海萤类似物发光反应机理及其相关双光子荧光探针材料的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物发光的发光机制包括细胞内发光和细胞外发光两大类。从生物体排放出来的某些腺体中含有能发光的物质,这种细胞外的发光引起了科学家们的广泛兴趣。海萤属于细胞外发光,由于高的生物发光效率和很高的灵敏度而成为研究热点,但是人们目前对海萤荧光素的化学发光反应机理尚不清楚,尤其是理论方面的研究显得更为缺乏。利用海萤荧光素及其类似物作荧光探针来标记细胞或DNA,直接监控活体细胞内的细胞活动和基因活动,这一方面的理论研究还是一个崭新的研究课题。因此,本论文的主旨是研究海萤荧光素衍生物发光机理,并在海萤发色团中心吡嗪环基础上设计并研究一系列不但具有良好荧光性质而且具有较高的双光子吸收截面值的新型探针材料分子。为了详细地从理论计算的角度阐述以上几点问题,我们采用量子化学密度泛函方法(DFT)对分子基态几何构型优化、吸收光谱、前线分子轨道等方面进行了计算,以及进行NBO分析和过渡态寻找,用含时密度泛函理论(TDDFT)对相关分子的激发态几何结构优化、发射光谱以及荧光寿命做了进一步研究。采用ZINDO方法和完全态求和公式(SOS)以及组内自编的FTRNLO程序计算相关分子的单光子与双光子吸收性质等相关信息。这些理论研究为探究海萤高效率发光机理问题,以及基于海萤荧光素,设计和合成具有良好的荧光性质和双光子性质的材料分子奠定了一定的基础。本论文的主要内容从三个方面进行探究:
     1.为了探究海萤发光反应机理问题,从理论上研究了一系列咪唑并吡嗪酮环衍生物(海萤荧光素的核心结构)在气相以及DMSO和二甘醇二甲醚溶剂中的化学发光反应机理问题。研究结果表明,给电子基团与中心结构的π共轭相互作用都强于吸电子基团,并且溶剂增强了给电子基团与中心结构片段之间的相互作用。通过计算基态分子的电子抽取能,结果表明在这种溶剂中其给电子能力增强、稳定性降低,从而更容易实现MIP–→MIP·这个过程。从微观角度说明了给电子基团(尤其是吲哚作为取代基时)可以增加海萤类似物发光反应过程的速率,对提高荧光效率起到了积极的作用。
     从动力学和热力学的角度对其化学发光反应过程中路径(Ⅰ) :DT~ˉ→DT→~1AAP~*→hν及路径(Ⅱ):DT-→~1AAP~(*-)→hν进行了研究。对该反应的活化能和产物荧光寿命的分析结果表明:针对化学发光反应(吡嗪过氧化四圆环质子化和失去二氧化碳激发的过程),DMSO溶剂可以使海萤化学发光反应快速进行,提高荧光效率,但是DG溶剂可以增加路径(?)的荧光效率。
     2.为了研究海萤荧光素是否可以作为双光子荧光探针材料,我们计算了一系列吡嗪衍生物的荧光及其双光子吸收性质,研究结果表明:向2, 3, 5-三取代吡嗪衍生物引入苯乙烯基团可以增加分子的共轭性,并且能增加双光子吸收截面值以提高双光子吸收性质。对比荧光性质的差别,2-苯乙烯吡嗪系列衍生物和5-苯乙烯吡嗪系列衍生物的荧光强度(激发态振子强度)均大于其他取代基(乙酰氨基和吲哚基)在C2位和在C5位取代的吡嗪系列物,而3-吲哚吡嗪系列衍生物的荧光强度大于3-苯乙烯吡嗪系列衍生物。因此我们可以得出这样的结论:苯乙烯基团对三取代吡嗪衍生物的2位和5位作用较强,尤其是荧光性质影响很大,但是当C3位由吲哚取代时,3-吲哚衍生物也表现出良好的荧光性质,总的来说,设计的这类2, 3, 5-三取代吡嗪衍生物中,2-苯乙烯基-3-吲哚基-5-苯乙烯基吡嗪、2-苯乙烯基-3, 5-吲哚基吡嗪和2, 3, 5-苯乙烯基吡嗪化合物既有良好的荧光性质,又有很好的双光子吸收性质。以上结果为研究生物体海萤荧光素作为双光子荧光探针材料提供了重要的理论线索。
     3.与DNA结合的高敏感的双光子荧光探针(TFP)材料近年来颇受研究者的关注,但双光子荧光探针与DNA结合形式还没有明确阐述。因此,从理论上研究了一系列有实验测试支持的3,6-双(4-乙烯基吡啶)-咔唑衍生物中性分子和阳离子以及3,6-双(4-乙烯基吡啶)-咔唑衍生物碘盐分子,对其几何结构、电子结构和单、双光子吸收性质进行了详尽的研究,研究结果表明,咔唑3, 6位的乙烯吡啶基团和9位的乙基吡啶上的N是活化位置,在活化位上连接不同的取代基对双光子吸收截面值的影响很大,尤其是碘离子的引入使整个分子的双光子吸收截面值发生明显的变化,而且在整个研究过程中还发现,在咔唑3, 6位的乙烯吡啶基团和9位的乙基吡啶上的N的活化位置引入了不同的取代基形成的三个系列的双光子吸收光谱均在近红外区域,所以这些系列的分子也可以作为近红外光区的双光子吸收材料。总之,当将研究的分子作为双光子荧光探针与DNA作用时,作用的活性部位应该有三个,即咔唑环的3,6,9位。并且3,6-双(4-乙烯基吡啶)-咔唑衍生物阳离子和6-双(4-乙烯基吡啶)-咔唑衍生物碘盐更可能是探针与DNA结合形式。
Bioluminescene includes two classes of intracellular and extracellular luminescence. The extracellular bioluminescence usually is that the glands emitted from orgnisms contain some substances can luminesce. The extracellular bioluminescence has caused great interest of scientists. Cypridina can emit blue light in seawater, belongs to the extracellular bioluminescence. The cypridina bioluminescence has been a research focus due to its high bioluminescence efficiency and high sensitivity. But the chemiluminescence reaction mechanism of cypridina luciferin remains unclear, and especially, the theoretical research on it is scarce. Using Cypridina luciferin analogues to label cell nucleus or DNA as probe and monitor living cell and gene activity is a new research subject. Therefore, the thesis aims to study the chemiluminescent reaction mechanism of Cypridina luciferin, design a series of TPA probe materials which exhibit not only good fluorescence properties but also large two-photon cross section based on core structure of Cypridina luciferin. We calculated the ground-state geometries, the absorption spectra and frontier molecular orbitals, NBO analysis, and the transition state search by means of DFT method. Moreover, their optimized excited-state geometry, the emission spectra and fluorescence lifetime were obtained by TDDFT. The one- and two-photon absorption properties were calculated by using the Zerner’s intermediate neglect of differential overlap (ZINDO) method and the sum of states (SOS) formula and the FTRNLO program compiled by our group. These calculations will play an important role in the study how to enhance the luminescence efficiency of cypridina luciferin analogues. And on the basis of above results, one can further explore high efficiency bioluminescence of cypridina luciferin and the design and synthesis of related TPA materials with good fluorescence efficiency and large TPA cross sections. The main contents of the thesis are summarized as follows:
     1. In order to explore the chemiluminescent reaction mechanism of cypridina luciferin, a series of cypridina derivatives were theoretically investigated in detail in the gas phase, DMSO, and diethylene glycol dimethy. These derivatives are obtained by replacing the 6-aryl with different group based on 6-aryl-2-methyllimidazo [1,2-a] pyrazin-3-(7H)-ketone rings. We discussed the geometry, bond length alternation, HOMO-LUMO gaps, electron extraction potentials and natural charge population through the key steps of chemiluminescence reaction. The results indicates that introducing the electron donating group result in better conjugated effect than electron-withdrawing group, and the interactions between electron-donating groups and central structure can be enhanced in solvent, which is ascribed to that the solvent enhances the electron donating ability and stability, and in turn facilitate MIP–→MIP·process in diglyme (DG). Form this point of view, introducing the electron-donating groups (especially indole as substituents) can increase the luminescent reaction rate of cypridina analogues and improve the efficiency of fluorescence.
     From the kinetic and thermodynamic perspective, we investigate the chemiluminescence reaction of pathes of (Ⅰ) DT~ˉ→DT→~1AAP~*→hνand (Ⅱ) DT~ˉ→~1AAP~(*ˉ)→hν. The analysis of the activation energy of the reaction and the flurescence lifetime suggests that the DMSO solvent can improve the chemiluminescence of cypridina luciferin analogues and enhance the fluorescence efficiency, but DG solvent can increase the fluorescence efficiency of path (?).
     2. Whether cypridina luciferin analogues can be used as two-photon fluorescent probe? To resolve this problem, the fluorescence and two-photon absorption (TPA) properties of a series of pyrazine derivatives were investigated. The calculated results indicate that introducing styrene groups to 2, 3, 5-trisubstituted pyrazine derivatices can increase the conjugated effect and the TPA cross section values, which can enhance the TPA properties. Comparing their fluorescence properties, the fluorescent intensity (the excited state oscillator strength f_(em)) for the 2-styrene pyrazine derivatives and 5-styrene pyrazine derivatives are larger than the other substituents (acetylamino group and indole group) at the 2-site and 5-site of pyrazine core, and the f_(em) of 3-indole pyrazine derivatives is larger than that of 3-styrene pyrazine derivatives. Based on these results, we can conclude that the styrene group plays a positive important role in fluorescence of 2-, 5-sites of pyrazine derivatives. However, the series of 3-substituted pyrazine derivatives with indole group have also good fluorescence properties. Among the 2, 3, 5-trisubstituted pyrazine derivatives, 2-styryl-3-indolyl-5-styryl-pyrazine, 2-styryl-3,5-indolyl-pyrazine and 2, 3, 5- trisubstituted pyrazines have the good fluorescence properties and largly two-photon absorption(TPA) cross-section. The results above offer some important clues for the future investigation that cypridina luciferin analogues are to be as TPA fluorescence probe material.
     3. A highly sensitive two-photon fluorescent probes (TFP) for DNA detection attract great attention of many researchers. However, the binding form between two-photon fluorescence probe and DNA remains unclear. Thus, we theoretically studied a series of 3, 6-bis (4-vinylpydinium) carbazole derivatives (BMVC), and their dication (BMVC-C) and iodization (BMVC-I). The calculated results indicate that the N of 3, 6-vinylpyridinium carbazole and the 9-vinylpyridinium carbazole are all active sites, and the TPA spectra of the compounds with the different substituents at the active site are in the near infrared region (NIR), which makes them promising NIR two-photon image materials. In summary, the positions of 3, 6 and 9 are all the active sites when the studied molecules interact with DNA as two-photon fluorescent probes. The BMVC-C and BMVC-I molecules are more likely to combine with DNA as two-photon fluorescent probes.
引文
[1] Dubois R. Note sur la physiologie des Pyrophores [J]. Compt. Rend. Soc. Biol, 1885, 37: 559-562.
    [2] HARVEY E N. The light-producing substances photogenin and photophelein of luminous animals [J]. Science, 1916, 44: 652–654.
    [3] HARVEY E N. What substance is the source of the light in the fireflies? [J]. Science, 1917, 46: 241-243.
    [4] MCELROY W D. The energy source for bioluminescence in an isolated system [J]. Proc. Natl. Acad. Sci. USA, 1947, 33: 342-345.
    [5] BITLER B, MCELROY W D. The preparation and properties of crystalline firefly luciferin [J]. Arch. Biochem. Biophys., 1957, 72: 358-368.
    [6] WHITE E H, MCCAPRA F, FIELD G, et al. The structure and synthesis of firefly luciferin [J]. J. Am. Chem. Soc., 1961, 83: 2402-2403.
    [7] WHITE E H, MCCAPRA F, FIELD G F, et al. The structure and synthesis of firefly luciferin [J]. J. Am. Chem. Soc., 1963, 85: 337-343.
    [8] CORMIER M J, STREHLER B L. The identification of KCF: requirement of long-chain aldehydes for bacterial extract luminescence [J]. J. Am. Chem. Soc., 1953, 75: 4864-4865.
    [9] STREHLER B L, CORMIER M J. Isolation identification and function of long chain fatty aldehydes affecting the bacterial luciferinluciferase reaction [J]. J. Biol. Chem., 1954. 211: 213-225.
    [10] STREHLER B L. Luminescence in cell-free extracts of luminous bacteria and its activation by DPN [J]. J. Am. Chem. Soc., 1953, 75: 1264.
    [11] CORMIER M J, TOTTER J R. Quantum efficiency determinations on components of the bacterial luminescence system [J]. Biochim. Biophys. Acta., 1957, 25: 229-237.
    [12] HASTINGS J W, GIBSON Q H. Intermediates in the bioluminescent oxidation of reduced flavin mononucleotide [J]. J. Biol. Chem., 1963, 238: 2537-2554.
    [13] SWANSON R. Crystals of luciferase from Vibrio harveyi.[J]. J. Biol. Chem., 1985, 260: 1287-1289.
    [14] FISHER A J. The 1.5-A resolution crystal structure of bacterial luciferase in low salt conditions [J]. J. Biol. Chem., 1996, 271: 21956-21968.
    [15] SHIMOMURA O, JOHNSON F H, KOHAMA Y. Reactions involved in bioluminescence systems of limpet (Latia neritoides) and luminous bacteria [J]. Proc. Natl. Acad. Sci. USA, 1972, 69: 2086-2089.
    [16] HORI K, CORMIER M J. Studies on the bioluminescence of renilla reniformis. V. absorption and fluorescence characteristics of chromatographically pure luciferin [J]. Biochim. Biophys. Acta, 1965, 102: 386-396.
    [17] INOUE S. Complete structure of renilla luciferin and luciferyl sulfate [J]. Tetrahedron Lett, 1977, 31: 2685-2688.
    [18] HORI K, CHARBONNEAU H, HART R C, et al. Structure of native renilla reniformis luciferin [J]. Proc. Natl. Acad. Sci. USA, 1977, 74: 4285-4287.
    [19] SHIMOMURA O, JOHNSON F H, SAIGA Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan [J]. Cell. Comp. Physiol., 1962, 59: 223-239.
    [20] JOHNSON F H, SHIMOMURA O. Preparation and use of aequorin for rapid microdetermination of Ca2+ in biological systems [J]. Nature, 1972, 237: 287-288.
    [21] JOHNSON F H, SHIMOMURA O. Chemical nature of light emitter in bioluminescence of aequorin [J]. Tetrahedron Lett, 1973, 31: 2963-2966.
    [22] JOHNSON F H, SHIMOMURA O, MORISE H. Mechanism of the luminescent intramolecular reaction of aequorin [J]. Biochemistry, 1974, 13: 3278-3286.
    [23] HARVEY E N. Bioluminescence [M]. New York: Academic press, 1952.
    [24] HERRING P J. Bioluminescence of invertebrates other than insects. Bioluminescence in Action [M]. London: Academic press, 1952: 199-240.
    [25] HERRING P J. A classification of luminous organisms. Bioluminescence in Action [M]. London: Academic press, 1952: 461-476.
    [26] ANDERSON R S. Studies on bioluminescence.Ⅱ. the partical purification of cypridina luciferin [J]. J. Gen. Physiol, 1935, 19: 301-305.
    [27] SHIMOMURA O, GOTO T, HIRATA Y, et al. Crystalline cypridina luciferin [J]. Bull. Chem. Soc. Japan., 1957, 30: 929-933.
    [28] KISHI Y. Cypridina bioluminescence. I. structure of cypridina luciferin [J]. Tetrahedron Lett., 1966, 29: 3427-3436.
    [29] KISHI Y. Cypridina bioluminescence. III. total synthesis of cypridina luciferin [J]. Tetrahedron Lett., 1966, 29: 3445-3450.
    [30] INOUE S, SUGIURA S, KAKOI H, et al. Cypridina bioluminescence.VIA. newroute for the synthesis of cypridina luciferin and its analogs [J]. Tetrahedron Lett, 1969, 20: 1609-1610.
    [31] JOHNSON F H, SHIMOMURA O. Mechanisms in the quantum yield of cupridina bioluminescence [J]. Photochem. Photobiol., 1970, 12: 291-295.
    [32] SHIMOMURA O, JOHNSON F H, SAIGA Y. Purification and properties of Cypridina luciferase [J]. Cell. Comp. Physiol., 1961, 58: 113-124.
    [33] GOTO T. Chemistry of bioluminescence [J]. Pure. Appl. Chem., 1968, 17: 421-441.
    [34] OHNSON F H, SHAMOMURA O, SAIGA Y, et al. Quantum efficiency of cypridina luminescences with a note on that of aequorea [J]. Cell. Comp. Physiol., 1962, 60: 85-103.
    [35] MORI K, MAKI S, NIWA H, et al. Real light emitter in the bioluminescence of the calcium-activated photoproteins aequorin and obelin: light emission from the singlet-excited state of coelenteramide phenolate anion in a contact ion pair [J]. Tetrahedron, 2006, 62: 6272-6288.
    [36] TAKAHASHI Y, KONDO H, MAKI S, et al. Chemiluminescence of 6-aryl-2-methylimidazo[1,2-a]pyrazin-3(7H)-ones in DMSO/TMG and in diglyme/acetate buffer: support for the chemiexcitation process to generate the singlet-excited state of neutral oxyluciferin in a high quantum yield in the Cypridina (Vargula) bioluminescence mechanism [J]. Tetrahedron Lett, 2006, 47: 6057-6061.
    [37] NAUMOV P, OZAWA Y, OHKUBO K, et al. Structure and Spectroscopy of Oxyluciferin, the Light Emitter of the Firefly Bioluminescence [J]. J. Am. Chem, Soc, 2009, 131: 11590-11605.
    [38] HIRANO T, HASUMI Y, OHTSUKA K, et al. Spectroscopic Studies of the Light-Color Modulation Mechanism of Firefly (Beetle) Bioluminescence [J]. J. Am. Chem, Soc, 2009, 131: 2385-2396.
    [39] OKAJIMA T, OHSAKA T. Chemiluminescence of indole and its derivatives induced by electrogenerated superoxide ion in acetonitrile solutions [J]. Electrochimica Acta, 2002, 47: 1561-1565.
    [40] Hirano T, Hasumi Y, Ohtsuka K, et al. Spectroscopic Studies of the Light-Color Modulation Mechanism of Firefly (Beetle) Bioluminescence [J]. J. Am. Chem, Soc, 2009, 131: 2385-2396.
    [41] BEIJERINCK M W. Le Photobacterium luminosum bacterie lumineu Mer du Nordse de la [J]. Arch. Neerl. Sci. Exactes Nat, 1889, 23: 401-415.
    [42] ITO K, NAKAGAWA K, MURAKAMI S, et al. Highly sensitive simultaneous bioluminescent measurement of acetate kinase and pyruvate phosphate dikinase activities using a firefly luciferase–luciferin reaction and its application to a tandem bioluminescent enzyme immunoassay [J]. Anal. Sci., 2003, 19: 105-109.
    [43] RIZZUTO R, SIMPSON A W M, BRINI M, et al. Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin [J]. Nature, 1992, 358: 325-327.
    [44] YOKAWA K, KAGENISHI T, KAWANO T. Cypridina luciferin analog, CIA as a probe for the enzymatic reaction of superoxide generation catalyzed by copper-binding hexapeptide found in chicken prion protein [J]. Luminescence, 2010, 25: 139-139.
    [45] NAKAJIMA-SHIMADA J, IIDA H, TSUJI F I, et al. Monitoring of intracellular calcium in Saccharomyces cerevisiae with an apoaequorin cDNA expression system [J]. Proc. Natl. Acad. Sci. USA, 1991, 88: 6878-6882.
    [46]张建成,王夺元.现代光化学[M].北京:化学工业出版社,2006:37-38.
    [47] LIPP M, ERKERW, DECKER H, et al. Two-photon excitation microscopy of tryptophan-containing proteins [J]. PNAS, 2002, 99: 2772-2777.
    [48] TYMISH Y O, HARIDAS E P, SERGIYM Y, et al. A Monomethine Cyanine Dye Cyan 40 for Two-photon–excited Fluorescence Detection of Nucleic Acids and Their Visualization in Live Cells [J]. Photochem. Photobiol., 2003, 77: 138-145.
    [49] MINYING C, MAGDA S, STEPHANIE J K P, et al. Real Time Differentiation of G-Protein Coupled Receptor (GPCR) Agonist and Antagonist by Two Photon Fluorescence Laser Microscopy [J]. J. Am. Chem. Soc, 2004, 126: 7160-7161.
    [50] MASAYASU T, JANET L W, THOMASV O H. Emission Ratiometric Imaging of Intracellular Zinc: Design of a Benzoxazole Fluorescent Sensor and Its Application in Two-Photon Microscopy [J]. J. Am. Chem. Soc., 2004, 126: 712-713.
    [51] KIM J S, KIM H J, KIM H M, et al. Metal Ion Sensing Novel Calix[4]crown Fluoroionophore with a Two-Photon Absorption Property [J]. J. Org. Chem., 2006, 71: 8016-8022.
    [52] KIM H M, JUNG C, KIM B R, et al. Environment-Sensitive Two-Photon Probe for Intracellular Free Magnesium Ions in Live Tissue [J]. Angew. Chem. Int. Ed., 2007, 46: 3460-3463.
    [53] KIM H M, YANG P R, SEO M S, et al. Magnesium Ion Selective Two-Photon Fluorescent Probe Based on a Benzo[h]chromene Derivative for in Vivo Imaging [J]. J. Org. Chem., 2007, 72: 2088-2096.
    [54] SILVA A P DE, GUNARATNE H Q N, GUNNLAUGSSON T. Signaling Recognition Events with Fluorescent Sensors and Switches [J]. Chem. Rev, 1997, 97: 1515-1566.
    [55]黄池宝,樊江莉,彭孝军等.双光子荧光探针[J].化学进展, 2007, 19: 1806-1812.
    [56] BHAWALKAR J D, HE G S, PRASAD P N. Nonlinear multiphoton processes in organic and polymeric materials [J]. Rep. Prog. Phys., 1996, 59: 1041-1070.
    [57] LIN T C, CHUNG S J, KIM K S, et al. In Polymers for Photonics Applications, Vol. II [M]. Berlin: Springer, 2003.
    [58] HELMCHEN F, DENK W. Deep tissue two-photon microscopy [J]. Nat. Methods., 2005, 2: 932-940.
    [59] PARTHENOPOULOS D A, RENTZEPIS P M. Three-dimensional optical storage memory [J]. Science, 1989, 245: 843-845.
    [60] BELFIELD K, LIU Y, NEGRES R, et al. Two-photon photochromism of an organic material for holographic recording [J]. Chem. Mater., 2002, 14: 3663-3667.
    [61] KAWATA S, KAWATA Y. Three-dimensional optical data storage using photochromic materials [J]. Chem. Rev., 2000, 100: 1777-1788.
    [62] MARUO S, NAKAMURA O, KAWATA S, Three-dimensional microfabrication with two-photon-absorbed photopolymerization [J]. Opt. Lett., 1997, 22: 132-134.
    [63] CUMPSTON B H, ANANTHAVEL S P, BARLOW S, et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication [J]. Nature, 1999, 398: 51-54.
    [64] KAWATA S, SUN H B, TANAKA T, et al. Finer features for functional microdevices [J]. Nature, 2001, 412: 697-698.
    [65] ZHOU W, KUEBLER S M, BRAUN K L, et al. An efficienttwo-photon-generated photoacid applied to positive-tone 3D microfabrication [J]. Science, 2002, 296: 1106-1109.
    [66] HE G S, BHAWALKAR J D, ZHAO C F, et al. Optical limiting effect in a two-photon absorption dye doped solid matrix [J]. Appl. Phys. Lett., 1995, 67: 2433-2435.
    [67] SPANGLER C W. Recent development in the design of organic materials for optical power limiting [J]. J. Mater. Chem., 1999, 9: 2013-2020.
    [68] BAUER C, SCHNABEL B, KLEY E B, et al. Two-photon pumped lasing from a two-dimensional photonic bandgap structure with polymeric gain material [J]. Adv. Mater, 2002, 14: 673-676.
    [69] ABBOTTO A, BEVERINA L, BOZIO R. Push-pull organic chromophores for frequency-upconverted lasing [J]. Adv. Mater, 2000, 12: 1963-1967.
    [70] DENK W, STRICKLER J H, WEBB W W, Two-photon laser scanning fluorescence microscopy [J]. Science, 1990, 248: 73-76.
    [71] XU C, ZIPFEL W, SHEAR J B, et al. Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy [J]. Proc. Natl. Acad. Sci. USA, 1996, 93: 10763-10768.
    [72] LARSON D R, ZIPFEL W R, WILLIAMS R M, et al. Watersoluble QDs for multiphoton fluorescence imaging in vivo [J]. Science, 2003, 300: 1434-1436.
    [73] PALMER G M, KEELY P J, BRESLIN T M, et al. Autofluorescence spectroscopy of normal and malignant human breast cell lines [J]. Photochem. Photobiol., 2003, 78: 462-469.
    [74] BHAWALKAR J D, KUMAR N D, ZHAO C F, et al. Two-photon photodynamic therapy [J]. J. Clin. Laser Med. Surg., 1997, 15: 201-204.
    [75] KIM S, OHULCHANSKYY T, PUDAVAR H, et al. Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-Photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy [J]. J. Am. Chem. Soc., 2007, 129: 2669-2675.
    [76] DICHTEL W, SERIN J, EDDER C, et al. Singlet oxygen generation via two-photon excited fret [J]. J. Am. Chem. Soc., 2004, 126: 5380-5381.
    [77] KONIG K. Multiphoton microscopy in life sciences [J]. J. Microsc., 2000, 200: 83-104.
    [78] ZIPFEL W R, WILLIAMS R M, CHRISTIE R. Live tissue intrinsic emissionmicroscopy using multiphoton-excited native fluorescence and second harmonic generation [J]. Proc. Natl. Acad. Sci. USA, 2003, 100: 7075-7080.
    [79] KOHLER R H, CAO J, ZIPFEL W R. Exchange of protein molecules through connections between higher plant plastids [J]. Science, 1997, 276: 2039-2042.
    [80] MILLER M J, WEI S H, PARKER I, et al. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node [J]. Science, 2002, 296: 1869-1873.
    [81] ABBOTTO A, BALDINI G, BEVERINA L, et al. Dimethyl-pepep: a DNA probe in two-photon excitation cellular imaging [J]. Biophys. Chem., 2005, 114: 35-41.
    [82] CHEN X-Y, SHI J, LI Y-M, et al. Two-Photon Fluorescent Probes of Biological Zn(II) Derived from 7-Hydroxyquinoline [J]. Org. Lett., 2009, 11: 4426-4429.
    [83] BELFIELD K D, ANDRADE C D, YANEZ C O, et al. New Two-Photon-Absorbing Probe with Efficient Superfluorescent Properties Mykhailo V. Bondar [J]. J. Phys. Chem. B, 2010, 114: 14087-14095.
    [84] KIM H M, SEO M S, AN M J, et al. Two-Photon Fluorescent Probes for Intracellular Free Zinc Ions in Living Tissue [J]. Angew. Chem. Int. Ed., 2008, 47: 5167-5170.
    [85] WANG C K, ZHAO K, SU Y, et al. Solvent effects on the electronic structure of a newly synthesized two-photon polymerization initiator [J]. J. Chem. Phys., 2003, 119: 1208-1213.
    [86] MORALES A R, YANEZ C O, SCHAFER-HALES K J, et al. [J]. Bioconjugate Chem., 2009, 20: 1992-2000.
    [87] THOMPSON E M, NAGATA S, TSUJI F I. Vargula hilgendorfii luciferase: A secreted reporter enzyme for monitoring gene expression in mammalian cells [J]. Gene, 1990, 96: 257-262.
    [88] INOUYE S, OHMIYA Y, TOYA Y, et al. Imaging of luciferase secretion from transformed Chinese hamster ovary cells [J]. Proc. Natl. Acad. Sci. USA, 1992, 89: 9584-9587.
    [89] TOMPSON E M, ADENOT P, TSUJI F I, et al. Real time imaging of transcriptional activity in live mouse preimplantation embryos using a secreted luciferase [J]. Proc. Natl. Acad. Sci. USA, 1995, 92: 1317-1321.
    [90] MIESENBOCK G, ROTHMAN J E. Patterns of synaptic activity in neuralnetworks recorded by light emission from synaptolucins [J]. Proc. Natl. Acad. Sci. USA, 1997, 94: 3402-3407.
    [91] FURATA T, WANG S S H, DANTZKER J L, et al. Brominated 7-hydroxycoumarin-4-ylmethyls: photolabile protecting groups with biologically useful cross-sections for two photon photolysis [J]. PNAS, 1999, 96: 1193-1200.
    [92] IKEDA C, YOON Z S, PARK M, et al. Helicity induction and two-photon absorbance enhancement in zinc(ii) meso-meso linked porphyrin oligomers via intermolecular hydrogen bonding interactions. [J]. J Am Chem Soc., 2005, 127: 534-535.
    [93]曹阳.量子化学引论[M].北京:人民教育出版社, 1980.
    [94]刘若庄.量子化学基础[M].北京:科学出版社, 1983.
    [95] (a)徐光宪,黎乐民.量子化学基础原理和从头计算法[M].北京:科学出版社, 1981. (b)封继康.基础量子化学原理[M].北京:高等教育出版社, 1987. (c)王德民,叶学其.神奇的预测:趣谈量子化学[M].湖南:湖南教育出版社, 2001.
    [96] HEITLER W, LONDON F. Wechselwirkung neutraler Atome und hom?opolare Bindung nach der Quantenmechanik [J]. Z. F. Phys., 1927, 44: 455-472.
    [97] PAULING L, WILSON E B. Introduction to quantum mechanics [M]. New York, McGraw-Hill Book Company. 1935: 340-380.
    [98] BPRN M, OPPENHEIMER R E. Zur Quantentheorie der Molekeln [J]. Ann. Phys. (Leipzig), 1927, 84: 457-484.
    [99] HARTREE D R. The calculation of atomic structures [M]. New York: Wiley; London: Chapman and Hall, 1957.
    [100] PAULI W.über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren [J]. Z. Physik., 1925, 31: 765-783.
    [101] ROOTHAAN C C J. New developments in molecular orbital theory [J]. Rev. Mod. Phys., 1951, 23: 69-89.
    [102] HOHENBERG P, KOHN W. Inhomogeneous electron gas [J]. Phys. Rev. B, 1964, 136: 864-871.
    [103] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects [J]. Phys. Rev. A, 1965, 140: 1133-1138.
    [104] JANAK J F. Proof that (?)E /(?)n_i =εin density-functional theory [J]. Phys. Rev. B, 1978, 18: 7165-7168.
    [105] SLATER J C. Statistical exchange-correction in the self-consistent field [J]. Adv. Quantum Chem., 1972, 6: 1-92.
    [106] SLATER J C. The Self-Consistent Field for Molecules and Solids: Quantum Theory of Molecules and Solids [M]. Vol. 4. New York: McGraw-Hill, 1974.
    [107] POPLE J A, SEGAL G A. Approximate Self-Consistent Molecular Orbital Theory. II. Calculations with Complete Neglect of Differential Overlap [J]. J. Chem. Phys., 1965, 43: S136-S151.
    [108] POPLE J A, BEVERIDGE D L.江元生译.近似分子轨道理论方法[M].北京:科学出版社, 1976.
    [109] HOFFMANN R. An Extended Hückel Theory. I. Hydrocarbons [J]. J. Chem. Phys, 1963, 39: 1397-1412.
    [110] RIDLEY J E, ZERNER M C. Triplet states via intermediate neglect of differential overlap: Benzene, pyridine and the diazines [J]. Theo. Chim. Acta., 1976, 42: 223-236.
    [111] DEWAR M J S, ZOEBISCH E G, HEALY E F, et al. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model[J]. J . Am. Chem. Soc., 1985, 107: 3902-3909.
    [112] Condon E U, Shortley G H. The Theory of Atomic Spectra [M]. UK: Cambridge University Press, 1953.
    [113] SLATER J C. The Quantum Theory of Atomic Structure [M]. McGraw-Hill, 1960.
    [114] MATAGA N, NISHIMOTO K. Electronic structure and spectra of nitrogen hetero- cycles [J]. Z. Physik. Chem(Frankfrut), 1957, 13, 140.
    [115] PARISER R, PARR R G. A Semi-Empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules. II [J]. J. Chem.Phys., 1953, 21: 767-776.
    [116] RIDLEY J, ZERNER M. An Intermediate Neglect of Differential Overlap Technique for Spectroscopy" Pyrrole and the Azines [J]. Theor. Chim. Acta., 1973, 32: 111-134.
    [117] BALK P, DEBRUIJN S, HOIJTINK G J. ELECTRONIC SPECTRA OF ALTERNANT HYDROCARBON MONONEGATIVE IONS [J]. Rec. Trav. Chim., 1957, 76, 907-918.
    [118]周世勋.量子力学[M].上海:上海科技出版社, 1963.
    [119]过巳吉.非线性光学[M].西安:西北电讯工程学院出版社, 1986.
    [120] ORR B J, WARD J F. Perturbation theory of the non-linear optical polarization of an isolated system [J]. Molec Phys., 1971, 20: 513-526.
    [121] DICK B, HOCHSTRASSER R M, Trommmsdorf H P. Resonant Molecular Optics: Nonlinear Optical Properties of Organic Molecules and Crystals [M]. Academic Press, 1987.
    [122] BHAWALKAR J D, HE G S, PRASAD P N. Nonlinear multiphoton processes in organic and polymeric materials [J]. Rep. Prog. Phys., 1996, 59: 1041-1070.
    [123]徐光宪,黎乐民,王德民,等.量子化学(下册) [M].北京:科学出版社, 2008: 523-591.
    [124] MIERTUS S, SCROCCO E, TOMASI J. Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects [J]. Chem. Phys., 1981, 55: 117-129.
    [125] MIERTUS S, TOMASI J. Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes [J]. Chem. Phys., 1982, 65: 239-245.
    [126] PASCUAL-AHUIR J L, SILLA E, TUNON I. GEPOL: An improved description of molecular-surfaces. 3. A new algorithm for the computation of a solvent-excluding surface [J]. J. Comp. Chem., 1994, 15: 1127-1138.
    [127] COSSI M, BARONE V, CAMMI R, et al. Ab initio study of solvated molecules: A new implementation of the polarizable continuum model [J]. Chem. Phys. Lett, 1996, 255: 327-335.
    [128] BARONE V, COSSI M, TOMASI J. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model [J]. J. Chem. Phys, 1997, 107: 3210-3221.
    [129] CANCES E, MENNUCCI B, TOMASI J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anistropic dielectrics [J]. J. Chem. Phys, 1997, 107: 3032-3041.
    [130] MENNUCCI B, TOMASI J. Continuum solvation models: A new approach to the problem of solute's charge distribution and cavity boundaries [J]. J. Chem. Phys, 1997, 106: 5151-5158.
    [131] MENNUCCI B, CANCES E, TOMASI J. Evaluation of solvent effects in isotropic and anisotropic dielectrics, and in ionic solutions with a unified integral equation method: Theoretical bases, computational implementation and numerical applications [J]. J. Phys. Chem. B, 1997, 101: 10506-10517.
    [132] BARONE V, COSSI M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model [J]. J. Phys. Chem. A, 1998, 102: 1995-2001.
    [133] COSSI M, BARONE V, MENNUCCI B, et al. Ab initio study of ionic solutions by a polarizable continuum dielectric model [J]. Chem. Phys. Lett., 1998, 286: 253-260.
    [134] BARONE V, COSSI M, TOMASI J. Geometry optimization of molecular structures in solution by the polarizable continuum model [J]. J. Comp. Chem., 1998, 19: 404-417.
    [135] CAMMI R, MENNUCCI B, TOMASI J. Second-order M?ller-Plesset analytical derivatives for the polarizable continuum model using the relaxed density approach [J]. J. Phys. Chem. A, 1999, 103: 9100-9108.
    [136] COSSI M, BARONE V, ROBB M A. A direct procedure for the evaluation of solvent effects in MC-SCF calculations [J]. J. Chem. Phys., 1999, 111: 5295-5302.
    [137] TOMASI J, MENNUCCI B, CANCES E. The IEF version of the PCM solvation method: An overview of a new method addressed to study molecular solutes at the QM ab initio level [J]. J. Mol. Struct. (Theochem), 1999, 464: 211-226.
    [138] CAMMI R, MENNUCCI B, TOMASI J. Fast evaluation of geometries andproperties of excited molecules in solution: A Tamm-Dancoff model with application to 4-dimethylaminobenzonitrile [J]. J. Phys. Chem. A, 2000, 104: 5631-5637.
    [139] COSSI M, BARONE V. Solvent effect on vertical electronic transitions by the polarizable continuum model [J]. J. Chem. Phys., 2000, 112: 2427-2435.
    [140] COSSI M, BARONE V. Time-dependent density functional theory for molecules in liquid solutions [J]. J. Chem. Phys., 2001, 115: 4708-4717.
    [141] COSSI M, REGA N, SCALMANI G, et al. Polarizable dielectric model of solvation with inclusion of charge penetration effects [J]. J. Chem. Phys., 2001, 114: 5691-5701.
    [142] COSSI M, SCALMANI G, REGA N, et al. New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution [J]. J. Chem. Phys., 2002, 117: 43-54.
    [143] COSSI M, REGA N, SCALMANI G, et al. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model [J]. J. Comp. Chem., 2003, 24: 669-681.
    [144] KIRKWOOD J G. Theory of solutions of molecules containing widely separated charges with special application to zwitterions [J]. J. Chem. Phys., 1934, 2: 351-361.
    [145] ONSAGER L. Electric moments of molecules in liquids [J]. J. Am. Chem. Soc., 1936, 58: 1486-1493.
    [146] WONG M W, FRISCH M J, WIBERG K B. Solvent effects 1. The mediation of electrostatic effects by solvents [J]. J. Am. Chem. Soc., 1991, 113: 4776-4782.
    [147] WONG M W, WIBERG K B, FRISCH M J. Hartree-Fock second derivatives and electric field properties in a solvent reaction field - Theory and Application [J]. J. Chem. Phys., 1991, 95: 8991-8998.
    [148] WONG M W, WIBERG K B, FRISCH M J. Solvent effects 2. Medium effect on the structure, energy, charge density, and vibrational frequencies of sulfamic acid [J]. J. Am. Chem. Soc., 1992, 114: 523-529.
    [149] WONG M W, WIBERG K B, FRISCH M J. Solvent effects 3. Tautomeric equilibria of formamide and 2-Pyridone in the gas phase and solution: An ab initio SCRF study [J]. J. Am. Chem. Soc., 1992, 114: 1645-1652.
    [150] KISHI Y, GOTO T, EGUCHI S, et al. Cypridina bioluminescence II structuralstudies of Cypridina luciferin by means of a high resolution mass spectrometer and an amino acid analyzer [J]. Tetrahedron Lett., 1966, 7: 3437-3444.
    [151] SHIMOMURA O, JOHNSON F H, MASUGI T Cypridina Bioluminescence: Light-Emitting Oxyluciferin-Luciferase Complex [J]. Science, 1969, 164: 1299-1300.
    [152] KATSUNORI T, Luminescence of imidazo[1,2-a]pyrazin-3(7H)-one compounds [J] . Bioorg .Chem., 2007, 35: 82-111.
    [153] SHIMOMURA O, JOHNSON F H, Introduction to the Cypridina system [J]. Methods Enzymol, 1978, 57: 331-364.
    [154] YUBIN Y, SHAOMIN J, FUKE Z, et al. Synthesis of novel bispyrene diamines and their application as ratiometric fluorescent probes for detection of DNA [J]. Biosens. Bioelectron., 2009, 24: 3442-3447.
    [155] WU C, KAWASAKI K Preparation of Biotinylated Cypridina Luciferase and Its Use in Bioluminescent Enzyme Immunoassay [J]. Anal. Chem., 2007, 79: 1634-1638.
    [156]谭道经,顾瑞霞. ATP生物发光技术在乳品工业中的应用[J].食品与机械, 1994, 3: 25-26.
    [157] TERANISHI K, SHIMOMURA O, Coelenterazine Analogs as Chemiluminescent Probe for Superoxide Anion [J]. Analytical Biochem., 1997, 249: 37-43.
    [158] SHIMOMURA O, WU C, MURAI A, et al. Evaluation of Five Imidazopyrazinone-Type Chemiluminescent Superoxide Probes and Their Application to the Measurement of Superoxide Anion Generated byListeria monocytogenes [J]. Analytical Biochem., 1998, 258: 230-235.
    [159]王洋,邓玉林,庆宏.量子点标记的生物实时动态示踪成像研究进展[J]. Chem. J. Chinese Universities, 2008, 29: 661-668.
    [160]胡哲,尹继刚,姜宁.化学和生物发光的原理及其在生命科学研究中的应用[J] .Chinese . J .Vet . Sci, 2008, 28: 732-742.
    [161]林海.生物发光现象在环境科学中的应用[J].环境科学, 1981, 6: 67-69.
    [162] HIRANO T, GOMI Y, TAKAHASHI T, et al. Chemiluminescence of coelenterazine analogues - structures of emitting species [J].Tetrahedron Lett., 1992, 39: 5771-5774.
    [163] SAITO R, HIRANO T, NIWA H, et al. Substituent effects on the chemiluminescent properties of coelenterazine analogues [J]. Chem. Lett., 1998, 95-96.
    [164] MCCAPRA F, CHANG Y C, The chemiluminescence of a Cypridina luciferin analog [J]. Chem. Commun., 1967, 1011-1012.
    [165] (a) GOTO T, INOUE S, SUGIURA S, Cypridina bioluminescence IV. Synthesis and chemiluminescence of 3,7-dihydroimidazo[1,2-a]pyrazin-3-one and its 2-methyl derivative[J]. Tetrahedron Lett., 1968, 3873-3876. (b) GOTO T, FUKATSU H, Cypridina bioluminescence VII. chemiluminescence in micelle solutions—a model system for cypridina bioluminescence [J]. Tetrahedron Lett., 1969, 4299-4302.
    [166] SHIMOMURA O, JOHNSON F H, Mechanism of the luminescent oxidation of Cypridina luciferin. [J]. Biochem. Biophys. Res. Commun., 1971, 44: 340-346.
    [167] USAMI K, ISOBE M, Low-temperature photooxygenation of coelenterate luciferin analog synthesis and proof of 1,2-dioxetanone as luminescence intermediate. [J]. Tetrahedron, 1996, 52, 12061-12090.
    [168] KONDO H, IGARASHI T, MAKI S, et al. Hydrogenation of olefins using water and zinc metal catalyzed by a rhodium complex [J]. Tetrahedron Lett., 2005, 46: 7701-7704.
    [169] HIRANO T, TAKAHASHI Y, KONDO H, et al. The reaction mechanism for the high quantum yield of Cypridina (Vargula) bioluminescence supported by the chemiluminescence of 6-aryl-2-methylimidazo[1,2-a]pyrazin-3(7H)-ones (Cypridina luciferin analogues) [J]. Photochem .Photobiol. sci., 2008, 7: 197-207.
    [170] Johnson F H, Stachel H D, Taylor E C, et al. Bioluminescence in Progress [M]. Princeton: Princeton UniversityPress, 1966: 67-82.
    [171] HOHENBERG P, KOHN W. Inhomogeneous electron gas [J]. Phys. Rev. B, 1964, 136: 864-871.
    [172] NAVIZET I, LIU Y, FERRE N, et al. Color-Tuning Mechanism of Firefly Investigated by Multi-Configurational Perturbation Method [J]. J. AM. CHEM. SOC, 2010, 132: 706-712.
    [173] MIN C, REN A, GUO J, et al. A Time-Dependent Density Functional Theory Investigation on the Origin of Red Chemiluminescence [J]. ChemPhysChem, 2010, 11:251-259.
    [174] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 03, Revision C.02; Gaussian, Inc, Pittsburgh PA, 2003
    [175] AHLRICHS R, BAR M, BARON H P, et al. TURBOMOLE-V5-7-patches; University of Karlsruhe, Karlsruhe, 2004.
    [176] CASIDA M E, JAMORSHI C, CASIDA K C. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold [J] J. Chem. Phys, 1998, 108: 4439-4449.
    [177] STATMANN R E, SCUSERIA G E, FRISCH M J. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules [J] J. Chem. Phys, 1998, 109: 8218-8224.
    [178]孙颖,任爱民,闵春刚等.海萤荧光素衍生物发光反应关键步骤的理论研究[J]. Acta. Phys. Chim. Sin, 2010, 26: 001-009.
    [179] OKAJIMA T, TOKUDA K, OHSAKA T. Chemiluminescence of a Cypridina luciferin analogue by electrogenerated superoxide ion [J]. Bioelectrochem. Bioenerg, 1996, 41: 205-208.
    [180] FARRLTKH U O, BROCKMAN P. Temperature distribution in side-and end-pumped laser crystal rods: temporal and spatial variations [J]. Applied. Optics, 1993, 32: 2075-2081.
    [181] ZHANG W, CUI Y, WANG S, et al. Two-photon Absorption Properties of Multi-branched Pyrazine Derivatives, Acta Chimica Sinica, 2009, 67. 16: 1880-1884.
    [182] INOUYE S., TSUJI F I. Monitoring gene expression in Chinese hamster ovary cells using secreted apoaequorin. Anal. Biochem, 1992, 201: 114–118.
    [183] Tsien R. Y. In Fluorescent Chemosensors for Ion and Molecule Recognition; Czarnik, A. W., Ed.; ACS: Washington, DC, 1993, pp 130–146.
    [184] Zollinger H. Color Chemistry: Syntheses, Properties, and Applications of Organic Dyes and Pigments, 3rd ed.; Wiley-VCH: Weinheim, 2003.
    [185] Wang J, Xing D, He Y, et al. Experimental study on photodynamic diagnosis of cancer mediated by chemiluminescence probe, FEBS Letters, 2002, 523: 128-132.
    [186] CHA M, TORRUELLAS W E, STEGEMAN G I, et al. Two photon absorptionof di-alkyl-amino-nitro-stilbene side chain polymer [J]. J. Appl. Phys. Lett, 1994, 65: 2648-2650.
    [187] KOGEJ T, BELJONNE D, MEYERS F, et al. Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores [J]. Chem .Phys. Lett, 1998, 298: 1-6.
    [188] BISHOP D M, LUIS J M, KIRTMAN B. Vibration and two-photon absorption [J] J. Chem. Phys, 2002, 116: 9729-9739.
    [189] ORR B J, WARD J F. Perturbation theory of the non-linear optical polarization of an isolated system [J] Molec Phys. 1971, 20: 513-526.
    [190] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09, Revision A.02. , Wallingford CT, Gaussian, Inc., 2009.
    [191] REN A M, FENG J K, GUOJ F. Studies on Two-photon Absorption Cross-sections of Different Type Stilbene Derivatives [J]. Acta Chim Sinica,2001, 59: 508-515.
    [192] ZHOU X, REN A M, FENG J K. An insight into a novel class of self-as-sembled porphyrins: geometric structure, electronic structure, one- and two-photon absorption propcrties [J]. Chem. Eur. J, 2004, 10: 5623-5631.
    [193] ZHOU X, FENG J K, REN A M. One- and two-photon absorption properties of octupolar molecules with tetrahedral structure [J]. Chem Phys Lett, 2005, 403: 7-15.
    [194] GESKIN V M, LAMBERT C, BREDAS J L. Origin Of High Second- And Third-Order Nonlinear Optical Response In Ammonio/Borato Diphenylpolyene Zwitterions: The Remarkable Role Of Polarized Aromatic Groups [J]. J Am Chem Soc, 2003, 125:15651-15658.
    [195] SHUNSUKE F, DAISUKE H, YOSHIHARU T, et al. Regioselective phenyl-substitution effects on the solvatochromism of 2-phenylimidazo [l,2-0]pyrazin-3(7H)-one derivatives:expansion of the color variation range of a visible indicator for the proton donor ability of solvents [J]. Tetrahedron Letters, 2004, 45: 8531-8534.
    [196] ZHAO Y., TRUHLAR D. G. Hybrid Meta Density Functional Theory Methods for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions:?The MPW1B95 and MPWB1K Models and Comparative Assessments for Hydrogen Bonding and van der Waals Interactions [J]. J. Phys. Chem. A, 2004,108: 6908-6918.
    [197] ZHAO Y., TRUHLAR D. G. Benchmark Databases for Nonbonded Interactions and Their Use to Test Density Functional Theory [J]. J. Chem. Theory Comput, 2005, 1: 415-432.
    [198] PERDEW J P. In Electronic Structure of Solids 91; P. Ziesche, H. Eschig, Eds.; Akademie Verlag: Berlin, 1991, p 11.
    [199] PERDEW J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett, 1996, 77: 3865-3868.
    [200] PERDEW J P, BURKE K, ERNZERHOF M. Erratum: Generalized gradient approximation made simple [J]. Phys. Rev. Lett, 1997, 78: 1396-1396.
    [201] REY J, SAVIN A. Virtual space level shifting and correlation energies [J]. Int. J. Quantum Chem, 1998, 69: 581-590.
    [202] YANAI T, TEW D P, HANDY N C. A new hybrid exchange-correlation functional using the Coulomb-Attenuating Method (CAM-B3LYP) [J]. Chem. Phys. Lett, 2004, 393: 51-57..
    [203] KONIG K. Multiphoton microscopy in life sciences [J]. J. Microsc. 2000, 200: 83-104.
    [204] ZIPFEL W R, WILLIAMS R M, CHRISTIE R, Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation [J]. Proc. Natl. Acad. Sci. USA 2003, 100: 7075-7080.
    [205] KOHLER R H, CAO J, ZIPFEL W R. Exchange of Protein Molecules Through Connections Between Higher Plant Plastids [J]. Science, 1997, 276: 2039-2042.
    [206] MILLER M J, WEI S H, PARKER I, et al. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node [J]. Science, 2002, 296: 1869-1873.
    [207] ZIPFEL W R, WILLIAMS R M, WEBB W W. Nonlinear magic: multiphoton microscopy in the biosciences [J]. Nat. Biotechnol, 2003, 21: 1369-1377.
    [208] ZHANG Y H, WANG J J, JIA P F, et al. Two-photon fluorescence imaging of DNA in living plant turbid tissue with carbazole dicationic salt [J]. Org Biomol Chem, 2010, 8: 4582-4588
    [209] TSUZUKI S, KATOH R, MIKAMI M. Analysis of interactions between 1-butyl-3-methylimidazolium cation and halide anions (Cl(-), Br(-) and I(-)) by ab initio calculations: anion size effects on preferential locations of anions [J].Molec Phys, 2008, 106: 1621-1629.
    [210] LIU X, LIU H, JIA P F, et al. New Two-photon Fluorescence Probe for Nuclear DNA Imaging [J]. Chemical Journal of Chinese Uinversite, 2009, 3: 465-467
    [211] ZHAO Y, REN AM, FENG JK, et al. Theoretical Study of One–photon and two–photon Absorption Properties of Perylene Tetracarboxylic Derivatives [J]. J. Chem. Phys. 2008, 129: 014301-1-10.
    [212] ZHAO Y, REN AM, FENG JK, et al. Theoretical Study of Solvent Effect on One- and Two-Photon Absorption Properties of Starburst DCM Derivatives [J]. Phys Chem Chem Phys, 2009, 11: 11538-11545.
    [213] ZHOU X, REN AM, FENG JK, et al. The One-photon and Two-photon Absorption Properties for Porphyrin-Derived Monomers and Dimers [J]. ChemPhysChem, 2003, 4: 991-997.
    [214] LI W C, FENG J K, REN A M, et al. Theoretical Studies for One- and Two-photon Absorption Properties of 3,6-and 2,7-Carbazole Derivatives [J], Chemical Journal of Chinese Uinversites, 2010, 1: 100-105.
    [215] Marder S R, Perry J W, Bourhill G, et al. Relation between bond-length alternation and 2nd electronic hyperpolarizability of conjugated organic-molecules [J]. Science, 1993, 261: 186-189.
    [216] Murugan N A, Kongsted J, Rinkevicius Z, et al. Breakdown of the first hyperpolarizability/bond-length alternation parameter relationship [J]. PNAS, 2010, 107: 16453-16458.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700