取代基对联萘桥联手性双卟啉分子二阶非线性光学性质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着光通讯、光电子学和光信息处理等实用领域的飞速发展,非线性光学(NLO)效应的作用也越来越重要。而由于无机非线性光学材料在其性质上的一些局限,使得人们把注意力逐渐转移到有机材料方面。与无机非线性光学材料相比较,有机非线性光学材料具有易于化学修饰加工、极短的光学响应时间和高的化学损伤阀值等优点,具有广泛的应用前景。如何提高有机生色团的非线性光学性能是这一领域的关键课题之一。在众多的NLO生色团中,卟啉类化合物由于其共轭结构的可控性,表现出优良的非线性光学性能,且利用手性分子本征的非中心对称结构,使其在二阶NLO材料设计方面有着独特的优越性。
     本论文设计了一系列手性联萘桥联双卟啉分子,通过改变推拉基团的位置,利用激子耦合理论研究其二阶非线性光学性质和空间结构的关系。本文采用密度泛函理论(DFT)B3LYP/6-31G(d,p)方法对所有模型分子进行几何构型优化,用ZINDO方法计算电子光谱,得到基态和各激发态的偶极距;基态到激发态及各激发态之间的跃迁点偶极矩,并得到基态到各激发态的跃迁能、相应的振子强度等参量。运用自编全态求和(SOS)程序计算分子二阶非线性光学系数,得到分子一阶超极化率β矢量在偶极矩μ方向上的投影值βμ、分子一阶超极化率的超瑞利散射值βHRS。本文还利用Hyperchem软件和有限场拟合的方法,分别计算了Ib子的△μ值,从理论上说明使用两种方法计算分子非线性光学系数的可行性。
     本文从量子力学和量子化学的角度,全面介绍了激子耦合理论及其在二聚体系分子中的应用,并将其应用到不同构型的二聚体系模型分子当中。研究结果表明,卟啉二聚体分子中两个单体卟啉之间有强的激子耦合作用,B带的Davydov分裂大小与两个卟啉环的相对取向以及两卟啉环中心之间距离有关。双卟啉分子中一阶超极化率的大小不仅与推拉电子基团的空间排列方式有关,而且随着单体卟啉非线性性能的增加而增加。联萘桥联具有大一阶超极化率的取代卟啉单体而形成的双卟啉分子IIc的一阶超极化率显著提高,比IIb系列分子提高了近一个数量级。IIc系列分子的一阶超极化率随着推拉基团的排列方式变化规律与IIb系列分子相同,它们都可以用激子耦合的偶极取向模型进行解释。乙炔基的引入使得IIc双卟啉系列分子单体卟啉环中心之间的距离比IIb系列减小,且随着单体卟啉间距离接近,在B带激子跃迁态附近,IIc2系列分子还出现两个邻近卟啉环之间的电荷转移跃迁态(CT态)。三能级模型下跃迁通道分析表明,三能级偶极耦合增强不仅与B带激子跃迁态有关,还与CT态密切相关。研究表明,通过优化双卟啉二聚体分子偶极取向和偶极耦合增强的效应可以提高二阶非线性光学性能。
For the past few years, with the development of photo-communication, photoelectronics and optical information processing. Non Linear Optics (NLO) become more and more important. And because of some disadvantages of inorganic NLO, more and nore people Divert their attention to organic NLO. Compared with the inorganic NLO matertial, organic NLO material can be modified and processed easily, fast response time, and high damage threshold. It has comprehensive application foreground and spread value. How to improve the NLO of organic chromophore is the most important thing. Among the NLO chromophores, because of the conjugate structure’s adaptable, porphyrin have excellent NLO property. With natural noncentrosymmetrical structure and intrinsical thermostability, chiral molecules have many unique advantages for NLO materials.
     In this paper, we studied the second-order NLO properties of some porphyrins, especially the chiral bis-porphyrins. By changing the position of Donor and Accepter electron groups, and using the exciton coupled theory to study the relationship between the second NLO properity and spatial structure. Quantum chemical software Gaussian 03 was employed in calculation, and structures of all molecules were optimized based on the methods of semiempirical B3LYP(DFT) at 6-31G(d,p) basis set level, after which the electronic spectra were calculated by the method of ZINDO. The transition electric dipole moments between ground and excited states, between excited and excited states, the transition energies, the corresponding oscillator strength. Using the SOS program, we calculate the second NLO coefficient, calculated the first hyperpolarizabilitiesβof a series of molecules ,βμ,βHRS, and so on. Finally, we calculated the△μof 1b molecule using the Hyperchem and finite field method, and both of this two methods is correct.
     Results showed that there were strong exciton coupling interactions between two porphyrin chromophores in these bis-porphyrins, and the Davydov splitting of B bands were related to both distances and relative orientations between two porphyrin rings. The first hyperpolarizabilities of chiral bis-porphyrins depend on the spacial arrangement of the substituents. The increasement of first hyperpolarizabilities in bis-porphyrins is not just related to the increasing of transition dipole moment changes between excited and ground state, but related to the relative orientations between ground state dipole moment vectors and exciton coupling dipole moment vectors as well. For the binaphthyl bridged bis-porphyrins, the second-order nonlinear optical properties could be greatly improved by introducing push-pull substituents on porphyrin chromophore, and it’s more than an order of IIb series molecules. the first-order hyperpolarizability of IIc molecules have the same evolution of IIb series molecules. Which can be explained by the excition model. The introduction of acetylene-based made the distance between the monomer porphyrin ring centers decreased, And with the distance between the two neighboring porphyrin ring decreased, appeared a charge transfer transition state (CT state) between the two neighboring porphyrin ring of IIc2 molecule. Transition three-level model channel analysis showed that three-level dipole coupled with enhanced not only with the B exciton transition state, but also closely related with the CT state. It can be improving second-order nonlinear optical properties by optimization of porphyrin dimer dipole orientation and dipole coupling effect.
引文
[1]叶成, Zyss J.分子非线性光学的理论与实践[M].北京:化学工业出版社, 1996
    [2]王恭明,钱世雄.非线性光学[M].上海:复旦大学出版社, 2001
    [3]秦金贵,刘道玉.有机和金属有机非线性光学晶体材料[M].化学通报, 1990, 10: 23-30
    [4]魏家友,王海船,封继康等.取代硅烷系列分子二阶非线性光学性质的ZNIDO-SOS研究[J].化学学报, 1997, 55: 133-139
    [5] Maki J J , Personns A. One-electron Second-order Optical Activity of a Helix[J]. J. Chem. Phys. 1996, 104(24): 9340-9348
    [6] John O. Calculated Hyperpolarisability of Substituted Phenysilanes[J]. J.Chem.Soc. Faraday Trans, 1991, 87(18): 3015-3019
    [7]封继康.非线性光学材料的分子设计研究[J].化学学报, 2005, 63(14):1245-1256
    [8]马如璋,蒋民华,徐祖雄.功能材料科学[M].冶金工业出版社, 1998, 11
    [9]仇永清,盖秀兰,程志,苏忠民,封继康等.取代查尔酮衍生物非线性光学性质的FF/PM3理论计算[J].东北师大学报自然科学版, 2000, 32: 56-59
    [10]周为群,曹阳.香豆素衍生物分子二阶非线性光学效应理论研究[J].化学物理学报, 1998, 11(2): 105-105
    [11] DeMelo C P, SilbeyR. Variational-perturbational treatment for the polarizabilities of conjugated chains. II. Hyperpolarizabilities of polyenic chains[J]. J Chem Phys, 1988, 88(4): 2567-2571
    [12] Karkaas A, Elmali Aetal. Nonlinear Optical Properties of some derivatives of salieylal dimine-basedlignads[J]. Jomual of Molecular Structure, 2004, 702: 103-110
    [13] Jalali M. Khandar I. Sheikshoaie A. Investigation of the structure. eleetronic Properties and second-order nonlinearity of some azo Sehiff base lignad and their mononaions[J]. Spectrochimica acta part A. 1999, 55(12): 2537-2544
    [14] OudarJ L. Zyss J. Relations Between MicroscoPic and McroscoPic Lowest order Optical Nonlinearities of molecular Cyrstals with One-or Two-Dimensional Units[Jl. Phys.Rev 1982, 26: 2028
    [15]张锁秦,封继康,任爱民,李耀先.由螺旋原子连接的系列立体交叉型分子的光谱与二阶非线性光学性质[J].化学学报, 2002, 160(8): 1428-1432
    [16]付伟,封继康,潘革波.设计非线性材料的新思路:质子转移增强光学非线性[J].高等学校化学学报, 2001, 22(11): 1869
    [17] Anthony K, Burrell, David L. Officer, Paul G. Plieger, David C. W. Reid. Synthetic Routes to Multiporphyrin Arrays[J]. Chem Rev, 2001, 101: 2751-2796
    [18] Yu D, Gharavi A, Yu L. A Generic Approach to Functionalizing Aromatic Polyimides for Second-Order Nonlinear Optics[J]. Macromolecules, 1995, 28(3): 784-786
    [19] Deisenhofer B J, Epp O, Miki K, Huber R, Michel H. Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3 ? resolution[J]. Nature, 1985, 318: 618-624
    [20] Allen J P, Feher G, Yeated T O, Komiya H, Rees D C, Proc N A. Structure of the reaction center from Rhodobacter sphaer oides R-26: the protein subunits[J]. Sci U S A, 1987, 84: 6162-6166
    [21] Norris B J R, Uphaus R A, Crespi H L, Katz J J. Electron Spin Resonance of Chlorophyll and the Origin of Signal I in Photosynthesis[J]. Proc. Narf. Acad. Sci. U.S.A, 1971, 68(3): 625 -628
    [22] Harriman C A. Energy Resonances Through Photochemistry and catalysis[J]. M. Gratzel, Eds, Academic Press. New York, 1983, 166
    [23] Kagan N E, Mauzerall D, Merrifield R B. strati-Bisporphyrins. A novel cyclophane system[J]. J. Am. Chem. Soc,1977, 99(16): 5484-5486
    [24] Kurtan T, Nesnas N, Li Y Q, Huang X F, Nakanishi K, Berova N. Ehiroptical protocol for absolute eonfigurational assignments of monoaleohoh and primary monoamines[J]. J.Am.Chem.Soc, 2001, 123: 5962
    [25] Paresh C R, Jerzy L. Nonlinear optical properties of highly conjugated push-pull porphyrin aggregates: Role of intermolecular interaction[J]. Chem. Phys. Lett, 2006, 419(4-6): 578-583
    [26] Gennaro P, Seven G, Yuehui W,et al. Theoretical Analysis of the Porphyrin-Porphyrin Exciton Interaction in Circular Dichroism Spectra of Dimeric Tetraarylporphyrins[J]. J AM CHEM SOC, 2003, 125(25): 7613-7628
    [27] Kenneth S S, Chen Chin-Ti. Et al. J Am Chem Soc, 1992, 114(17): 6928~6930
    [28] Avijit S, Paresh C R, Puspendu K P. et al. J Phys Chem, 1996, 100(50): 19611~19613
    [29] Karki L, Vance F W, Hupp J T, et al. Electronic stark effect studies of a porphyrin-based push-pull chromophore displaying a large first hyperpolarizability: State-specific contributions to beta[J]. J Am Chem Soc. 1998, 120(11): 2606~2611
    [30] Ming Y, Michael G B D. et al. Org Chem, 1998, 63(21): 7143~7150
    [31] Jiang H, Su W, Hazel J, et al. Electrostatic self-assembly of sulfonated C-60-porphyrin complexes on chitosan thin films[J]. Thin Solid Films, 2000, 372(1-2): 85~93
    [32]王大伟,曹会兰.手性分子研究与手性技术发展[J].渭南师范学院学报, 2002, 17(2): 30-32
    [33] Davydov A S, Fillipov G F. Moment of inertia of a system of interacting particles[J]. Physica,1956,22(6-12),1167
    [34] Davydov A S, Filippov G F. Rotational states in even atomic nuclei[J]. Nuclear Physics.1958,8,237-249
    [35] Davydov A S, Rostovsky V S. Relative transition probabilities between rotational levels of non-axial nuclei[J]. Nuclear Physics, 1959, 12(1,3): 58-68
    [36] Davydov A S, Coupling of nuclear rotation and motion of the outer nucleon[J]. Nuclear Physics 1960, 16(4): 597-607
    [37] Davydov A S, Sardaryan R A. Excited states of odd-mass nuclei with small non-axiality[J]. Nuclear Physics, 1962, 37: 106-118
    [38] Davydov A S, Rostovsky V S. Electrical monopole transitions in non-spherical nuclei[J]. Nuclear Physics, 1964, 60(4): 529-543
    [39] Davydov A S, Filippov G F, Rotational energy of the system of interacting particles[J]. Nuclear Physics A, 1969, 133(1): 135-145
    [40] Davydov A S. Solitons and energy transfer along protein molecules[J]. Journal of Theoretical Biology, 1977, 66(2): 379-387
    [41] Clementi M, Kasha M. Spin-orbital interaction in N-heterocyclic molecules general results in a cylindrical potential approximation[J]. Journal of Molecular Spectroscopy, 1958, 2(1-6): 297-307
    [42] Crosby G A, Kasha M. Intramolecular energy transfer in ytterbium organic chelates[J]. Spectrochimica Acta, 1958, 10(4): 377-382
    [43] Goodman L, Kasha M. The observation and assignment of the lowest multiplicity-forbidden transition in pyrazine[J]. Journal of Molecular Spectroscopy. 1958, 2(1-6): 58-65
    [44] Zyss J, Ledoux I, Nieoud J F, et al. Molecular Nonlinear[J]. OPties Zyss J Ed.. Aoademie. Press,Boston,1994.
    [45] Dirk, Cheng I T, Kuzyk M G, Int.J.Quant.Chem.1992, 43: 27
    [46] Lu D, Chem G, Perry J W, et al. J.Am.Chem.Soc. 1994,116: 10671
    [47] Pople J A , Krishnan R, Schlegel H B. Electron correlation theories and their application to study of simple reaction potential surfaces[J]. Int J Quant Chem, 1978, 14(5): 545-560
    [48] Perpete E A, Jacquemin D, Adamo C and Scuseria G E. Revisiting the nonlinear optical properties of polybutatriene and polydiacetylene with density functional theory[J].Chem.Phys.Lett, 2008, 456(1-3): 101-104
    [49] Kolev T, Kityk I V, Ebothe J and Sahraoui B. Intrinsic hyperpolarizability of 3-dicyanomethylene5,5-dimethyl-1-[2-(4-hydroxyphenyl)ethenyl]-cyclohexene nanocrystallites incorporated into the photopolymer matrices[J]. Chem.Phys.Lett, 2007, 443(4-6): 309-312
    [50] Compain J D, Mialane P and Dolbecq A. Second-Order Nonlinear Optical Properties of Polyoxometalate Salts of a Chiral Stilbazolium Derivative[J]. Inorg Chem, 2009, 48(13): 6222-6228
    [51]应晓,张新伟,廖世军,刘海洋,张启光.氨基酸桥联手性双卟啉的二阶非线性光学性质研究[J].高等学校化学学报, 2006, 27(12): 2381-2385
    [52]丁涪江,赵可清.某些电荷转移反应中线性反应坐标确定的反应途径的非唯一性[J].化学学报, 2006, 64(2): 117-120
    [53]应晓,彭春超,汤安民,王晓纯,刘海洋,张启光.手性联萘桥联双卟啉的电子光谱与二阶非线性光学性质[J].物理化学学报, 2009, 25(9): 1895-1905
    [54] Yoshida N, Ishizuka T. Fine Tuning of Photophysical Properties of meso±meso-Linked ZnII -Diporphyrins by Dihedral Angle Control[J]. Chem.Eur.J, 2003, 9(1): 58-75
    [55] Ray P C, Leszczynski. Nonlinear optical properties of highly conjugated push-pull porphyrin aggregates: Role of intermolecular interaction[J]. J.Chem.Phys.Lett, 2006, 419(4-6): 578-583
    [56] Datta A, Pati S K. Nonlinear Optical Properties in Calix[n]arenes: Orientation Effects of Monomers[J]. Chem.Eur.J, 2005, 11(17): 4961-4969
    [57] Lambert C, Schm?lzlin E, Meerholz K, Br?uchle C. Synthesis and Nonlinear Optical Properties of Three-Dimensional Phosphonium Ion Chromophores[J]. Chem.Eur.J, 1998, 4(3): 512-521
    [58] Guillaume M, Botek E, Champagne B, et al. Electronic Excitations and First Hyperpolarizability of 2-Methyl-4-Nitroaniline ClustersInt[J]. J. Quantum Chem, 2002, 90(4-5): 1378-1387
    [59] Becke A D. Density-functional thermochemistry .1. the effect of the exchange-only gradient correction[J]. J.Chem.Phys, 1992, 96(3): 2155-2160
    [60] Scuseria G E. Comparison of coupled-cluster results with a hybrid of hartree-fock and density functional theory[J]. J.Chem.Phys, 1992, 97(10): 7528 -7530
    [61] Becke A D. Density-functional thermochemistry .3. the role of exact exchange[J]. J.Chem.Phys, 1993, 98(7):5648-5652
    [62] Gill P M W, Johnson B G, Pople J A and Frisch M J. The performance of the becke-lee-yang-parr (b-lyp) density functional theory with various basis-sets[J]. Chem.Phys.Lett, 1992, 197(4-5): 499-505
    [63] Thompson M A, Zerner M C. A theoretical-examination of the electronic-structure and spectroscopy of the photosynthetic reaction center from rhodopseudomonas-viridis[J]. J.Am.Chem.Soc, 1991, 113(22): 8210-8215
    [64] Bacon A D, Zerner M C. Intermediate neglect of differential overlap theory for transition-metal complexes - fe, co and cu chlorides[J]. Theo. Chim. Acta 1979, 53(1): 21-54
    [65] Priyadarshy S, Therien M J, Beratan D N . Acetylenyl-Linked, Porphyrin-Bridged, Donor Acceptor Molecules: A Theoretical Analysis of the Molecular First Hyperpolarizability in Highly Conjugated Push-Pull Chromophore Structures[J]. J.Am.Chem.Soc, 1996, 118(6): 1504-1510
    [66] Bersohn R, Pao Y H, Frischl H L. J. Chem. Phys, 1966, 45(9): 3184
    [67] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, Revision D.01.Pittsburgh PA: Gaussian Inc. 2003
    [68] Gouterman M. Spectra of porphyrins : Part II. Four orbital model[J]. J. Mol. Spectrosc, 1963, 11(1-6): 108-127
    [69]李丽,郑世钧,孟令鹏,陈瑞芝.四苯基卟啉及其系列衍生物电子光谱的INDO/CI研究光谱学与光谱分析[J].光谱学与光谱分析.1999, 19(3): 297-301
    [70] Kasha M, Rawls H R, Ashraf E B. The excitatiio model in molecular spectroscopy[J]. Pure Appl.Chem, 1965, 11(3-4): 371-392
    [71]帅志刚,朱凌云,易院平.理论化学原理与应用[M].北京:科学出版社, 2008: 715-721
    [72] Kim D, Osuka A. Photophysical Properties of Directly Linked Linear Porphyrin Array[J]. J. Phys. Chem.A, 2003, 107(42): 8791-8816

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700