含萘酰亚胺基团的螺双芴类发光材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在光电显示领域,有机电致发光器件的研究和应用取得了重大进步和发展。有机电致发光器件由于直流电压驱动、主动发光、体积小、无视角限制、响应快、以及色彩全、制作工艺简单等优点,作为新型显示技术而备受瞩目。
     螺双芴化合物在有机电致发光领域有重要的应用价值,这类化合物由于正交结构的存在,有利于提高材料的溶解性,热稳定性,同时可以降低激基缔合物和激基复合物的形成,提高荧光量子产率。萘酰亚胺衍生物是一类典型的荧光试剂,具有较高的荧光发射效率,但是平面刚性结构不利于溶解,作为电致发光材料,往往因为分子堆积或者是激基缔合物或激基复合物的形成而导致发光效率的降低,这些限制了萘酰亚胺化合物在电致发光领域的应用。
     我们希望将萘酰亚胺引入到螺双芴分子中,使制备出的新化合物既具有良好的溶解性,热稳定性,又具有较高的电致发光效率,能够在电致发光领域发挥较大作用。
     我们做了以下工作:
     第一部分:合成出两种新型的螺双芴化合物SPF-NA-1和SPF-NA-2。以联苯为起始原料,通过傅克烷基化反应,溴化反应,格氏化反应,硝化反应,还原反应等六步反应制备了具有左-右不对称结构的化合物SPF-NA-1;以联苯为原料,通过傅克烷基化反应,溴化反应,盖布瑞尔合成,盖布瑞尔还原等六步反应,制备了具有上-下不对称结构的化合物SPF-NA-2。在合成过程中,我们对傅克烷基化反应,硝化反应等实验条件进行了优化。SPF-NA-1和SPF-NA-2经IR,1H NMR, 13C NMR,LC-MS等测试手段确认其结构。
     第二部分:通过TG和DTA手段研究了SPF-NA-1和SPF-NA-2的热稳定性,测得它们的分解温度分别为451℃,448℃,都具有较高的热稳定性。通过紫外-可见吸收光谱,荧光光谱,测试了化合物的光学性能:随溶剂极性的增大,无论吸收光谱还是发射光谱都发生了红移。通过循环伏安法(CV),测得了化合物的起始氧化电位,通过边带吸收法及相关公式计算出起始还原电位,及前线轨道能级和能隙。
     第三部分:将两种化合物分别作为发光层,制成相应的电致发光器件(器件SPF-NA-1和器件SPF-NA-2),测试了器件的相关性能,得到了器件SPF-NA-1和器件SPF-NA-2的最大发射波长分别为557 nm和551 nm,最大外量子效率分别为0.244%,0.175%,最大亮度分别为387.3 cd/m2 (26.1 V),298.5 cd/m2 (27.5 V)。比较发现,器件SPF-NA-1的电致发光性能优于器件SPF-NA-2。
In the field of photoelectric display,the research and applications of organic optoelectronic materials and devices have made signifieant progress and development. By virtue of the following properties: direct current driving,self-luminous,small volume, fast response, wide view, simple manufacture techniques and so on, Organic Ligh-Emitting Diodes (OLED) have received more and more attention .
     Spirobifiuorene compounds paly an important role in the field of OLED. The existence of the orthogonal structure not only is useful for the solubility, thermal stability of materials, but also can reduce the formation of the excimer and excimer complex, so as to improve the fluorescence quantum yield. Naphthalimide derivatives with high emission efficiency are typical fluorescent reagents, but their plane rigid structure against dissolve and make for accumulation. As an electroluminescent material, the accumulation moleculars as well as the formation of the excimer and excimer complex can decrease fluorescence quantum yield, which limits the naphthalimide compounds application in the field of electroluminescence.
     We hope that a new kind of fluorescent material with good solubility, thermal stability and high EL efficiency can be prepared by introducing these molecules above into a new molecule, which may play a role in the field of OLED.
     The main achievements of this paper can be summarized as follows.
     Part I: the synthesis of two new Spirobifiuorene compounds SPF-NA-1 and SPF-NA-2. Using biphenyl as the starting material, left-right asymmetry compound SPF-NA-1 was prepared, through the Friedel-Crafts reaction, bromination, Grignard reaction, nitration reaction, reduction reaction and so on. Top-down asymmetry compound SPF-NA-2 was prepared also using biphenyl as raw materials, by six-step reactions such as Friedel-Crafts reaction, bromination, Gabriel synthesis, Gabriel reduction and so on. During the synthesis process, the reaction conditions of Friedel-Crafts reaction, nitration and so on were optimized. Moreover, their structures of SPF-NA-1 and SPF-NA-2 were confirmed by IR, 1H NMR, 13C NMR, LC-MS, and other testing methods.
     Part II: The thermal stability of SPF-NA-1 and SPF-NA-2 was characterised by TG and DTA. The results showed that their decomposition temperatures are 451℃, 448℃, separately, which indieated highly thermal stability. The optical properties of the compounds were examed by UV-vis and fluoreseence emission, both absorption and emission spectroscopy display a red shift with the increasing of solvent polarity. The onset oxidation potential of compounds were measured by CV. Onset reduction potential as well as the frontier orbital energy were evaluated by the relevant formulas.
     Part III: The two compounds were made into OLEDs with SPF-NA-1 and SPF-NA-2 as luminous layer. Device performances showed that the maximum emission peaks of devices SPF-NA-1 and SPF-NA-2 were at 557 nm, 551 nm respectively; the maximum external quantum efficiency 0.244%, 0.175%; the maximum brightness 387.3 cd/m2 (26.1V), 298.5 cd/m2 (27.5V). By comparison, the performences of electroluminescent device SPF-NA-1 is superior to that of the electroluminescent device SPF-NA-2.
引文
[1] Simmons H E, Fukunaga T. Spiroconjugation. J. Am. Chem. Soc, 1967, 89: 5208-5215.
    [2]魏荣宝.有机化学中的异头效应和螺共轭效应,科学出版社, 2008.
    [3] Salbeck J. In Inorganic and Organic Electroluminescence/EL96. Wissenschaft und Technik Verlag, Berlin 1996.
    [4] Pudzich R, Fuhrmann-Lieker T, Salbeck J. Adv. Polym. Sci, 2006, 199: 83~142.
    [5]朱瑞,冯嘉春,黄维.螺双芴在电致发光材料领域的应用.化学通报, 2005, 4: 241~252.
    [6] Salbeck J. Bunsenges Ber. Electroluminescence with organic compounds. Phys.Chem, 1996, 100: 1667~1677.
    [7] Johansson N, et al. Electronic structure and optical properties of electroluminescent spiro-type molecules. J. Chem. Phys, 1997, 107:2542~2549.
    [8] Salbeck J, Yu N, Baueretal J. Synth. Met, 1997, 91: 209~215.
    [9] Clarkson R G, Gomberg M. J. Am. Chem. Soc., 1930, 52: 2881~2896
    [10] Tour J M, Wu R, Schumm J S. Approaches to orthogonally fused conducting polymers for molecular electronics. J. Am. Chem. Soc, 1990, 112: 5662.
    [11] Poriel C, Ferrand Y, et al. Tetrahedron, 2004, 60: 145~158.
    [12] Wu R, Schumm J S, Pearson D L, Tour J M. Convergent Synthetic Routes to Orthogonally Fused Conjugated Oligomers Directed Toward Molecular Scale Electronic DeVice Applications. J. Org. Chem. 1996, 6: 6906~6921.
    [13] Thiemann F, Piehler T, Haase D, Saak W, Luetzen A. Synthesis of Enantiomerically Pure Dissymmetric 2, 2'‐ Disubstituted9, 9'‐ Spirobifluorenes. Eur. J. Org. Chem. 2005: 1991~2001.
    [14] Cyril Poriel, et al. Synthesis and stereochemical studies of di and tetra 9, 9'-spirobifluorene porphyrins: new building blocks for catalytic material. Tetrahedron., 2004, 60: 145~158.
    [15] Sang E J, Chul W J, et al. Synthetic Metals. 2010, 160: 1184~1188.
    [16] Xu Cheng, Guo-Hua Hou, Jian-Hua Xie, Qi-Lin Zhou. Synthesis and Optical Resolution of 9,9'-Spirobifluorene-1, 1'-diol. Organic Letters., 2004 , 6 (14): 2381~2383.
    [17] Yun-Hi Kim, Hyung-Sun Kim, Soon-Ki Kwon. Synthesis and characterization of highly soluble and oxygen permeable new polyimides based on twisted biphenyl dianhydride andspirobifluorene diamine. Macromolecules. 2005, 38: 7950-~7956.
    [18]姜国民等,新型聚酰亚胺单体螺旋双芴二胺的合成及表征.高分子材料科学与工程, 2007, 23, 6: 57~59.
    [19] Pudzich R, Salbeck J. Synthesis and characterization of new oxadiazoleamine based spiro-linked fluorescence dyes. Synthetic. Metals, 2003, 138: 21-~31.
    [20] Chiang C L, Shu C F, Chen C T. Improved Synthesis of 2, 2'-Dibromo-9, 9'-spirobifluorene and its 2, 2'-Bisdonor-7, 7'-bisacceptor-Substituted Fluorescent Derivatives. Org. Lett, 2005, 7:3717~3720.
    [21] Chiang C L, Wu M F, Dai D C, Wen Y S, Wang J K, Chen C T. Red‐Emitting Fluorenes as Efficient Emitting Hosts for Non‐Doped, Organic Red‐Light‐Emitting Diodes. Adv. Funct. Mater., 2005, 15: 231~238.
    [22] Miyaura N, Suzuki Palladium-catalyzed cross-coupling reactions of organoboron compounds A. Chem. Re., 1995, 95: 2457~2483.
    [23] Hartwig J F.übergangsmetall‐katalysierte Synthese von Arylaminen und Arylethern aus Arylhalogeniden und‐triflaten: Anwendungen und Reaktionsmechanismus. Angew. Chem., 1998, 110: 2154~2177.
    [24] Chien Y Y, Wong K T, Chou P T, Cheng Y M. Syntheses and spectroscopic studies of spirobifluorene-bridged bipolar systems; photoinduced electron transfer reactions. Chem. Commun., 2002, 23: 2874~2875.
    [25] Wong K T, Ku S Y, Cheng Y M, Lin X Y, et al. Synthesis, structures, and photoinduced electron transfer reaction in the 9, 9'-spirobifluorene-bridged bipolar systems. J. Org. Chem., 2006, 71: 456~465.
    [26]王鹏等.自然科学进展,2000,10:107 .
    [27] Mignani G, Kramer G, Puccetti G. A new class of silicon compounds with interesting nonlinear optical effects. Organometallics, 1990, 9: 2640~2643.
    [28] Cheng L T, Tam W, Mader S R. Experimental investigations of organic molecular nonlinear optical polarizabilities. Methods and results on benzene and stilbene derivatives. J. Phys. Chem, 1991, 95: 10643~10652.
    [29] Abe J, Shirai Y. J. Phys. Chem., 1997, 101: 11.
    [30]谭克,杨国春等.螺旋双芴体系二阶非线性光学性质的ZINDO-SOS理论研究.分子科学学报, 2005, 21 (3): 17~20.
    [31] Weisburger J H , Weisberger E K, Ray F E. J. Am. Chem. Soc, 1950, 72: 4253~4255.
    [32] Lee H, Oh J, Chu H Y, Lee J I, Kim S H, Yang Y S, Kim G. H, Do L M, Zyung T, Lee J, Park Y. Synthesis of regio-and stereoselective alkoxy-substituted spirobifluorene derivatives for blue light emitting materials. Tetrahedron.., 2003, 59: 2773~2779.
    [33] Tang S, Liu M R,et al. Synthesis and Electrochemical Properties of Peripheral Carbazole Functional Ter (9,9-spirobifluorene)s. J. Org. Chem., 2008, 73 (11): 4212~4218.
    [34] Jang S E, et al. Thermally stable fluorescent blue organic light-emitting diodes using spirobifluorene based anthracene host materials with different substitution position. Synthetic Metals, 2010, 160: 1184~1188.
    [35] Wu C C, Lin Y T, Chiang H H, Cho T Y, Chen C W, et al. Highly Bright Blue Organic Light-Emitting DeVices Using Spirobifluorene Cored Conjugated Compounds. Appl. Phys. Lett., 2002, 81, 4: 577~579.
    [36] Fan C, Chen Y H, et al. Tri-,Tetra-and Pentamers of 9,9-Spirobi?uorenes through Full ortho-Linkage: High Triplet-Energy Pure Hydrocarbon Host for Blue Phosphorescent Emitter. Org. Lett., 2010, 12, 24: 5648~5651.
    [37] Neuheuser T, Hess B A, Reuteletal C. Abinitio calculations of supramolecular recognition modes. Cyclic versus noncyclic hydrogen bonding in the formic acid/formamide system. J. Phys. Chem., 1994, 98: 6459~6467.
    [38] Mitschke U , et al. Synthesis, characterization, and electrogenerated chemiluminescence of phenyl-substituted, phenyl-annulated, and spirofluorenyl-bridged oligothiophenes. J. Chem. Soc., Perkin Trans., 2001: 740~753.
    [39] Bach U, Lupo D, Comteetal P. et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature., 1998, 395: 583~585.
    [40] Tian H, Chem B Z, Liu P H. Chem. Lett., 2001: 990~991.
    [41] Wang P, Xie Z, Tong S, et al A novelneutral red derivative for applicationin high - performance red- emitting electro- luminescent deVices. Chemistry of Material., 2003, 15 : 1913~ 1917.
    [42]郭祥峰等, 4-(氮杂-15-冠-5)-1,8-萘酰亚胺荧光探针的合成及性能研究,有机化学., 2006, 26 (4): 504~507.
    [43] Xiao H B, Chen M J, et al. A novel ?uorescentmoleculebasedon 1,8-naphthalimide: s ynthesis, spectralproperties, and application in cell imaging. 2010, 36: 1021~1026.
    [44]王秀玲等,用于有机电致发光材料的萘酰亚胺类荧光染料的研究进展. 2005, 42: 1~4.
    [45]徐文连等,用于有机电致发光材料的萘酰亚胺类化合物的研究进展. 2008, 22: 45~49.
    [46] Tian H, Zhu W H, et al. Novel triad luminescent compound with an electron transporting and a hole transporting moiety. Synthetic Metals., 1997, 91: 229~231.
    [47] Zhu W, Hu M, Yao R, et al. A novel family of twisted molecularluminescent materials containing unit for single- layer organic electrolum inescent deVices. Journal of Photochemistry and Photobiology A: Chemistry., 2003, 154: 169~ 177.
    [48] Zhu W, Hu C, Chen K. Luminescent properties of copolymeric dyad compounds containing 1,8-naphthalimide and1,3,4-oxadiazole. Synthetic Metals., 1998, 96: 151~154.
    [49] Zhu W, Fan L, Yao R, et al. Naphthalimide incorporation oxadizole: potential electro– luminescent materials with high electron affinity. Synthetic Metals., 2003, 137: 1129~ 1130.
    [50] Jianhua S, Tao X, Kong chang C, He T. Elctroluminescence properties of twisted dyad 1 , 8- naphthalicanhydride derivatices. Synthetic Metals., 1997, 91: 249~ 251.
    [51] Yin S, Liu X, Li C, et al. Electroluminescent properties of naphthalimide derivatives thin film deVices. Thin Solid Film., 1998, 325: 268~270.
    [52] Wang S, et al. Luminescent properties of a novel naphthalimide-fluorene molecule. Synthetic Metals., 2005, 150: 33~38.
    [53] Gan J A, Song Q, et al. 1,8- naphthalimides for non-doping OLEDs : the tunable emission color from blue, green to red. Journal of Photochemistry and Photobiology A: Chemistry., 2004, 162: 399~ 406.
    [54] Guo H D, Zhao W X, et al. Synthesis, photophysical and electroluminescent properties of novel naphthalimide derivatives containing an electron-transporting unit. Res. Chem. Intermed., 2008, 34: 299~308.
    [55] Kolosov D, Adamovich V, Djurovich P, et al. 1,8- Naphthalimi desin Phospho rescent Organic LEDs the Interplay between Dopant, Exciplex, and Host Emission. Journal of the American Chemistry Society., 2002, 124: 9945~9954.
    [56] Tu G, Zhou Q, et al. White electroluminescence from polyfluorene chemically doped with 1,8-naphthalimide moieties. Applied. Physics. Letter., 2004 , 85, 12: 2171~ 2174.
    [57]吴世康.超分子光化学导论-基础与应用.科学出版社
    [58]田禾等.应用化学与技术.科学出版社
    [59] PoPe M,Kallmann HMagnante P. Electroluminescence in organic crystals. J. Chem Phys,1963 ,38(8):2042~2043.
    [60] Helfrieh W, Sehneider W G. Recombination radiation in anthracene crystals. Phys. ReV. Lett., 1965, 14, 7: 229~231.
    [61] Bernanose A,Electroluminescence of organic compounds[J] .Brit. J. Appl .Phys. Suppl, 1955 ,6(SuPPI.4):554~556.
    [62] Tang C W, et al. Organic electroluminescent diodes [J]. Appl. Phys1 Lett1 1987 ,51 (12) :913~915.
    [63] Adachi C, Tolito S, Tsutsui T, Saito S. Organic electroluminescence device with a three layer structure Jpn. J. Appl. Phys., 1988, 27: 269~271.
    [64] Burroughes J H, et al. Light-emitting diodes based on conjugated polymers. Nature., 1990, 347, 6293: 539~541.
    [65] Braun D, Heeger A J. Visible light emission from semiconducting polymer diodes. Appl. phys. Lett., 1991, 58: 1982~1984.
    [66]丁桂英.白色有机电致发光器件的制备及应用研究,浙大博士论文, 2007.
    [67]樊美公等,光化学基本原理与光子学材料科学,科学出版社.2001.
    [68] Xie J T, et al. A soluble 5-carbazolium-8-hydroxyquinoline Al (III) complex as a dipolar luminescent material, Tetrahedran Letters, 2005, 46 (49):8559~8562.
    [69] Xiao H B , Leng B , Tian H. Hole transport triphenylamine-spirosilabifluorene alternating copolymer: synthesis and optical, electrochemical and electroluminescent properties,Polymer , 2005 , 46 : 5707 ~5713.
    [70] Fan L, Zhu W., Li J.and Tian H.Novel red-light emitting metal complex based on asymmetric perylene bisimide and 8-hydroxyquinoline dyads,Synth. Met. 145 (2004), 203~210.
    [71] Chen C T, EVolution of red organic light-emitting diodes: materials and deVices,Chem Mater,2004,16:4389~4400.
    [72] Mitschke U, eta.l , The electroluminescence of organic materials,J Mater Chem ,2000,10: 1471~1507.
    [73] Strohriegl P, eta.l. Charge- Transporting Molecular Glasses, Adv Mater ,2002, 14(20): 1439~1452.
    [74] Thelakkat M, eta.l. Novel functional materials based on triarylamines–synthesis and application in electroluminescent devices and photorefractive systems, Phys Chem ,1999,1(8) :1693~1698.
    [75] Thelakkat M, Fink R.; Haubner F.; Schmidt H. Macromol. Symp. 1998, 125, 157~164.
    [76] Beginn C eta.l.. Macromolecular Chemistry and Physics, 1994, 195(7): 2353~2370.
    [77] Saragi T P I ,Fuhrmann-Lieker T. Comparison of Charge‐ Carrier Transport in Thin Films of Spiro‐ Linked Compounds and Their Corresponding Parent Compounds, J Adv Funct Mater ,2006,16:966~974.
    [78] Kundu P, eta.l. High‐ Tg Carbazole Derivatives as Blue‐ Emitting Hole‐Transporting Materials for Electroluminescent DeVices, Adv Funct Mater,2003,13 (6):445~452.
    [79] Adachi D,Tsutsui T,Saito S . Blue light-emitting organic electroluminescent deVices, Appl Phys Lett,1990,56(9):799~801.
    [80] Brown A R, eta.l. Poly(P-PhenyleneVinylene) Light-Emitting-Diodes-Enhanced Electroluminescent Efficiency through Charge Carrier Confinement Appl Phys Lett,1992,61(23):2793~2795.
    [81] Adaehi C,Tsutsui T,Saito S,etal. Confinement of charge carriers and molecular exeitons within 5-nm-thicke mitting layer in organice lectroluminescent deVices with a double heterostructure[J] Appl. Phys. Lett ,1990,57(6):53~533.
    [82] Adaehi C,Tokito S,Tsutsui T,etal. Organic electroluminescent device with three-layer structure [J].JPn.J. Appl.Phys ,1988,27(4):L713~715.
    [83] Chen Z J,Ogino K,Miyata S,etal. The Pure white lighte missionfrom three-layer electroluminescent deVice [J].J phys. D: Appl .phys ,2002,35(8):742~746.
    [84] Era M,Adachi C,Tsutsui T,etal. Double-heterostructure electroluminescent deVice with cyanine-dye bimolecular layer as an emitter, [J]. Chem. Phys. Lett.,1991,178:488~490.
    [85]宋文波等.有机/聚合物材料体系能带结构的表征-电化学方法研究,高等学校化学学报,2000 ,9:1422~1426.
    [86]中国科学院吉林物理所中国科学技术大学《固体发光》编写组,《固体发光》.1976,
    [87]柴天恩编,《平板显示器件原理及应用》第一版,机械工业出版社,1996.
    [88] Masashi Tashiro, Shuntaro Mataka, et al. Metacyclophanes and Related Compounds. 21. Nitration of [2.2] Metacyclophanes1,J. Org. Chem. 1989, 54, 451~458.
    [89] Daniel Heredia,Jose Natera,etal. Spirobi?uorene-Bridged Donor/Acceptor Dye for Organic Dye-Sensitized Solar Cells. Org. Lett, 2010 ,12( 1): 12~15.
    [90] Hideki Etori,etal. Spirobi?uorene derivatives for ultravioletorganic light-emitting diodes. SyntheticMetals ,2006: (156)1090~1096.
    [91]张永敏.物理有机化学,上海科学技术出版社, 2001.
    [92]杨洗,潘祖亭.用罗丹明B作标准物测定二氯荧光素的荧光量子产率, 2003, 19: 588~589.
    [93] Chih-Long Chiang, et al. Influenceof Molecular Dipoles on the Photoluminescence and Electroluminescence of Dipolar Spirobifluorenes. Adv. Funct. Mater. 2008, 18: 248~257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700