Corroles及其衍生物的二阶非线性光学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机非线性光学(NLO)材料具有易于化学修饰加工、极短的光学响应时间和高的化学损伤阈值等优点在电光调制、光信息存储器、光能转换等领域具有很好的应用前景。这一领域的关键课题之一是如何提高有机生色团的二阶非线性光学性能,而分子具有二阶非线性光学响应的前提是具有非中心对称结构。Corrole是18-π电子共轭大环化合物,环中有一个键由两个吡咯的碳原子直接相连而成,对称性由卟啉的D4h降为C2v。Corrole的本征非中心对称结构为二阶NLO分子设计提供了一个平台。
     本文在三苯基corrole(TPC)的基础上设计了一系列不同取代位置的氟苯基corrole分子(F5C、F10C和F15C),不同取代基(-F、-NO_2、-NH_2)形成推拉型corrole系列分子1,2,3,在5,10,15-三(五氟苯基)corrole(TPFC)的基础上分别加入中心金属Cu、Fe和Mn形成金属corrole配合物构建了三大系列模型分子,利用Gaussian 03软件,运用分子模拟方法在6-31G(d,p)水平上用B3LYP方法对所有模型分子进行全面几何构型优化,然后用ZINDO方法计算各分子的电子光谱,再用ZINDO/SOS结合有限场(FF)的方法计算分子的二阶非线性光学系数βHRS,系统地研究了取代位置和取代基团以及金属原子对corrole化合物的二阶非线性光学性质的影响。
     研究结果表明,三苯基corrole(TPC)分子由于其结构非中心对称使其具有中等大小的一阶超极化率(6.63×10-30esu)。引入氟苯基后,氟苯基corrole系列分子的二阶非线性光学响应明显增强,其中5位及10,15位氟苯基取代的Corrole分子(F5C和F10C)具有较大的一阶超极化率(100×10-30esu)。氟苯基corrole系列分子一阶超极化率提高主要起源于分子的二能级分量及三能级分量显著增大,其中,三能级分量的增加通过改变S5和S6激发态主要跃迁通道,即由TPC分子B带与Q带的耦合变成氟苯基corrole分子B带内两个不同激发态的耦合。电荷密度差图也表明氟苯基引入使得电荷转移沿corrole环向氟苯基方向增强。
     以具有较大的一阶超极化率的10,15位氟苯基取代的Corrole分子为基础,在非对称方向引入不同取代基(-F、-NO_2、-NH_2)形成推拉型corrole系列分子1,2,3,其一阶超极化率(βHRS(0))的理论计算值以及大小顺序(3>2>1)与实验值吻合得很好。推拉型corrole的一阶超极化率比TPC分子的一阶超极化率提高了一个数量级。引入推基团(-NH_2)的corrole分子3具有最大一阶超极化率,其βHRS(0)的实验值为231?10-30 esu。不同的推拉型corrole之间,取代基不同可以使得分子的一阶超极化率(βHRS(0))有至少40-80%的增加。推拉型corrole系列分子的一阶超极化率的增加主要来源于两个方面:(1)光谱红移及△μng增大引起的二能级贡献的增加;(2)由于两个B带不同激发态耦合增强导致μnń和△ńg增大引起的三能级贡献的增加。电荷密度差图也表明corrole分子沿着非对称方向的电荷转移量与分子的二阶非线性光学系数具有相同趋势。
     在5,10,15-三(五氟苯基)corrole(TPFC)的基础上分别加入Cu、Fe和Mn原子形成金属corrole配合物系列分子。电子光谱以及二阶非线性光学性质理论分析表明,中心金属原子使得金属corrole分子的光谱Q带振子强度增强,B带振子强度减弱但吸收峰个数增加且整体蓝移。金属corrole系列分子的一阶超极化率的大小顺序为(TPFC)Mn>(TPFC)Cu >(TPFC)Fe。闭壳层体系的(TPFC)Cu分子的一阶超极化率贡献主要来源于B带,且主要来自于两个不同B带的耦合增强引起三能级的贡献增加。开壳层体系的金属corrole配合物中,Q带的作用明显增强,(TPFC)Mn分子一阶超极化率贡献主要来源于Q带的二能级贡献。
Organic nonlinear optics (NLO) materials can be modified and processed easily, and they have fast response time and high damage threshold, so NLO materials have important applications in optical communications, information storage, optical switching and signal processing. In this area, one of the most important tasks is to improve the second-order nonlinear optical properties of organic chromophores, and the non-vanishing requirement of the second-order nonlinear optical response is non-centrosymmetry. Corroles are 18-πelectron conjugate macrocycles bearing a direct pyrrole-pyrrole link, their symmetry are C2v dropped from D4h of porphyrins. The intrinsic non-centrosymmetric structure of corrole may render it a new chromophore of second order NLO materials.
     In this paper, we designed a series of pentafluorophenyl substituted corroles (F5C, F10C and F15C) in different positions and a series of donor-accepter corroles(1, 2 and3) with different substituents (-F, -NO_2, -NH_2) on the base of the tri-phenylcorrole (TPC). On the base of 5,10,15-three(five pentafluorophenyl) corrole(TPFC), we also designed a series of metal corrole complexes with the central atom Cu, Fe and Mn. Quantum chemical software Gaussian 03 was employed in calculation, and the geometries of all the molecules are fully optimized by the 6-31G(d,p)/B3LYP method, then the electronic spectras were calculated by the method of ZINDO. At last, the first hyperpolarizabilities (βHRS) were calculated via the ZINDO/SOS combined with the Finite Field (FF) method. We systematically studied the second-order nonlinear optical properties of corroles influenced by the position of substituents, the types of donor-accepters and the metal atoms.
     Results showed that the first hyperpolarizabilitie of TPC was of moderate value (66.7×10-30esu) due to its non-symmetrical geometry structure. The first hyperpolarizabilities of pentafluorophenyl substituted corroles increased significantly due to the pentafluorophenyl. The 10,15-phenyl-5-(pentafluorophenyl)corrole and 5-phenyl-10,15-di(pentafluorophenyl) corrole (F5C and F10C) showed the largest first hyperpolarizabilities (100×10-30esu). The enhancement of first hyperpolarizabilities of pentafluorophenyl substituted corrole originated from the dramatically increasing of their three-level components and three-level components. The three-level components was caused by changing the pivotal transition channel of exited states from coupling between B and Q bands in TPC to the coupling between two different exited states of B band in the pentafluorophenyl substituted corrole. The electron density difference maps also showed that the charge transfer along corrole ring and pentafluorophenyl is enhanced due to the pentafluorophenyl substituted.
     The experimental and theoretical results on the trend (3>2>1) of the first hyperpolarizability of donor-acceptor corroles are in good accordance. TheβHRS(0) values of donor-acceptor corroles are an order larger than that of TPC without substituents. Due to the donor (-NH_2) substituent, corrole 3 has the largestβHRS(0) values (231?10-30 esu). Within the donor-acceptor corroles, variation of substituents can enhance the first hyperpolarizability,βHRS(0), by at least 40-80% of magnitude. Our calculations indicate that the increment of first hyperpolarizability in donor-acceptor corrole is due to two factors: (1) the increasing two-level component, mainly from B1 state originated from red shift and increasing△μng and (2)the enhanced three-level component, resulting in the increasing ofμnńand ?ńg due to strengthened coupling between two different excited states of B band. The electron density difference maps also showed that the charge transfers along nonsymmetrical axis are accordance with the trend of the second-order nonlinear properties.
     The electron spectra and the theoretical analysis of the second-order nonlinear optical properties showed that, for the metal corroles systems, the oscillator strength of Q bands are enhanced. However, the oscillator strength of B bands is weakened and the whole B bands are blue shifted. The order of the first hyperpolarizability of metal corroles is (TPFC)Mn>(TPFC)Cu >(TPFC)Fe. For the close shell system, the first hyperpolarizability of (TPFC)Cu is originated from B band, and it is from its three-level components due to the strong coupling between two different excited states of B band. For the open shell systems of metal corroles, the contributions of Q band are enhanced, and the first hyperpolarizability of (TPFC)Mn is originate from Q band.
引文
[1] Franken P. A.; Hill A. E.; Peters C. W., et al. Generation of optical harmonics[J]. Phys. Rev. Lett., 1961, 7(4): 118-119
    [2]姜玮;温全武;田华,等.非线性光学材料进展[J].甘肃科技, 2006, 8: 126-130
    [3] Nalwa H. S. Handbook of Advanced Electronic and Photonic Materials and Devices[M]. New York: cademic Press, 2001
    [4]金志平;彭孝军;孙立成,等.卟啉超分子化合物在分子器件中的应用[J].化学通报,2003,66(7): 464-473
    [5] Boom T. V. D.; Hayes R. T.; Zhao Y., et al. Charge transport in photofunctional nanoparticles self-assembled from zinc 5,10,15,20-tetrakis(perylenediimide)- porphyrin building blocks[J]. J. Am. Chem. Soc., 2002, 124: 9582-9590
    [6] Susumu K.; Therien M.J. Decoupling optical and potentiometric band gaps inπ-conjugated materials[J]. J. Am. Chem. Soc., 2002, 124: 8550-8552
    [7] Takahshi R.; Kobuke Y. Hexameric macroring of gable-porphyrins as a light-harvesting antenna mimic[J]. J. Am. Chem. Soc., 2003, 125: 2372-2373
    [8] Stockman M. I.; Bergman D. J.; Anceau C., et al. Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations[J]. Phys. Rew. Lett., 2004, 92: 057402-057405
    [9] Acebal P.; Blaya S.; Carretero L. Dipyrromethene-BF2 complexes with optimized electrooptic properties[J]. Chem. Phys. Lett., 2003, 382: 489-45
    [10] Bartholomew G. P.; Ledoux I.; Mukamel S., et al. Three-dimensional nonlinear optical chromophores based on through-space delocalization[J]. J. Am. Chem. Soc., 2002, 124: 13480-13485
    [11]封继康.非线性光学材料的分子设计研究[J].化学学报, 2005, 63(14): 1245-1256
    [12] Cui Y. Z.; Fang Q.; Lei H., et al. Syntheses, structures and second-order nonlinear optical properties of octupolar compounds: 2,4,6-tri-substituted s-triazine[J]. Chem. Phys. Lett., 2003, 377: 507-511
    [13]张良辅;丁培江;赵可清,等.金属有机配合物的非线性光学特性[J].合成化学,1997, 5()1: 17-27
    [14]廖奕;苏忠民;仇永清,等. BeQ2衍生物中金属配体间相互作用对前线分子轨道和非线性光学性质影响的理论研究[J].高等学校化学学报,2003, 24(7): 1289-1292
    [15] Bonifassi P.; Ray P. C.; Leszczynski J. Effect of central metal ions on first hyperpolarizability of unsymmetrical metal porphyrins[J]. Chem. Phys. Lett., 2006, 431: 321-325
    [16] Angelis F. D.; Fantacci S.; Sgamellotti A., et al. Time-dependent and coupled-perturbed DFT and HF investigations on the absorption spectrum and non-linear optical properties of push-pull M(Ⅱ)-porphyrin complexes (M= Zn, Cu, Ni)[J]. J. Chem. Phys., 2007, 447: 10-15
    [17] Ray P. C.; Leszczynski J. Nonlinear optical properties of highly conjugated push-pull porphyrin aggregates: role of intermolecular interaction[J]. J. Chem. Phys., 2006, 419: 578-583
    [18] Blau W.; Byrne H.; Dennis W. M., et al. Reverse saturable absorption in tetraphenylporphyrins [J]. Opt. Commun., 1985, 56: 25-29
    [19] Senge M.O.; Fazekas M.; Notaras E. G. Nonlinear optical properties of porphyrins[J]. Adv. Mater., 2007, 19: 2737-2774
    [20] Kim D.; Osuka A. Photophysical Properties of Directly Linked Linear Porphyrin Array[J]. J. Phys. Chem. A, 2003, 107(42): 8791-8816
    [21] Pescitelli G.; Gabriel S. Theoretical analysis of the porphrin-porphrin excition ineraction incircular dichroism spectra of dimeric tetraarylporphyrins[J]. J. AM. CHEM. SOC., 2003, 125: 7613-7628
    [22] Shen Y. F.; Fang C. J.; Peng Z. H., et al. Infrared and electronic spectra of copper (Ⅱ) complex of maleonitriledithiolate and 4,4ˊ -dimethyl-2,2ˊ -bipyridine and their theoretical studies[J]. Spectrochimica Acta. Part. A, 2005, 62: 132-139
    [23] Ogawa K.; Kobuke Y. J. Construction and photophysical properties of self-assembled linear porphyrin arrays[J]. Photochem. photobiol., 2006, 7: 1-16
    [24]杨新国;孙景志;汪茫,等.卟啉类光电功能材料的研究进展[J].功能材料, 2003, 2(34):1 13-117
    [25]应晓;张新伟;刘海洋,等.氨基酸桥联手性双卟啉的二阶非线性光学性质研究[J].高等学校化学学报, 2006, 27:2381-2385
    [26] Flamigni L.; Gryko D.T. Photoactive corrole-based arrays[J]. Chem. Soc. Rev., 2009, 38: 1635-1646
    [27]高岩.模拟释氧中心(OEC):金属Corrole化合物的合成、性质及催化水氧化研究[D].大连理工大学:研究生院, 2006
    [28]夏鸣.酪氨酸修饰的金属Corrole化合物的合成和性能研究[D].大连理工大学:研究生院, 2007.
    [29] Luobeznova I.; Simkhovich L.; Goldberg I., et al. Electronic structures and reactivities of corrole-copper complexes[J]. EurJ. Inorg. Chem., 2004, 1724-1732
    [30] Ghosh A. Transition metal spin state energetics and noninnocent systems: challenges for DFT in the bioinorganic arena[J]. J. Biol. Inorg. Chem., 2006, 11: 712-724
    [31] Johnson A.W.; Kay I. T. Proc. Chem. Soc., 1964: 89-90
    [32] Harrison H. R.; Hodder J. R.; Hodgkin D. C. Crystal and molecular structure of 8,13-diethyl-2,3,7,13,17,18-hexamethylcorrole[J]. J. Chem. Soc. B, 1971, 640-645
    [33] Paolesse R. in The Porphyrin Handbook [M]. Eds. Kadish K. M.; Smith K. M.; Guilard R. New York: Acadmic Press, 2000: 201-232
    [34] Erben C.; Will S.; Kadish K. M. in The Porphyrin Handbook[M], Eds. Kadish K. M.; Smith K. M.; Guilard R. New York: Acadmic Press, 2000: 233-300
    [35] Gross Z.; Galili N.; Saltsman I. The First Direct Synthesis of Corroles from Pyrrole[J]. Angew. Chem., Int. Ed. Engl. 1999, 38(10): 1427-1429
    [36] Gross Z.; Golubkov G.; Simkhovich L. Epoxidation catalysis by a manganese corrole and isolation of an oxomanganese corrole[J]. Angew. Chem. Int. Ed., 2000, 39(22): 4045-4047
    [37] Liu H. Y.; Lai T. S.; Yeung L. L., et al. First Synthesis of Perfluorinated Corrole and its Mn=O Complex[J]. Org. Lett., 2003, 5: 617-620
    [38] Guilard R.; Gros C. P.; Bolze F., et al. Alkyl and aryl substituted corroles. 1. synthesis and characterization of free base and cobalt containing derivatives. X-ray structure of (Me4Ph5Cor)Co(py)2[J]. Inorg. Chem., 2001, 40: 4845-4855
    [39] Guilard R.; Jerome F.; Barbe J. M., et al. Alkyl and aryl substituted corroles. 2.synthesis and characterization of linked‘face-to-face’biscorroles. X-ray structure of (BCA)Co2(py)3, where BCA represents a biscorrole with an anthracenyl bridge[J].Inorg. Chem., 2001, 40: 4856-4865
    [40] Sankar J.; Rath H.; Prabhuraja V., et al. Meso-meso-linked corrole dimmers with modified cores: synthesis, characterization, and properties[J]. Chem. Eur. J., 2007, 13: 105-114
    [41] Aviv I.; Gross Z. Corrole-based applications[J]. Chem. Commun., 2007, 1987-1999
    [42] Paolesse R.; Nardis S.; Sagone F., et al. Synthesis and Functionalization of meso-Aryl-Substituted Corroles[J]. J. Org. Chem., 2001, 66: 550-556
    [43] Simkhovich L.; Goldberg I.; Gross Z. First syntheses and X-ray structures of meso-alkyl-substituted corrole and its Ga(Ⅲ) complex[J]. J. Inorg. Biochem., 2000, 80: 235-238
    [44]Mahammed A.; Gross Z. Aluminum corrolin, a novel chlorophyll analogue[J]. J. Inorg. Biochem., 2002, 88: 305-309
    [45] Ghosh A.; Wondimagegn T.; Parusel A. B. J. Electronic structure of Gallium, Copper, Nickel complexes of corrole. High-valent transition metal centers versus noninnocent ligands[J]. J. Am. Chem. Soc., 2000, 122: 5100-5104
    [46] Misra R.; Kumar R.; Prabhuraja V., et al. Modified push-pull expanded corroles: syntheses, structure and nonlinear optical properties[J]. J Photochem Photobiol A, 2005, 175(2-3):108-117
    [47] Ying X.; Deng Q.; Liao S. J., et al. Theoretical Calculations on the Second-order Nonlinear Optical Property of Chiral Bis-corroles[J]. Chinese J. Struct. Chem., 2007, 26: 955-961
    [48] Jeyaraman S.; Harapriy R.; Viswanathan A, P., et al. meso-meso-linked Corrole Dimers with Modified Cores: Synthesis, Characterization, and Properties[J]. Chem. Eur. J., 2007, 13: 105-114
    [49] Satyam P.; Michael J. T.; Beratan D.N. Acetylenyl-Linked, Porphyrin-Bridged, Donor-Acceptor Molecules: A Theoretical Analysis of the Molecular First Hyperpolarizability in Highly Conjugated Push-Pull Chromophore Structures[J]. J. Am. Chem. Soc., 1996, 118(6): 1504-1510
    [50] Oudar J. L.; Chemla D. S. Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment[J]. J. Chem. Phys., 1977, 66(6): 2664-2668
    [51]Champagne B.; Andre J. M.; Botek E., ea al. Theoretical design of substituted tetrathia-[7]-helicenes with large second-order nonlinear optical responses[J]. Chem. Phys. Chem., 2004, 5: 1438-1442
    [52] Cavichiolo L. J.; Hasegawa T.; Nunes F.S. ZINDO/SOS and PM3 calculations for a biscyanideα-iminooxime cobalt macrocyclic complex[J]. Spectrochimica Acta. Part. A, 2006, 65: 859-862
    [53] Eshimbetov A. G.; Kristallovich E. L.; Abdullaev N. D., et al. AM1/CI, CNDO/S and ZINDO/S computations of absorption bands and their intensities in the UV spectra of some 4(3H)-quinazolinones[J]. Spectrochimica Acta. Part. A, 2006, 65: 299-307
    [54] Nandi P. K.; Mandal K.; Kar T. Theoretical study of static second-order nonlinear optical properties of push-pull heteroquinonoid dimmers[J]. Theo. Chem., 2006, 760: 235-244
    [55] Yuan S. F.; Chen Z. R. Study on the prediction of visible absorption maximum of phthalocyanine compounds by semiempirical quantum methods[J]. J. Phys. Chem. A, 2005, 109: 2582-2585
    [56] Ding T.; Aleman E. A.; Modarelli D. A., et al. Photophysical properties of a series of free-base corroles[J]. J. Phys. Chem. A, 2005, 109(33): 7411-7417
    [57] Liu Z. B.; Xu Y. F.; Zhang X. Y., et al. Porphyrin and fullerene covalently functionalized grapheme hybrid materials with large nonlinear optical properties[J]. J. Phys. Chem. B, 2009, 113(29): 9681-9686
    [58] Zhang T. G.; Zhao Y. X.; Song K., et al. Electronic modulation of hyperpolarizable (porphinato)zinc(Ⅱ) chromophores featuring ethynylphenyl-, ethynylthiophenyl-, ethynythiazoly-, and ethynylbenzothiazoly-based electron-donating and–accepting moieties[J]. Inorg. Chem., 2006, 45(24): 9703-9712
    [59] Ono N.; Ito S.; Wu C. H., et al. Nonlinear light absorption in meso-substituted tetrabenzoporphyrin and tetraarylporphyrin solutions[J]. Chem. Phys., 2000, 262(2-3): 467-473
    [60] Becke A. D. Density-functional thermochemistry.1.the effect of the exchange-only gradient correction[J]. J. Chem. Phys., 1992, 96(3): 2155-2160
    [61] Becke A. D. Density-functional thermochemistry 3.the role of exact exchange[J]. J. Chem. Phys., 1993, 98(7): 5648-5652
    [62] Thompson M. A.; Zerner M. C. A theoretical-examination of the electronic-structure and spectroscopy of the photosynthetic reaction center from rhodopseudomonas-viridis[J]. J. Am. Chem. Soc., 1991, 113(22):.8210-8215
    [63] Bacon A. D.; Zerner M. C. Intermediate neglect of differential overlap theory for transition-metal complexes-fe, co and cu chlorides[J]. Theo. Chim. Acta., 1979, 53(1):.21-54
    [64] Kurtz H. A, Stewart J J P and Dieter K M. Calculation of the nonlinear optical properties of molecules[J]. J. Comput. Chem., 1990, 11(1): 82-87
    [65] Bersohn R.; Pao Y. H.; Frisch H. L. Double-quantum light scattering by molecules[J]. J. Chem. Phys., 1966, 45(9): 3184-3198
    [66] Ghosh A. Jynge K. Molecular structure and energetics of corrole isomers: a comprehensive local density functional theoretical study[J]. Chem. Eur. J., 1997, 3(5): 823-833
    [67]应晓;彭春超;汤安民,等.手性联萘桥联双卟啉的电子光谱与二阶非线性光学性质[J].物理化学学报,2009,25(9):1895-1905
    [68] Kanis D. R.; Lacroix P. G.; Ratner M. A., et al. Electronic structure and quadratic hyperpolarizabilities in organotransition-metal chromophores having weakly coupledπ-networks. Unusual mechanisms for second-order response[J]. J. Am. Chem. Soc., 1994, 116(22): 10089-10102
    [69]应晓;汤安民;王晓纯,等.取代基对联萘桥联手性双卟啉分子二阶非线性光学性质的影响[J].计算机与应用化学,2010,27(6): 715-722
    [70] Chou J. H.; Kosal M. E.; Nalwa H. S., et al. in The Porphyrin Handbook[M], Eds. Kadish K. M.; Smith K. M.; Guilard R. New York: Acadmic Press, 2000: 53-71
    [71] Rao D. N. Excited state dynamics in porphyrins in relevance to third-order nonlinearity and optical limiting[J]. Opt. Mater., 2003, 21: 45-49
    [72] Ogawa K.; Zhang T.; Yoshihara K., et al. Large third-order optical nonlinearity of self-assembled porphyrin oligomers[J]. J. Am. Chem. Soc., 2002, 124: 22-23
    [73] Suslick K. S.; Chen C. T.; Meredith G. R., et al. Push-pull Porphyrins as Nonlinear Optical Materials[J]. J. Am. Chem. Soc., 1992, 114(17): 6928~6930
    [74] Cho S.; Lim J. M.; Osuka A., et al. Unusual interchromophoric interactions in?,? directly and doubly linked corrole dimmers: prohibited electronic communication and abnormal singlet ground stated[J]. J. Am. Chem. Soc., 2009, 131: 6412-6420
    [75] Clays K.; Persons A. Hyper-rayleigh scattering in solution[J]. Rev. Sci. Instrum., 1992, 63: 3285-3289
    [76] Houbrechts S.; Clays K.; Persons A., et al. Hyper-rayleigh scattering investigation of nitrobenzyl pyridine model compounds for optical modulation of the hyperpolarizability[J]. Chem. Phys. Lett., 1996, 258: 485-489
    [77] Lee C. H.; Lindsey J. S. One-Flask Synthesis of Meso-Substituted Dipyrro- methanes and their Application in the Synthesis of trans Substituted Porphyrin Building Blocks[J]. Tetrahedron. 1994, 50: 11427-11440
    [78] Gryko D. T. A simple, rational synthesis of meso-substituted A2B-corroles [J] Chem. Commun., 2000, 2243
    [79] Gryko D. T.; Jadach K. A simple and versatile one-pot synthesis of meso-substituted trans-A2B-corroles[J]. J. Org. Chem., 2001, 66: 4267-4275
    [80] Stadler S.; Dietrich R.; Bourhill G., et al. First hyperpolarizability mesaureent via hyper-rayleigh scattering at 1500nm[J]. Chem. Phys. Lett., 1995, 247: 271-276
    [81] Zyss J. Hyperpolarizabilities of substituted conjugated molecules .Ⅰ. perturbated INDO approach to monosubstituted benzene[J]. J. Chem. Phy., 1979, 70: 3333-3340
    [82] Bartkowiak W.; Zalesny R.; Niewodniczanski W., et al. Quantum chemical calculations of the first- and second-order hyperpolarizabilities of molecules in solutions[J]. J. Phys. Chem. A, 2001, 105: 10702-10710
    [83] Hendrickx E.; Clays K.; Persoons A., et al. The bacteriohodopsin chromophore retinal an derivatives: an experimental and theoretical investigation of the second-order optical properties[J]. J. Am. Chem. Soc., 1995, 117: 3547-3555
    [84] Wang C. H.; Woodford J. N.; Jen A. K. Messurements of the first hyperpolarizabilities of thiophenebase charge-transfer chromophores with hyper-rayleigh scattering at 1064nm and 1907nm[J]. Chem. Phys. 2000, 262: 475-487
    [85] Hsu C. C.; Huang T. H.; Zang Y. L., et al. Hyperpolarizabilities of the m-substituent phenyl amine based chromophores determined from the hyper-Rayleigh scattering and two photon absorption induced fluorescence[J]. J. Appl. Phys., 1996, 80: 5996
    [86] Sen A.; Ray P. C.; Das P. K., et al. Metalloporphyrins for quadratic nonlinear optics[J]. J. Phys. Chem., 1996, 100: 19611-19613
    [87] Yang G. C.; Su Z. M.; Qin C. S. Theoretical study on the second-order nonlinear optical properties of asymmetric spirosilabifluorene derivative[J]. J. Phys. Chem. A, 2006, 110: 4817-4821
    [88] Ghosh A.; Taylor P. R. High-level ab initio calculations on the energetics of low-lying spin states of biologically relevant transition metal complexes: a first progress report[J]. Curr. Opin. Chem. Biol, 2003, 7:113
    [89] Steene E.; Wondimagegn, T.; Ghosh A. Electrochemical and electronic absorption spectroscopic studies of substituent effects in iron and manganese corroles. Do the compounds feature high-valent metal centers or noninnocent corrole ligands? Implications for peroxidase compoundⅠandⅡintermediates[J]. J. Phys. Chem. B, 2001, 105: 11406-11413
    [90] Frisch M. J.; Trucks G. W.; Schlege H. B., et al. Gaussian 03, Revisiond. D. 01. Pittsburgh PA: Gaussian Inc., 2003
    [91]吕庆章;王晓钰.比较不同基函数下绿化四苯基铁卟啉的B3LYP计算研究[J].计算机与应用化学, 2006, 23(8): 760
    [92]刘海洋;李立;应晓,等.锰(Ш)5,10,15-三(五氟苯基)-Corrole配合物的DFT计算[J].物理化学快报, 2008, 24(9): 1602-1608

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700