimham K C.Electrochemical behaviour of tin and lead in fluoboric acid solutions.Anti-Corrosion Methods and Materials,1997,44(5):314~317
    [137]Wan C C,Electrochemical kinetics lead/flnoboric acid system.Electrochemical Society Extended Abstracts,1984,(84—2):861
    [138]Eyre D,Gabe D R,Eastham D R et al.Electrodeposition of lead—cadmium alloys:fluoborate electrolytes.Plating and Surface Finishing,1985,72(4):907~28
    [139]M D Gernon.Electrowinning of lead.US.5520794,1996,5
    [140]C O Avellaneda,M A Napolitano,E K Kaibara et al.Electrodeposition of lead on ITO electrode:influence of copper as an additive.Electrochimica Acta,2005,50:1317~1321
    [141]G Edward,G Magdy.Electrodeposition of lead from aqueous acetate and chloride solution.Metallurgical Transactions B(Process Metallurgy),1985,16B(3):489~496
    [142]Kolotyrkin Y M,Sushchenko G A,Kolotyrkin I Y et al.Some special features of the joint electrodeposition of zinc and lead.Soviet Electrochemistry(English Translation of Elektro-Khimiia),1986,23(3):376~378
    [143]C Weiping,T Yizhuang,B Kejun et al.Basic electrolytic method for recovery of lead from scrap batteries.Transactions of nonferrous metals society of china,1996,6(4):47~51
    [144]C Weiping,C Fancai,P Yanbing et al.Cathode electrodeposition of lead in Pb~(2+)-OH~--C_4H_4O_6~(2-)system.Transactions of nonferrous metals society of china,1997,7(3):154~158
    [145]R Calusaru.Electrodeposition of Metal Powders,Elsevier,Amsterdam,Holand,1979
    [146]A G Morachevskii,A I Demidov,Z I Vaisgant et al.Recovery of lead battery scrap using alkali—glycerol electrolyte.Russian Journal of Applied Chemistry,1996,69:412~414
    [147]I A Carlos,J L P Siqueira,G A Finazzi et al.Voitammetric study of lead electrodeposition in the presence of sorbitol and morphological characterization.Journal of Power Sources,2003,117:179~186
    [148]I A Carlos,M A Malaquias,M M Oizumi et al.Study of the influence of glycerol on the cathodic process of lead electrodeposition and on its morphology.Journal of Power Sources 2001.92:56~64
    [149]I A Carlos,T T Matsuo,J L P Siqueira et al.Voltammetric and morphological study of lead electrodeposition on copper substrate for application of a lead-acid batteries.Journal of Power Sources,2004,132:261~265
    [150]S M Wong,L M Abrantes.Lead electrodeposition from very alkaline media.Electrochimica Acta,2005,51:619~626
    [151]莫鼎成.冶金动力学.长沙:中南工业大学出版社,1987
    [152]黄子卿.电解质溶液理论导论.北京:科学出版社,1983
    [153]吴辉煌.应用电化学基础.厦门:厦门大学出版社,2005
    [154]查全性.电极过程动力学导论.北京:科学出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700