发光稀土氟化物与磁性氧化物纳米晶的合成、表征及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土掺杂发光纳米材料在发光器件、太阳能电池、生物标记、激光防伪等领域有着广泛的应用前景。而磁性纳米材料在磁存储、磁生物分离、磁靶向给药、磁共振成像等领域具有重要的应用价值。发展制备这些材料的新方法,不仅具有重要的理论研究价值,而且具有重要的现实意义。论文主要围绕“稀土掺杂发光纳米晶和磁性氧化物纳米晶的合成、表征与应用”开展系列研究工作。利用溶剂热技术制备了尺寸可调的立方相和六方相NaYF4: Yb3+-Er3+亲水性发光纳米球。发展了一种制备上转换荧光性能更好的六方相NaYF4纳米晶的新方法。并对纳米晶进行了表面功能化修饰,将其用作上转换荧光生物标记,成功用于亲和素和核酸的定量分析。基于纳米晶独特的上转换荧光,发展了一种简单、快速、灵敏的生物检测新方法。
     通过引入1,6-己二胺为氨基功能化试剂,在不加任何表面活性剂的情况下,利用溶剂热技术,成功发展了一种制备表面带有氨基官能团、在水溶液中分散性好、尺寸可调的Fe3O4的纳米粒子和空心纳米球的新方法。并将所制备的磁性纳米晶用于免疫分析中的抗体磁分离和大白鼠肝脏的磁共振成像研究。为制备生物应用的磁性纳米材料提供了新思路。
     通过溶剂热技术,合成了结晶度高、分散性好的LaF3:Ce3+/Tb3+发光纳米晶。并将其用作荧光共振能量转移的能量给体,成功地用于水溶液中葡萄糖的灵敏、快速检测。发展了一种新的荧光共振能量转移检测新方法。以氨基功能化的SiO2纳米球为模板,利用模板表面的氨基,诱导水杨酸与稀土离子在模板表面沉积,得到配合物薄层覆盖的发光纳米球。发展了一种制备配合物纳米材料的新方法。利用水对其荧光的淬灭效应,成功地将其用于溶液中痕量水的检测。发展了一种简单、灵敏、快速测定溶液中水含量的新方法。
     在油-水混合体系中,利用溶剂热技术,成功合成了结晶度高、分散性好的LaF3、NaYF4、NaLaF4和CdS、ZnS单晶纳米棒。发展了一种通过有效控制单体浓度来制备单分散纳米棒的新方法。通过掺杂不同的稀土离子,纳米晶能发射不同颜色的上、下转换荧光,并研究了纳米晶的荧光性质。利用乳液包覆的技术,将油相中分散的纳米晶成功转移到水相,进行了初步的细胞荧光成像研究,为生物应用打下了基础。
Lanthanide-doped luminescent nanomaterials have great potentials in the field of optical devices, solar cells, biological labels, and anticounterfeiting applications. Meanwhile, magnetic nanomaterials have also been widely used in the filed of magnetic memory, drug and gene delivery, bioseparation, and magnetic resonance imaging. Developing new synthetic technologies for these nanomaterials is very important to both fundamental research and practical application. Surrounding the rare-earth-doped fluoride and magnetic oxide nanocrystals, this dissertation presents a systematic research about their preparation, characterization and application.
     Based on the solvothermal technology, a facile method was developed to prepare hydrophilic NaYF4:Yb3+-Er3+ nanospheres with controllable sizes. By prolonging the reaction time, the cubic phase nanocrystals transferred into hexagonal phase nanocrystals that can emit stronger green upconversion fluorescence. These luminescent nanocrystals were functionalized with biotin and nucleic acids and used as biolabels for the determination of avidin and DNA. Based on their novel upconversion luminescence, a facile, rapid and sensitive biological determination method was successfully developed.
     With 1,6-hexanediamine as amine-functionalization reagent, a facile one-pot strategy was put forward to prepare amine-functionalized magnetite nanoparticles and hollow nanospheres with excellent magnetism, tunable sizes, good dispersibility and crystallinity. These hydrophilic nanocrystals were used for the magnetic bioseparation of antibody in immunoassay and as contrast agents in MRI. The results indicate that this work provide a novel viewpoint for the preparation of bioapplication nanomaterials.
     Luminescent LaF3:Ce3+/Tb3+ single nanoparticles were prepared by using a facile, solvothermal strategy. Thereafter, these highly luminescent nanocrystals were functionalized with glucose and used as energy donor for the glucose fluorescence resonance energy transfer (FRET) determination. By using amine-functionalized SiO2 nanospheres as supporting templates, the metal-organic coordination compound (SiO2-NH2@SA-La3+/Tb3+) luminescent nanospheres were successfully prepared. Based on their strong fluorescence and the optical sensibility to water, a sensitive and rapid fluorescence method has been developed for the determination of water in liquid. It is believable that the fabrication of this luminescent nanosphere will be a great potential model for other metal-organic coordination compound nanospheres. In addition, the fluorescence determination method demonstrated here represents a simple and potentially useful technique for the rapid and sensitive determination of water in liquid.
     In the water-oleic acid mixture system, a novel solvothermal technology was developed to fabricate LaF3, NaYF4, NaLaF4, CdS and ZnS single-crystal nanorods with nearly uniform size. By doping different rare-earth ions, the nanorods can emit different color downcoversion and upconversion fluorescence. For the next bioapplication as fluorescent biolabels, these luminescent nanocrystals were successfully transferred into aqueous solution from nonpolar surfactants with a microemulsion technology. Their applications in fluorescence imaging as cell labels are undergoing and some results have been successfully obtained.
引文
[1] 杨文胜, 高明远, 白玉白. 《纳米材料与生物技术》 化学工业出版社, 2005 年 7 月: 1-3.
    [2] 高鸿. 《分析化学前沿》 科学出版社, 1991 年 6 月: 31-34.
    [3] 汪尔康. 《21 世纪分析化学》 科学出版社, 1999: 294.
    [4] Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281: 2013-2016.
    [5] Chan W C W, Nie S M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281: 2016-2018.
    [6] Alivisatos A P. Semiconductor Nanocrystals. MRS Bull., 1995, 20: 23-32.
    [7] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271: 933-937.
    [8] Nirmal M, Dabbousi B O, Bawendi M G, et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature, 1996, 383: 802-804.
    [9] Guzelian A A, Banin U, Kadavanich A V, et al. Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots. Appl. Phys. Lett., 1996, 69: 1432-1434.
    [10] Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 1997, 277: 1078-1081.
    [11] Peng X G, Schlamp M C, Kadavanich A V, et al. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc., 1997, 119: 7019-7029.
    [12] Peng X G, Wickham J, Alivisatos A P. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: "Focusing" of size distributions. J. Am. Chem. Soc., 1998, 120: 5343-5344.
    [13] Wang Q H, Setlur A A, Lauerhaas J M, et al. A nanotube-based field-emission flat panel display. Appl. Phys. Lett., 1998, 72: 2912-2913.
    [14] Hong S H, Zhu J, Mirkin C A. Multiple ink nanolithography: Toward a multiple-pen nano-plotter. Science, 1999, 286: 523-525.
    [15] Piner R D, Zhu J, Xu F, et al. "Dip-pen" nanolithography. Science, 1999, 283: 661-663.
    [16] Hu J T, Min O Y, Yang P D, et al. Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature, 1999, 399: 48-51.
    [17] Li M, Schnablegger H, Mann S. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature, 1999, 402: 393-395.
    [18] Steckel J S, Zimmer J P, Coe-Sullivan S, et al. Blue luminescence from (CdS)ZnS core-shell nanocrystals. Angew. Chem.-Int. Edit., 2004, 43: 2154-2158.
    [19] Pan A L, Yang H, Liu R B, et al. Color-tunable photoluminescence of alloyed CdSxSe1-x nanobelts. J. Am. Chem. Soc., 2005, 127: 15692-15693.
    [20] Gao P M, Ding Y, Mai W J, et al. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science, 2005, 309: 1700-1704.
    [21] Kuykendall T, Pauzauskie, P. J., Zhang, Y. F., Goldberger, J., Sirbuly, D., Denlinger, J., Yang, P. D. Crystallographic alignment of high-density gallium nitride nanowire arrays. Nat. Mater., 2004, 3: 524-528.
    [22] Zhang H, Cui Z C, Wang Y, et al. From water-soluble CdTe nanocrystals to fluorescent nanocrystal-polymer transparent composites using polymerizable surfactants. Adv. Mater., 2003, 15: 777-781.
    [23] Yu W W, Peng X G. Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew. Chem.-Int. Edit., 2002, 41: 2368-2371.
    [24] Peng X G, Manna L, Yang W D, et al. Shape control of CdSe nanocrystals. Nature, 2000, 404: 59-61.
    [25] Mattoussi H, Mauro J M, Goldman E R, et al. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc., 2000, 122: 12142-12150.
    [26] Talapin D V, Rogach A L, Kornowski A, et al. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett., 2001, 1: 207-211.
    [27] Peng Z A, Peng X G. Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc., 2001, 123: 1389-1395.
    [28] Chan E M, Mathies R A, Alivisatos A P. Size-controlled growth of CdSe nanocrystals in microfluidic reactors. Nano Lett., 2003, 3: 199-201.
    [29] Li J J, Wang Y A, Guo W Z, et al. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc., 2003, 125: 12567-12575.
    [30] Talapin D V, Murray C B. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science, 2005, 310: 86-89.
    [31] Chan E M, Alivisatos A P, Mathies R A. High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets. J. Am. Chem. Soc., 2005, 127: 13854-13861.
    [32] Yang Y H, Gao M Y. Preparation of fluorescent SiO2 particles with single CdTe nanocrystal cores by the reverse microemulsion method. Adv. Mater., 2005, 17: 2354-2358.
    [33] Tran P T, Goldman E R, Anderson G P, et al. Use of luminescent CdSe-ZnS nanocrystal bioconjugates in quantum dot-based nanosensors. Phys. Status Solidi B-Basic Res., 2002, 229: 427-432.
    [34] Voura E B, Jaiswal J K, Mattoussi H, et al. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat. Med., 2004, 10: 993-998.
    [35] Stroh M, Zimmer J P, Duda D G, et al. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat. Med., 2005, 11: 678-682.
    [36] Alivisatos A P, Gu W W, Larabell C. Quantum dots as cellular probes. Annu. Rev. Biomed. Eng., 2005, 7: 55-76.
    [37] Rhyner M N, Smith A M, Gao X H, et al. Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. Nanomedicine, 2006, 1: 209-217.
    [38] Gao X H, Nie S M. Quantum dot-encoded mesoporous beads with high brightness and uniformity: Rapid readout using flow cytometry. Anal. Chem., 2004, 76: 2406-2410.
    [39] Medintz I L, Uyeda H T, Goldman E R, et al. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater., 2005, 4: 435-446.
    [40] Byassee T A, Chan W C W, Nie S M. Probing single molecules in single living cells. Anal. Chem., 2000, 72: 5606-5611.
    [41] Smith A M, Dave S, Nie S M, et al. Multicolor quantum dots for molecular diagnostics of cancer. Expert Rev. Mol. Diagn., 2006, 6: 231-244.
    [42] Gao X H, Nie S M. Molecular profiling of single cells and tissue specimens with quantum dots. Trends Biotechnol., 2003, 21: 371-373.
    [43] Santra S, Xu J S, Wang K M, et al. Luminescent nanoparticle probes for bioimaging. J. Nanosci. Nanotechnol., 2004, 4: 590-599.
    [44] Gao X H, Yang L L, Petros J A, et al. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol., 2005, 16: 63-72.
    [45] Gao X H, Cui Y Y, Levenson R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol., 2004, 22: 969-976.
    [46] Smith A M, Nie S M. Chemical analysis and cellular imaging with quantum dots. Analyst, 2004, 129: 672-677.
    [47] Smith A M, Ruan G, Rhyner M N, et al. Engineering luminescent quantum dots for In vivo molecular and cellular imaging. Ann. Biomed. Eng., 2006, 34: 3-14.
    [48] Mattoussi H, Mauro J M, Goldman E R, et al. Bioconjugation of highly luminescent colloidal CdSe-ZnS quantum dots with an engineered two-domain recombinant protein. Phys. Status Solidi B-Basic Res., 2001, 224: 277-283.
    [49] Li Z H, Wang K M, Tan W H, et al. Immunofluorescent, labeling of cancer cells with quantum dots synthesized in aqueous solution. Anal. Biochem., 2006, 354: 169-174.
    [50] Goldman E R, Medintz I L, Mattoussi H. Luminescent quantum dots in immunoassays. Anal. Bioanal. Chem., 2006, 384: 560-563.
    [51] Goldman E R, Balighian E D, Kuno M K, et al. Luminescent quantum dot-adaptor protein-antibody conjugates for use in fluoroimmunoassays. Phys. Status Solidi B-Basic Res., 2002, 229: 407-414.
    [52] Lingerfelt B M, Mattoussi H, Goldman E R, et al. Preparation of quantum dot-biotin conjugates and their use in immunochromatography assays. Anal. Chem., 2003, 75: 4043-4049.
    [53] T Al-Jamal W, Kostarelos K. Liposome-nanoparticle hybrids for multimodal diagnostic and therapeutic applications. Nanomedicine, 2007, 2: 85-98.
    [54] Chen H H, Leong K W. Quantum-dots-FRET nanosensors for detecting unamplified nucleic acids by single molecule detection. Nanomedicine, 2006, 1: 119-122.
    [55] Goldman E R, Medintz I L, Whitley J L, et al. A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor. J. Am. Chem. Soc., 2005, 127: 6744-6751.
    [56] Medintz I L, Sapsford K E, Konnert J H, et al. Decoration of discretely immobilized cowpea mosaic virus with luminescent quantum dots. Langmuir, 2005, 21: 5501-5510.
    [57] Goldman E R, Clapp A R, Anderson G P, et al. Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal. Chem., 2004, 76: 684-688.
    [58] Zhao X J, Hilliard L R, Mechery S J, et al. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc. Natl. Acad. Sci. U. S. A., 2004, 101: 15027-15032.
    [59] Goldman E R, Medintz I L, Hayhurst A, et al. Self-assembled luminescent CdSe-ZnS quantum dot bioconjugates prepared using engineered poly-histidine terminated proteins. Anal. Chim. Acta, 2005, 534: 63-67.
    [60] Manna L, Scher E C, Li L S, et al. Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods. J. Am. Chem. Soc., 2002, 124: 7136-7145.
    [61] Aharoni A, Mokari T, Popov I, et al. Synthesis of InAs/CdSe/ZnSe core/shell1/shell2 structures with bright and stable near-infrared fluorescence. J. Am. Chem. Soc., 2006, 128: 257-264.
    [62] Goldman E R, Anderson G P, Tran P T, et al. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal. Chem., 2002, 74: 841-847.
    [63] Goldman E R, Balighian E D, Mattoussi H, et al. Avidin: A natural bridge for quantum dot-antibody conjugates. J. Am. Chem. Soc., 2002, 124: 6378-6382.
    [64] Taylor J R, Fang M M, Nie S M. Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticles. Anal. Chem., 2000, 72: 1979-1986.
    [65] Gerion D, Chen F Q, Kannan B, et al. Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays. Anal. Chem., 2003, 75: 4766-4772.
    [66] Gerion D, Parak W J, Williams S C, et al. Sorting fluorescent nanocrystals with DNA. J. Am. Chem. Soc., 2002, 124: 7070-7074.
    [67] Mitchell G P, Mirkin C A, Letsinger R L. Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc., 1999, 121: 8122-8123.
    [68] Pathak S, Choi S K, Arnheim N, et al. Hydroxylated quantum dots as luminescent probes for in situ hybridization. J. Am. Chem. Soc., 2001, 123: 4103-4104.
    [69] Green M. Semiconductor quantum dots as biological imaging agents. Angew. Chem.-Int. Edit., 2004, 43: 4129-4131.
    [70] Mansson A, Sundberg M, Balaz M, et al. In vitro sliding of actin filaments labelled with single quantum dots. Biochem. Biophys. Res. Commun., 2004, 314: 529-534.
    [71] Hasegawa U, Nomura S I M, Kaul S C, et al. Nanogel-quantum dot hybrid nanoparticles for live cell imaging. Biochem. Biophys. Res. Commun., 2005, 331: 917-921.
    [72] Wu X Y, Liu H J, Liu J Q, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol., 2003, 21: 41-46.
    [73] Dubertret B, Skourides P, Norris D J, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science, 2002, 298: 1759-1762.
    [74] Hoshino A, Hanaki K, Suzuki K, et al. Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body. Biochem. Biophys. Res. Commun., 2004, 314: 46-53.
    [75] Akerman M E, Chan W C W, Laakkonen P, et al. Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. U. S. A., 2002, 99: 12617-12621.
    [76] Kim S W, Zimmer J P, Ohnishi S, et al. Engineering InAsxP1-x/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared. J. Am. Chem. Soc., 2005, 127: 10526-10532.
    [77] Clapp A R, Medintz I L, Fisher B R, et al. Can luminescent quantum dots be efficient energy acceptors with organic dye donors? J. Am. Chem. Soc., 2005, 127: 1242-1250.
    [78] Clapp A R, Medintz I L, Uyeda H T, et al. Quantum dot-based multiplexed fluorescence resonance energy transfer. J. Am. Chem. Soc., 2005, 127: 18212-18221.
    [79] Clapp A R, Medintz I L, Mauro J M, et al. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J. Am. Chem. Soc., 2004, 126: 301-310.
    [80] Dabbousi B O, RodriguezViejo J, Mikulec F V, et al. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B, 1997, 101: 9463-9475.
    [81] Danek M, Jensen K F, Murray C B, et al. Synthesis of luminescent thin-film CdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an overlayer of ZnSe. Chem. Mat., 1996, 8: 173-180.
    [82] Fu A H, Gu W W, Larabell C, et al. Semiconductor nanocrystals for biological imaging. Curr. Opin. Neurobiol., 2005, 15: 568-575.
    [83] Fu A H, Micheel C M, Cha J, et al. Discrete nanostructures of quantum dots/Au with DNA. J. Am. Chem. Soc., 2004, 126: 10832-10833.
    [84] Wang L Y, Yan R X, Hao Z Y, et al. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew. Chem.-Int. Edit., 2005, 44: 6054-6057.
    [85] Wang L Y, Li Y D. Green upconversion nanocrystals for DNA detection. Chemical Communications, 2006: 2557-2559.
    [86] Wang L Y, Li Y D. Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals. Chem. Mat., 2007, 19: 727-734.
    [87] Tapec R, Zhao X J J, Tan W H. Development of organic dye-doped silica nanoparticles for bioanalysis and biosensors. J. Nanosci. Nanotechnol., 2002, 2: 405-409.
    [88] Zhao X J, Bagwe R P, Tan W H. Development of organic-dye-doped silica nanoparticles in a reverse microemulsion. Adv. Mater., 2004, 16: 173-177.
    [89] Santra S, Yang H, Dutta D, et al. TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chemical Communications, 2004: 2810-2811.
    [90] Lian W, Litherland S A, Badrane H, et al. Ultrasensitive detection of biomolecules with fluorescent dye-doped nanoparticles. Anal. Biochem., 2004, 334: 135-144.
    [91] Zhao X J, Tapec-Dytioco R, Tan W H. Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J. Am. Chem. Soc., 2003, 125: 11474-11475.
    [92] Santra S, Zhang P, Wang K M, et al. Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal. Chem., 2001, 73: 4988-4993.
    [93] Santra S, Liesenfeld B, Dutta D, et al. Folate conjugated fluorescent silica nanoparticles for labeling neoplastic cells. J. Nanosci. Nanotechnol., 2005, 5: 899-904.
    [94] Lehmann O, Kompe K, Haase M. Synthesis of Eu3+-doped core and core/shell nanoparticles and direct spectroscopic identification of dopant sites at the surface and in the interior of the particles. J. Am. Chem. Soc., 2004, 126: 14935-14942.
    [95] Shalav A, Richards B S, Trupke T, et al. Application of NaYF4 : Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response. Appl. Phys. Lett., 2005, 86: 13503-13505.
    [96] Diamente P R, Burke R D, van Veggel F. Bioconjugation of Ln(3+)-doped LaF3 nanoparticles to avidin. Langmuir, 2006, 22: 1782-1788.
    [97] Meiser F, Cortez C, Caruso F. Biofunctionalization of fluorescent rare-earth-doped lanthanum phosphate colloidal nanoparticles. Angew. Chem.-Int. Edit., 2004, 43: 5954-5957.
    [98] Maciel G S, Biswas A, Kapoor R, et al. Blue cooperative upconversion in Yb3+-doped multicomponent sol-gel-processed silica glass for three-dimensional display. Appl. Phys. Lett., 2000, 76: 1978-1980.
    [99] Heer S, Lehmann O, Haase M, et al. Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution. Angew. Chem.-Int. Edit., 2003, 42: 3179-3182.
    [100] Lee M H, Oh S G, Yi S C, et al. Characterization of Eu-doped Y2O3 nanoparticles prepared in nonionic reverse microemulsions in relation to their application for field emission display. J. Electrochem. Soc., 2000, 147: 3139-3142.
    [101] Stouwdam J W, Raudsepp M, van Veggel F. Colloidal nanoparticles of Ln(3+)-doped LaVO4: Energy transfer to visible- and near-infrared-emitting lanthanide ions. Langmuir, 2005, 21: 7003-7008.
    [102] Vetrone F, Boyer J C, Capobianco J A, et al. Concentration-dependent near-infrared to visible upconversion in nanocrystalline and bulk Y2O3 : Er3+. Chem. Mat., 2003, 15: 2737-2743.
    [103] Yan R X, Li Y D. Down/Up conversion in Ln(3+)-doped YF3 nanocrystals. Adv. Funct. Mater., 2005, 15: 763-770.
    [104] Misra S K, Isber S, Capobianco J A, et al. Electron paramagnetic resonance of Er3+ doped in YVO4: hyperfine parameters. Chem. Phys., 1999, 240: 313-318.
    [105] Kompe K, Borchert H, Storz J, et al. Green-emitting CePO4 : Th/LaPO4 core-shell nanoparticles with 70% photoluminescence quantum yield. Angew. Chem.-Int. Edit., 2003, 42: 5513-5516.
    [106] Capobianco J A, Boyer J C, Vetrone F, et al. Optical spectroscopy and upconversion studies of Ho3+-doped bulk and nanocrystalline Y2O3. Chem. Mat., 2002, 14: 2915-2921.
    [107] Martin N, Boutinaud P, Mahiou R, et al. Preparation of fluorides at 80 degrees in the NaF(Y,Yb,Pr)F3 system. Journal of Materials Chemistry, 1999, 9: 125-128.
    [108] Hebbink G A, Stouwdam J W, Reinhoudt D N, et al. Lanthanide(III)-doped nanoparticles that emit in the near-infrared. Adv. Mater., 2002, 14: 1147-1150.
    [109] Stouwdam J W, Hebbink G A, Huskens J, et al. Lanthanide-doped nanoparticles with excellent luminescent properties in organic media. Chem. Mat., 2003, 15: 4604-4616.
    [110] Diamente P R, Raudsepp M, van Veggel F. Dispersible Tm3+-doped nanoparticles that exhibit strong 1.47 mum photoluminescence. Adv. Funct. Mater., 2007, 17: 363-368.
    [111] Capobianco J A, Vetrone F, Boyer J C, et al. Visible upconversion of Er3+ doped nanocrystalline and bulk Lu2O3. Opt. Mater., 2002, 19: 259-268.
    [112] Boyer J C, Vetrone F, Capobianco J A, et al. Yb3+ ion as a sensitizer for the upconversion luminescence in nanocrystalline Gd3Ga5O12 : Ho3+. Chem. Phys. Lett., 2004, 390: 403-407.
    [113] Pandozzi F, Vetrone F, Boyer J C, et al. A spectroscopic analysis of blue and ultraviolet upconverted emissions from Gd3Ga5O12 : Tm3+, Yb3+ nanocrystals. J. Phys. Chem. B, 2005, 109: 17400-17405.
    [114] Vetrone F, Boyer J C, Capobianco J A, et al. A spectroscopic investigation of trivalent lanthanide doped Y2O3 nanocrystals. Nanotechnology, 2004, 15: 75-81.
    [115] Si R, Zhang Y W, You L P, et al. Rare-earth oxide nanopolyhedra, nanoplates, and nanodisks. Angew. Chem.-Int. Edit., 2005, 44: 3256-3260.
    [116] Vetrone F, Boyer J C, Capobianco J A, et al. NIR to visible upconversion in nanocrystalline and bulk Lu2O3 : Er3+. J. Phys. Chem. B, 2002, 106: 5622-5628.
    [117] Vetrone F, Boyer J C, Capobianco J A, et al. Luminescence spectroscopy and near-infrared to visible upconversion of nanocrystalline Gd3Ga5O12 : Er3+. J. Phys. Chem. B, 2003, 107: 10747-10752.
    [118] Polizzi S, Bucella S, Speghini A, et al. Nanostructured lanthanide-doped Lu2O3 obtained by propellant synthesis. Chem. Mat., 2004, 16: 1330-1335.
    [119] Vetrone F, Boyer J C, Capobianco J A, et al. Effect of Yb3+ codoping on the upconversion emission in nanocrystalline Y2O3 : Er3+. J. Phys. Chem. B, 2003, 107: 1107-1112.
    [120] Zeng J H, Li Z H, Su J, et al. Synthesis of complex rare earth fluoride nanocrystal phosphors. Nanotechnology, 2006, 17: 3549-3555.
    [121] Evanics F, Diamente P R, van Veggel F, et al. Water-soluble GdF3 and GdF3/LaF3 nanoparticles-physical characterization and NMR relaxation properties. Chem. Mat., 2006, 18: 2499-2505.
    [122] Diamente P R, van Veggel F. Water-soluble Ln(3+)-doped LaF3 nanoparticles: Retention of strong luminescence and potential as biolabels. J. Fluoresc., 2005, 15: 543-551.
    [123] Dekker R, Klunder D J W, Borreman A, et al. Stimulated emission and optical gain in LaF3 : Nd nanoparticle-doped polymer-based waveguides. Appl. Phys. Lett., 2004, 85: 6104-6106.
    [124] Zhang Y W, Sun X, Si R, et al. Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. J. Am. Chem. Soc., 2005, 127: 3260-3261.
    [125] Sivakumar S, van Veggel F, May P S. Near-infrared (NIR) to red and green up-conversion emission from silica sol-gel thin films made with La0.45Yb0.50Er0.05F3 nanoparticles, hetero-looping-enhanced energy transfer (Hetero-LEET): A new up-conversion process. J. Am. Chem. Soc., 2007, 129: 620-625.
    [126] Stouwdam J W, van Veggel F. Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles. Nano Lett., 2002, 2: 733-737.
    [127] Sivakumar R, van Veggel F, Raudsepp M. Bright white light through up-conversion of a single NIR source from sol-gel-derived thin film made with Ln(3+)-doped LaF3 nanoparticles. J. Am. Chem. Soc., 2005, 127: 12464-12465.
    [128] Meyssamy H, Riwotzki K, Kornowski A, et al. Wet-chemical synthesis of doped colloidal nanomaterials: Particles and fibers of LaPO4 : Eu, LaPO4 : Ce, and LaPO4 : Ce,Tb. Adv. Mater., 1999, 11: 840-843.
    [129] Riwotzki K, Meyssamy H, Schnablegger H, et al. Liquid-phase synthesis of colloids and redispersible powders of strongly luminescing LaPO4 : Ce,Tb nanocrystals. Angew. Chem.-Int. Edit., 2001, 40: 573-576.
    [130] Riwotzki K, Meyssamy H, Kornowski A, et al. Liquid-phase synthesis of doped nanoparticles: Colloids of luminescing LaPO4 : Eu and CePO4 : Tb particles with a narrow particle size distribution. J. Phys. Chem. B, 2000, 104: 2824-2828.
    [131] Riwotzki K, Haase M. Wet-chemical synthesis of doped colloidal nanoparticles: YVO4 : Ln (Ln = Eu, Sm, Dy). J. Phys. Chem. B, 1998, 102: 10129-10135.
    [132] Riwotzki K, Haase M. Colloidal YVO4 : Eu and YP0.95V0.05O4 : Eu nanoparticles: Luminescence and energy transfer processes. J. Phys. Chem. B, 2001, 105: 12709-12713.
    [133] Liu J F, Yao Q H, Li Y D. Effects of downconversion luminescent film in dye-sensitized solar cells. Appl. Phys. Lett., 2006, 88.
    [134] Liu B, Zeng H C. Semiconductor rings fabricated by self-assembly of nanocrystals. J. Am. Chem. Soc., 2005, 127: 18262-18268.
    [135] Yan R X, Sun X M, Wang X, et al. Crystal structures, anisotropic growth, and optical properties: Controlled synthesis of lanthanide orthophosphate one-dimensional nanomaterials. Chem.-Eur. J., 2005, 11: 2183-2195.
    [136] Wang X, Zhuang J, Peng Q, et al. A general strategy for nanocrystal synthesis. Nature, 2005, 437: 121-124.
    [137] Stouwdam J W, van Veggel F. Improvement in the luminescence properties and processability of LaF3/Ln and LaPO4/Ln nanoparticles by surface modification. Langmuir, 2004, 20: 11763-11771.
    [138] Heine F, Heumann, E., Danger, T., Schweizer, T., Huber, G., Chai, B. Green up-Conversion Continuous-Wave Er3+LiYF4 Laser at Room-Temperature. Appl. Phys. Lett., 1994, 65: 383-384.
    [139] Boyer J C, Vetrone F, Cuccia L A, et al. Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J. Am. Chem. Soc., 2006, 128: 7444-7445.
    [140] Yi G S, Lu H C, Zhao S Y, et al. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4 : Yb,Er infrared-to-visible up-conversion phosphors. Nano Lett., 2004, 4: 2191-2196.
    [141] van de Rijke F, Zijlmans, H., Li, S., Vail, T., Raap, A. K., Niedbala, R. S., Tanke, H. J. Up-converting phosphor reporters for nucleic acid microarrays. Nat. Biotechnol., 2001, 19: 273-276.
    [142] Fujiwara H, Sasaki K. Upconversion lasing of a thulium-ion-doped fluorozirconate glass microsphere. J. Appl. Phys., 1999, 86: 2385-2388.
    [143] Zhang D L, Wang D C, Pun E Y B. Numerical analysis of optical amplification in Er3+-Yb3+ codoped Ti : LiNbO3 strip waveguides. IEEE J. Quantum Electron., 2005, 41: 958-969.
    [144] Lin H, Jiang S B, Wu J F, et al. Er3+ doped Na2O-Nb2O5-TeO2 glasses for optical waveguide laser and amplifier. J. Phys. D-Appl. Phys., 2003, 36: 812-817.
    [145] Huang X, Cutinha N, de Velasco A A, et al. Upconversion in erbium doped YAG ion-implanted waveguides. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 1998, 142: 50-60.
    [146] 曹玉琳. 红外上转换材料在防伪技术中的应用. 激光与红外, 2005, 31: 755-757.
    [147] Heer S, Kompe K, Gudel H U, et al. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater., 2004, 16: 2102-2104.
    [148] Lim S F, Riehn R, Ryu W S, et al. In vivo and scanning electron microscopy imaging of upconverting nanophosphors in Caenorhabditis elegans. Nano Lett., 2006, 6: 169-174.
    [149] Yi G S, Chow G M. Synthesis of hexagonal-phase NaYF4 : Yb,Er and NaYF4 : Yb,Tm nanocrystals with efficient up-conversion fluorescence. Adv. Funct. Mater., 2006, 16: 2324-2329.
    [150] Wang F, Chatterjee D K, Li Z Q, et al. Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence. Nanotechnology, 2006, 17: 5786-5791.
    [151] Liu F, Ma E, Chen D Q, et al. Tunable red-green upconversion luminescence in novel transparent glass ceramics containing Er: NaYF4 nanocrystals. J. Phys. Chem. B, 2006, 110: 20843-20846.
    [152] Yi G S, Chow G M. Water-soluble NaYF4 : Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem. Mat., 2007, 19: 341-343.
    [153] Dobson J. Magnetic nanoparticles for drug delivery. Drug Dev. Res., 2006, 67: 55-60.
    [154] Dobson J. Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther., 2006, 13: 283-287.
    [155] Dobson J. Magnetic micro- and nano-particle-based targeting for drug and gene delivery. Nanomedicine, 2006, 1: 31-37.
    [156] Kohler N, Sun C, Fichtenholtz A, et al. Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small, 2006, 2: 785-792.
    [157] Plank C, Scherer F, Schillinger U, et al. Magnetofection: Enhancing and targeting gene delivery with superparamagnetic nanoparticles and magnetic fields. J. Liposome Res., 2003, 13: 29-32.
    [158] Son S J, Reichel J, He B, et al. Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. J. Am. Chem. Soc., 2005, 127: 7316-7317.
    [159] Takeda S I, Terazono B, Mishima F, et al. Novel drug delivery system by surface modified magnetic nanoparticles. J. Nanosci. Nanotechnol., 2006, 6: 3269-3276.
    [160] Wozniak M J, Wozniak P, Bystrzejewski M, et al. Magnetic nanoparticles of Fe and Nd-Fe-B alloy encapsulated in carbon shells for drug delivery systems: Study of the structure and interaction with the living cells. J. Alloy. Compd., 2006, 423: 87-91.
    [161] Yoon T J, Kim J S, Kim B G, et al. Multifunctional nanoparticles possessing a "magnetic motor effect" for drug or gene delivery. Angew. Chem.-Int. Edit., 2005, 44: 1068-1071.
    [162] Zhang Y Q, Li L L, Tang F Q, et al. Controlled drug delivery system based on magnetic hollow spheres/polyelectrolyte multilayer core-shell structure. J. Nanosci. Nanotechnol., 2006, 6: 3210-3214.
    [163] Grancharov S G, Zeng H, Sun S H, et al. Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor. J. Phys. Chem. B, 2005, 109: 13030-13035.
    [164] Gu H W, Ho P L, Tong E, et al. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett., 2003, 3: 1261-1263.
    [165] Gu H W, Ho P L, Tsang K W T, et al. Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration. J. Am. Chem. Soc., 2003, 125: 15702-15703.
    [166] Gu H W, Zheng R K, Zhang X X, et al. Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: A conjugate of quantum dot and magnetic nanoparticles. J. Am. Chem. Soc., 2004, 126: 5664-5665.
    [167] Xu C J, Xu K M, Gu H W, et al. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J. Am. Chem. Soc., 2004, 126: 9938-9939.
    [168] Xu C J, Xu K M, Gu H W, et al. Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J. Am. Chem. Soc., 2004, 126: 3392-3393.
    [169] Gao J H, Liang G L, Zhang B, et al. FePt@CoS2 yolk-shell nanocrystals as a potent agent to kill HeLa cells. J. Am. Chem. Soc., 2007, 129: 1428-1433.
    [170] Gu H W, Xu K M, Yang Z M, et al. Synthesis and cellular uptake of porphyrin decorated iron oxide nanoparticles - a potential candidate for bimodal anticancer therapy. Chemical Communications, 2005: 4270-4272.
    [171] Gu H W, Ho P L, Tsang K W T, et al. Using biofunctional magnetic nanoparticles to capture Gram-negative bacteria at an ultra-low concentration. Chemical Communications, 2003: 1966-1967.
    [172] Wang L, Yang Z M, Gao J H, et al. A biocompatible method of decorporation: Bisphosphonate-modified magnetite nanoparticles to remove uranyl ions from blood. J. Am. Chem. Soc., 2006, 128: 13358-13359.
    [173] Widder K J, Senyei A E, Scarpeni D G. Magnetic microsphere: A model system for site specific drug delivery in vivo. . Pre Soc Exp Biol Med, 1978, 158: 141-146.
    [174] Yanase M, Shinkai M, Honda H, et al. Antitumor immunity induction by intracellular hyperthermia using magnetite cationic liposomes. Jpn. J. Cancer Res., 1998, 89: 775-782.
    [175] Yanase M, Shinkai M, Honda H, et al. Intracellular hyperthermia for cancer using magnetite cationic liposomes: An in vivo study. Jpn. J. Cancer Res., 1998, 89: 463-469.
    [176] Viroonchatapan E, Ueno M, Sato H, et al. Preparation and Characterization of Dextran Magnetite-Incorporated Thermosensitive Liposomes - an Online Flow System for Quantifying Magnetic Responsiveness. Pharm. Res., 1995, 12: 1176-1183.
    [177] Matsunaga T, Kawasaki M, Yu X, et al. Chemiluminescence enzyme immunoassay using bacterial magnetic particles. Anal. Chem., 1996, 68: 3551-3554.
    [178] Dyal A, Loos K, Noto M, et al. Activity of Candida rugosa lipase immobilized on gamma-Fe2O3 magnetic nanoparticles. J. Am. Chem. Soc., 2003, 125: 1684-1685.
    [179] Gu H W, Xu K M, Xu C J, et al. Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chemical Communications, 2006: 941-949.
    [180] Wang D S, He J B, Rosenzweig N, et al. Superparamagnetic Fe2O3 Beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation. Nano Lett., 2004, 4: 409-413.
    [181] Nam J M, Stoeva S I, Mirkin C A. Bio-bar-code-based DNA detection with PCR-like sensitivity. J. Am. Chem. Soc., 2004, 126: 5932-5933.
    [182] Nam J M, Park S J, Mirkin C A. Bio-barcodes based on oligonucleotide-modified nanoparticles. J. Am. Chem. Soc., 2002, 124: 3820-3821.
    [183] Nam J M, Han S W, Lee K B, et al. Bioactive protein nanoarrays on nickel oxide surfaces formed by dip-pen nanolithography. Angew. Chem.-Int. Edit., 2004, 43: 1246-1249.
    [184] Nam J M, Thaxton C S, Mirkin C A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science, 2003, 301: 1884-1886.
    [185] Patolsky F, Weizmann Y, Katz E, et al. Magnetically amplified DNA assays (MADA): Sensing of viral DNA and single-base mismatches by using nucleic acid modified magnetic particles. Angew. Chem.-Int. Edit., 2003, 42: 2372-2376.
    [186] Weizmann Y, Patolsky F, Katz E, et al. Amplified DNA sensing and immunosensing by the rotation of functional magnetic particles. J. Am. Chem. Soc., 2003, 125: 3452-3454.
    [187] Niazov T, Pavlov V, Xiao Y, et al. DNAzyme-functionalized Au nanoparticles for the amplified detection of DNA or telomerase activity. Nano Lett., 2004, 4: 1683-1687.
    [188] Lee K B, Park S, Mirkin C A. Multicomponent magnetic nanorods for biomolecular separations. Angew. Chem.-Int. Edit., 2004, 43: 3048-3050.
    [189] Pankhurst Q A, Connolly J, Jones S K, et al. Applications of magnetic nanoparticles in biomedicine. J. Phys. D-Appl. Phys., 2003, 36: R167-R181.
    [190] Weissleder R, Bogdanov A, Neuwelt E A, et al. Long-Circulating Iron-Oxides for Mr-Imaging. Adv. Drug Deliv. Rev., 1995, 16: 321-334.
    [191] Bulte J W M, Zhang S C, van Gelderen P, et al. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: Magnetic resonance tracking of cell migration and myelination. Proc. Natl. Acad. Sci. U. S. A., 1999, 96: 15256-15261.
    [192] Bulte J W M. Magnetic nanoparticles as markers for cellular MR imaging. J. Magn. Magn. Mater., 2005, 289: 423-427.
    [193] Perez J M, Simeone F J, Saeki Y, et al. Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J. Am. Chem. Soc., 2003, 125: 10192-10193.
    [194] Xie J, Peng S, Brower N, et al. One-pot synthesis of monodisperse iron oxide nanoparticles for potential biomedical applications. Pure Appl. Chem., 2006, 78: 1003-1014.
    [195] Sun S H. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv. Mater., 2006, 18: 393-403.
    [196] Li Y Q, Zhang G, Nurmikko A V, et al. Enhanced magnetooptical response in dumbbell-like Ag-CoFe2O4 nanoparticle pairs. Nano Lett., 2005, 5: 1689-1692.
    [197] Black C T, Murray C B, Sandstrom R L, et al. Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices. Science, 2000, 290: 1131-1134.
    [198] Sun S H, Zeng H, Robinson D B, et al. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc., 2004, 126: 273-279.
    [199] Sun S H, Murray C B, Weller D, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 2000, 287: 1989-1992.
    [200] Redl F X, Cho K S, Murray C B, et al. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature, 2003, 423: 968-971.
    [201] Zeng H, Li J, Wang Z L, et al. Bimagnetic core/shell FePt/Fe3O4 nanoparticles. Nano Lett., 2004, 4: 187-190.
    [202] Zeng H, Rice P M, Wang S X, et al. Shape-controlled synthesis and shape-induced texture of MnFe2O4 nanoparticles. J. Am. Chem. Soc., 2004, 126: 11458-11459.
    [203] Zeng H, Li J, Liu J P, et al. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature, 2002, 420: 395-398.
    [204] Chen M, Liu J P, Sun S H. One-step synthesis of FePt nanoparticles with tunable size. J. Am. Chem. Soc., 2004, 126: 8394-8395.
    [205] Sun S H, Zeng H. Size-controlled synthesis of magnetite nanoparticies. J. Am. Chem. Soc., 2002, 124: 8204-8205.
    [206] Yu H, Chen M, Rice P M, et al. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett., 2005, 5: 379-382.
    [207] Chen M, Kim J, Liu J P, et al. Synthesis of FePt nanocubes and their oriented self-assembly. J. Am. Chem. Soc., 2006, 128: 7132-7133.
    [208] Wang L Y, Bao J, Wang L, et al. One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres. Chem.-Eur. J., 2006, 12: 6341-6347.
    [209] Wang L Y, Li P, Li Y D. Down- and Up-conversion Luminescent Nanorods. Adv. Mater., 2007 Accepted.
    [210] Wang L Y, Li Y D. Luminescent Nanocrystal for Nonenzymatic Glucose Determination. Chem.-Eur. J., 2007, 13, 4203-4207.
    [211] Wang L Y, Li Y D. Fluorescence Coordination Nanosensor for Water. Small, 2007 Published online.
    [212] Wang L Y, Li Y D. Na(Y1.5Na0.5)F6 single-crystal nanorods as multicolor luminescent materials. Nano Lett., 2006, 6: 1645-1649.
    [213] Wang D Y, Rogach A L, Caruso F. Semiconductor quantum dot-labeled microsphere bioconjugates prepared by stepwise self-assembly. Nano Lett., 2002, 2: 857-861.
    [214] Tan W H, Wang K M, He X X, et al. Bionanotechnology based on silica nanoparticles. Med. Res. Rev., 2004, 24: 621-638.
    [215] Lehmann O, Meyssamy H, Kompe K, et al. Synthesis, growth, and Er3+ luminescence of lanthanide phosphate nanoparticles. J. Phys. Chem. B, 2003, 107: 7449-7453.
    [216] Zeng J H, Su J, Li Z H, et al. Synthesis and upconversion luminescence of hexagonal-phase NaYF4 : Yb, Er3+, phosphors of controlled size and morphology. Adv. Mater., 2005, 17: 2119-2122.
    [217] Kik P G, Polman A. Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers. J. Appl. Phys., 2003, 93: 5008-5012.
    [218] Sukhorukov G B, Donath E, Davis S, et al. Stepwise polyelectrolyte assembly on particle surfaces: a novel approach to colloid design. Polym. Adv. Technol., 1998, 9: 759-767.
    [219] Kuang M, Wang D Y, Bao H B, et al. Fabrication of multicolor-encoded microspheres by tagging semiconductor nanocrystals to hydrogel spheres. Adv. Mater., 2005, 17: 267-271.
    [220] Decher G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science, 1997, 277: 1232-1237.
    [221] Deng H, Li X L, Peng Q, et al. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem.-Int. Edit., 2005, 44: 2782-2785.
    [222] Hermanson G T. 《Bioconjugate Techniques》 Academic Press: New York, 1996.
    [223] Gilles M A, Hudson A Q, Borders C L. Stability of water-soluble carbodiimides in aqueous solution Anal. Biochem., 1990, 184: 244-248.
    [224] Staros J V, Wright R W, Swingle D M. Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions Anal. Biochem., 1986, 156: 220-222.
    [225] Pavlov V, Xiao Y, Shlyahovsky B, et al. Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. J. Am. Chem. Soc., 2004, 126: 11768-11769.
    [226] Huang C C, Huang Y F, Cao Z H, et al. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal. Chem., 2005, 77: 5735-5741.
    [227] Park S J, Taton T A, Mirkin C A. Array-based electrical detection of DNA with nanoparticle probes. Science, 2002, 295: 1503-1506.
    [228] Brown K R, Fox A P, Natan M J. Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO2 electrodes. J. Am. Chem. Soc., 1996, 118: 1154-1157.
    [229] Nie S M, Emery S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 1997, 275: 1102-1106.
    [230] Cao Y W C, Jin R C, Mirkin C A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science, 2002, 297: 1536-1540.
    [231] Abe M, Lai J, Kortylewicz Z P, et al. Radiolabeled constructs for evaluation of the asialoglycoprotein receptor status and hepatic functional reserves. Bioconjugate Chem., 2003, 14: 997-1006.
    [232] Hong X L, J. Wang, M. J. Xu, J. J. Guo, W. Li, J. H. Bai, Y. B., Li T J. Fabrication of magnetic luminescent nanocomposites by a layer-by-layer self-assembly approach. Chem. Mat., 2004, 16: 4022-4027.
    [233] Medintz I L, Clapp A R, Mattoussi H, et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mater., 2003, 2: 630-638.
    [234] Medintz I L, Clapp A R, Melinger J S, et al. A reagentless biosensing assembly based on quantum dot-donor Forster resonance energy transfer. Adv. Mater., 2005, 17: 2450-2454.
    [235] Medintz I L, Clapp A R, Brunel F M, et al. Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates. Nat. Mater., 2006, 5: 581-589.
    [236] Sinha R, Kim G J, Nie S M, et al. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol. Cancer Ther., 2006, 5: 1909-1917.
    [237] Robinson D B, Persson H H J, Zeng H, et al. DNA-functionalized MFe2O4 (M = Fe, Co, or Mn) nanoparticles and their hybridization to DNA-functionalized surfaces. Langmuir, 2005, 21: 3096-3103.
    [238] Kim H J, Shelver W L, Li Q X. Monoclonal antibody-based enzyme-linked immunosorbent assay for the insecticide imidacloprid. Anal. Chim. Acta, 2004, 509: 111-118.
    [239] Yang W, Zhang C G, Qu H Y, et al. Novel fluorescent silica nanoparticle probe for ultrasensitive immunoassays. Anal. Chim. Acta, 2004, 503: 163-169.
    [240] Wang Y J, Caruso F. Mesoporous silica spheres as supports for enzyme immobilization and encapsulation. Chem. Mat., 2005, 17: 953-961.
    [241] Bruce I J, Taylor J, Todd M, et al. Synthesis, characterisation and application of silica-magnetite nanocomposites. J. Magn. Magn. Mater., 2004, 284: 145-160.
    [242] Huh Y M, Jun Y W, Song H T, et al. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J. Am. Chem. Soc., 2005, 127: 12387-12391.
    [243] Wang L, Yang C Y, Tan W H. Dual-luminophore-doped silica nanoparticles for multiplexed signaling. Nano Lett., 2005, 5: 37-43.
    [244] Kong J, Franklin, N. R., Zhou, C. W., Chapline, M. G., Peng, S., Cho, K. J., Dai, H. J. Nanotube molecular wires as chemical sensors. Science, 2000, 287: 622-625.
    [245] Thess A, Lee, R., Nikolaev, P., Dai, H. J., Petit, P., Robert, J., Xu, C. H., Lee, Y. H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G. E., Tomanek, D., Fischer, J. E., Smalley, R. E. Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273: 483-487.
    [246] Zhou C W, Kong J, Yenilmez E, et al. Modulated chemical doping of individual carbon nanotubes. Science, 2000, 290: 1552-1555.
    [247] Fan S S, Chapline M G, Franklin N R, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 1999, 283: 512-514.
    [248] Law M, Sirbuly, D. J., Johnson, J. C., Goldberger, J., Saykally, R. J., Yang, P. D. Nanoribbon waveguides for subwavelength photonics integration. Science, 2004, 305: 1269-1273.
    [249] Huynh W U, Peng X G, Alivisatos A P. CdSe nanocrystal rods/poly(3-hexylthiophene) composite photovoltaic devices. Adv. Mater., 1999, 11: 923-925.
    [250] Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorod-polymer solar cells. Science, 2002, 295: 2425-2427.
    [251] Kim F, Kwan S, Akana J, et al. Langmuir-Blodgett nanorod assembly. J. Am. Chem. Soc., 2001, 123: 4360-4361.
    [252] Law M, Greene L E, Johnson J C, et al. Nanowire dye-sensitized solar cells. Nat. Mater., 2005, 4: 455-459.
    [253] Law M, Sirbuly D J, Johnson J C, et al. Nanoribbon waveguides for subwavelength photonics integration. Science, 2004, 305: 1269-1273.
    [254] Pauzauskie P J, Radenovic A, Trepagnier E, et al. Optical trapping and integration of semiconductor nanowire assemblies in water. Nat. Mater., 2006, 5: 97-101.
    [255] Goldberger J, He R R, Zhang Y F, et al. Single-crystal gallium nitride nanotubes. Nature, 2003, 422: 599-602.
    [256] Cui Y, Wei Q Q, Park H K, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001, 293: 1289-1292.
    [257] Peng X G. Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv. Mater., 2003, 15: 459-463.
    [258] Yu J H, Joo J, Park H M, et al. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. J. Am. Chem. Soc., 2005, 127: 5662-5670.
    [259] Joo J, Na H B, Yu T, et al. Generalized and facile synthesis of semiconducting metal sulfide nanocrystals. J. Am. Chem. Soc., 2003, 125: 11100-11105.
    [260] Wang Z L, Quan Z W, Jia P Y, et al. Facile synthesis and photoluminescent properties of redispersible CeF3, CeF3 : Tb3+, and CeF3 : Tb3+/LaF3 (core/shell) nanoparticles. Chem. Mat., 2006, 18: 2030-2037.
    [261] Bai F, Huo Z Y, Li Y D, et al. A general strategy for hydrophilic colloidal nanospheres. Unpublished work, 2007.
    [262] Barone P W, Parker R S, Strano M S. In vivo fluorescence detection of glucose using a single-walled carbon nanotube optical sensor: Design, fluorophore properties, advantages, and disadvantages. Anal. Chem., 2005, 77: 7556-7562.
    [263] Barone P W, Baik S, Heller D A, et al. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat. Mater., 2005, 4: 86-U16.
    [264] Paranjape M, Garra J, Brida S, et al. A PDMS dermal patch for non-intrusive transdermal glucose sensing. Sens. Actuator A-Phys., 2003, 104: 195-204.
    [265] Alexeev V L, Das S, Finegold D N, et al. Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid. Clin. Chem., 2004, 50: 2353-2360.
    [266] Koschinsky T, Heinemann L. Sensors for glucose monitoring: technical and clinical aspects. Diabetes-Metab. Res. Rev., 2001, 17: 113-123.
    [267] Suri J T, Cordes D B, Cappuccio F E, et al. Continuous glucose sensing with a fluorescent thin-film hydrogel. Angew. Chem.-Int. Edit., 2003, 42: 5857-5859.
    [268] Morikawa M, Kimizuka N, Yoshihara M, et al. New colorimetric detection of glucose by means of electron-accepting indicators: Ligand substitution of [Fe(acac)(3-n)(phen)(n)](n+) complexes triggered by electron transfer from glucose oxidase. Chem.-Eur. J., 2002, 8: 5580-5584.
    [269] Lin Y H, Lu F, Tu Y, et al. Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett., 2004, 4: 191-195.
    [270] Hrapovic S, Luong J H T. Picoamperometric detection of glucose at ultrasmall platinum-based biosensors: Preparation and characterization. Anal. Chem., 2003, 75: 3308-3315.
    [271] Forzani E S, Zhang H Q, Nagahara L A, et al. A conducting polymer nanojunction sensor for glucose detection. Nano Lett., 2004, 4: 1785-1788.
    [272] Cordes D B, Gamsey S, Singaram B. Fluorescent quantum dots with boronic acid substituted viologens to sense glucose in aqueous solution. Angew. Chem.-Int. Edit., 2006, 45: 3829-3832.
    [273] Ohara T J, Rajagopalan R, Heller A. Wired Enzyme Electrodes for Amperometric Determination of Glucose or Lactate in the Presence of Interfering Substances. Anal. Chem., 1994, 66: 2451-2457.
    [274] Chen T, Friedman K A, Lei I, et al. In situ assembled mass-transport controlling micromembranes and their application in implanted amperometric glucose sensors. Anal. Chem., 2000, 72: 3757-3763.
    [275] Wu M, Lin Z H, Schaferling M, et al. Fluorescence imaging of the activity of glucose oxidase using a hydrogen-peroxide-sensitive europium probe. Anal. Biochem., 2005, 340: 66-73.
    [276] Wu M, Lin Z H, Durkop A, et al. Time-resolved enzymatic determination of glucose using a fluorescent europium probe for hydrogen peroxide. Anal. Bioanal. Chem., 2004, 380: 619-626.
    [277] Yan X D, Xu X H K, Ji H F. Glucose oxidase multilayer modified microcantilevers for glucose measurement. Anal. Chem., 2005, 77: 6197-6204.
    [278] Blyth J, Millington R B, Mayes A G, et al. Holographic sensor for water in solvents. Anal. Chem., 1996, 68: 1089-1094.
    [279] Chang Q, Murtaza Z, Lakowicz J R, et al. A fluorescence lifetime-based solid sensor for water. Anal. Chim. Acta, 1997, 350: 97-104.
    [280] Klotz A, Brecht A, Barzen C, et al. Immunofluorescence sensor for water analysis. Sens. Actuator B-Chem., 1998, 51: 181-187.
    [281] Skrdla P J, Saavedra S S, Armstrong N R, et al. Sol-gel-based, planar waveguide sensor for water vapor. Anal. Chem., 1999, 71: 1332-1337.
    [282] Nakatou M, Miura N. Impedancemetric sensor based on YSZ and In2O3 for detection of low concentrations of water vapor at high temperature. Electrochem. Commun., 2004, 6: 995-998.
    [283] Sohn K R, Kim K T, Song J W. Optical fiber sensor for water detection using a side-polished fiber coupler with a planar glass-overlay-waveguide. Sens. Actuator A-Phys., 2002, 101: 137-142.
    [284] Yang X, Niu C G, Shang Z J, et al. Optical-fiber sensor for determining water content in organic solvents. Sens. Actuator B-Chem., 2001, 75: 43-47.
    [285] Yokota M, Yoshino T. An optical-fibre water-concentration sensor using Tm3+: YAG fluorescent light. Meas. Sci. Technol., 2000, 11: 152-156.
    [286] Zhou X, Liu X, Jeffries J B, et al. Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser. Meas. Sci. Technol., 2003, 14: 1459-1468.
    [287] Kwon S Y, Choi Y I, Kim J C, et al. A highly stable quartz crystal microbalance sensor and its application to water vapor measurements. J. Korean Phys. Soc., 2006, 48: 161-165.
    [288] Rouleau J F, Goyette J, Bose T K, et al. Performance of a microwave sensor for the precise measurement of water vapor in gases. IEEE Trns. Dielectr. Electr. Insul., 2000, 7: 825-831.
    [289] Song K, Oh S, Jung E C, et al. Application of laser photoacoustic spectroscopy for the detection of water vapor near 1.38 mum. Microchem J., 2005, 80: 113-119.
    [290] Li Q, Fu M L, Liu X, et al. Syntheses, structures and fluorescent properties of two silver(I) complexes with 5-sulfo-salicylic acid as ligand templated by alkaline-earth metals. Inorg. Chem. Commun., 2006, 9: 767-771.
    [291] Li W L, Yu G, Zhao X. Influence of Adding Rare-Earth Ions on Tb(Iii) Fluorescence in Tb(Iii)-Salicylic Acid Complexes. J. Alloy. Compd., 1994, 215: 271-273.
    [292] Seward C, Hu N X, Wang S N. 1-D chain and 3-D grid green luminescent terbium(III) coordination polymers: {Tb(O2CPh)(3)(CH3OH)(2)(H2O)}(n) and {Tb2(O2CPh)(6)(4,4 '-bipy)}(n). J. Chem. Soc.-Dalton Trans., 2001: 134-137.
    [293] Viswanathan S, de Bettencourt-Dias A. 2-chloro-5-nitrobenzoato complexes of Eu(III) and Tb(III) - A 1D coordination polymer and enhanced solution luminescence. Inorg. Chem. Commun., 2006, 9: 444-448.
    [294] Hu M L, Zhu N W, Li X H, et al. Hydrothermal synthesis and structure of a novel terbium coordination polymer with packing cavities, {[Tb(TCB)(1/2)(H2TCB)(1/2)(H2O)](H2O)2}(n) (H2TCB = 1,2,4,5-benzenetetracarboxylic acid). Cryst. Res. Technol., 2004, 39: 505-510.
    [295] Min D, Lee S W. Terbium-oxalate-pyridinedicarboxylate coordination polymers suggesting the reductive coupling of carbon dioxide (CO2) to oxolate (C2O42-): [Tb2 (3,5-PDC)(2)(H2O)(4)(C2O4)]center dot 2H2O and [Tb(2,4-PDC) (H2O) (C2O4)(0.5)] (PDC = pyridinedicarboxylate). Inorg. Chem. Commun., 2002, 5: 978-983.
    [296] Yin M C, Ai C C, Yuan L J, et al. Synthesis, structure and luminescent property of a binuclear terbium complex [Tb2(Hsal)(8)(H2O)(2)][(Hphen)(2)]center dot 2H(2)O. J. Mol. Struct., 2004, 691: 33-37.
    [297] Gamsey S, Miller A, Olmstead M M, et al. Boronic acid-based bipyridinium salts as tunable receptors for monosaccharides and alpha-hydroxycarboxylates. J. Am. Chem. Soc., 2007, 129: 1278-1286.
    [298] Gamsey S, Suri J T, Wessling R A, et al. Continuous glucose detection using boronic acid-substituted viologens in fluorescent hydrogels: Linker effects and extension to fiber optics. Langmuir, 2006, 22: 9067-9074.
    [299] St?ber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range J. Colloid Interface Sci, 1968, 26: 62-69.
    [300] Cordes D B, Gamsey S, Sharrett Z, et al. The interaction of boronic acid-substituted viologens with pyranine: The effects of quencher charge on fluorescence quenching and glucose response. Langmuir, 2005, 21: 6540-6547.
    [301] Gamsey S, Baxter N A, Sharrett Z, et al. The effect of boronic acid-positioning in an optical glucose-sensing ensemble. Tetrahedron, 2006, 62: 6321-6331.
    [302] Yin M C, Sun J T. Synthesis and characterization of two one-dimensional lanthanide coordination polymers. J. Alloy. Compd., 2004, 381: 50-57.
    [303] Duan X F, Huang Y, Cui Y, et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature, 2001, 409: 66-69.
    [304] Gur I, Fromer N A, Geier M L, et al. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science, 2005, 310: 462-465.
    [305] Johnson J C, Choi, H. J., Knutsen, K. P., Schaller, R. D., Yang, P. D., Saykally, R. J. Single gallium nitride nanowire lasers. Nat. Mater., 2002, 1: 106-110.
    [306] Huang M H, Mao, S., Feick, H., Yan, H. Q., Wu, Y. Y., Kind, H., Weber, E., Russo, R., Yang, P. D. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292: 1897-1899.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700