有机分子的双光子吸收性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双光子吸收材料在光电、医学、生物等领域发挥了非常重要的作用。具有大的双光子吸收截面的有机材料由于其在双光子上转换激光、光限幅、三维光存储和双光子光动力学治疗等方面的潜在应用前景引起了广泛关注。双光子吸收应用的一个关键的前提是具有大的双光子吸收截面的有机材料的合成。由于影响有机分子双光子吸收性质的因素较多,因此从理论上研究分子的结构—双光子吸收性质关系对于具有大的双光子吸收截面的有机材料的实验合成具有重要意义。
     本论文以二苯乙烯、二噻吩并噻吩和吡啶类分子为基础,采用ZINDOSOS方法计算分子的双光子吸收截面,从理论上系统研究了共轭体系的长度、取代基的推拉电子能力、π共轭桥的类型三个因素对分子的双光子吸收性质的影响,并研究了具有多分支结构的分子的双光子吸收性质。对多分支分子,分别从分支的数量、分支的结构和耦合中心三个方面研究了分子的结构—双光子吸收性质关系。通过研究得到了以下结论:
     1.分子的双光子吸收截面与共轭体系的长度在一定范围内成线性关系,但是分子的双光子吸收截面随体系共轭长度的增大具有饱和性。
     2.推拉电子能力大的取代基有利于增大分子的双光子吸收截面,但双光子吸收截面的改变与分子的共轭桥的类型有关。给体取代和受体取代会增大分子在不同波长范围内的双光子吸收,侧基取代可使分子的双光子吸收大大红移,因此,通过改变分子的取代基可以得到在预期波长具有较大双光子吸收截面的分子。
     3.π共轭桥对分子的双光子吸收性质具有决定性的影响。离域性强的共轭桥有利于分子的双光子吸收截面的增大。本文研究表明二噻吩并噻吩、二乙烯、二乙炔和二偶氮两端连接二苯乙烯吡啶构成的分子具有较好的双光子吸收性质。
     4.多分支分子的分支之间存在耦合作用可使分子的双光子吸收截面显著增大,但是并不是所有的多分支分子都具有比单支分子大很多的双光子吸收截面,这与分支数、分支结构和耦合中心有关。合理的分支数、离域性强的分支和耦
Two-photon-absorption materials are playing an important role in many fields such as photoelectricity, medical treatment, biology and so on. Organic materials with large two-photon absorption cross section have attracted considerable attention for their potential applications such as two-photon upconverted lasing, two-photon optical power limiting, three-dimensional optical storage and photodynamic therapy. The development of two-photon technology relies much on the success of synthesis of new molecules with very large TPA cross sections at desirable wavelengths. Many factors can affect the two-photon absorption properties in organic materials. So it is important to investigate the structure and the two-photon absorption property relationship for organic materials.
    In this thesis, the effects of the conjugated length, the strength of subsitituents and the type of π conjugated bridge on the two-photon absorption properties were systematically studied by the ZINDO/SOS (Sum-Over-States) method. And in order to study the structure—property relationship for the muti-branched molecules , the influences of the number of branches, the structure of the branches and the coupled center on the muti-branched molecules were systematically investigated as well. All the investigated molecules were designed based on the stilbene, dithienothiophene and pyridinium chromophores. In this thesis, the following conclusions can be deduced:
    1. The two-photon absorption cross section of organic materials depends almost linearly on the conjugation length but the two-photon absorption cross section for the molecules beyond some chain length would be saturated.
    2. Increasing the strength of donor or acceptor moieties attached symmetrically or asymmetrically to a conjugated linker can result in the enhancement of the TPA cross section. However the enhancement depends on the type of the π conjugated bridge. The donor and acceptor can enhance the TPA cross section at different wavelength
引文
[1]. Patel, C.K.N.;Fleury, B A.; Slushe, R. E.;et al.Multiphoton Plasma Production and Stimulated Recombination Radiation in Semiconductors. Phys. Rev. Let. 1966,16,971.
    [2]. Yang, X.H.;Hays,J. M.;Shan,w.;et al. Two-photon pumped blue lasing in bulk ZnSe and ZnS Se. Appl. Phys. Let., 1993,62,1071.
    [3]. Stryland,E.:W. V;woodall, M.A.;Vanherzeele, H.;et al. Energy band gap dependence of two-photon absorption. Opt. Lett., 1985, 10, 490-492.
    [4] Birge, R. R. and Pierce B. M., A theoretical analysis of the two-photon properties of linear polyenes and the visual chromofores. J.Chem.Phys. 1979, 70.165-78.
    [5]. Bennet, J. A.; and Birge,R.R.Two-photons pectroscopy of diphenyibutadiene. The nature of the lowest-lying ~1Ag-ππ state. J.Chem.Phys, 1980,73 (9),4234-4246.
    [6]. Natarajan, L.V.;Sowards,L.A.;Spangler, C.w; et.al. Spectroscopy and nonlinear absorption ofα,ω—dithienyl polyenes. Mat. Res. Soc. Symp. Proc., 1997,479,135-141.
    [7] A. N. Rubinov, M. C. Richardson, K. Sala, and A. J. Alcock; Generation of single-picosecond dye laser pulses using one-and two-photon traveling-wave excitation. App. Phys. Lett., 1975, 27, 358-360.
    [8] M. R. Topp and P. M. Rentzepis; Picosecond Stimulated Emission in a Fluorescent Solution Following Two-Photon Absorption. Phys.Rev. A 3, 358-364 (1971)
    [9] Bhawalkar, J. D.; He, G. S.; Park, C.-K.; Zhao, C. F.; Ruland, G.;Prasad, P. N. Efficient, two-photon pumped green upconverted cavity lasing in a new dye. Opt. Commun. 1996, 124, 33.
    [10] Zhao, C. F.; Gvishi, R.; Narang, U.; Ruland, G.; Prasad, P. N. Structures, Spectra, and Lasing Properties of New (Aminostyryl)pyridinium Laser Dyes J.Phys. Chem. 1996, 100, 4526.
    [11] He, Guang S.; Cui, Yiping; Bhawalkar, Jayant D.; Prasad, Paras N.; Bhawalkar, Dilip D. Intracavity upconversion lasing within a Q-switched Nd:YAG laser. Opt. Commun., 1997, 133,175-179
    [12] He, Guang S.; Yuan, Lixiang; Prasad, Paras N.;et.al, Two-photon pumped frequency-upconversion lasing of a new blue-green dye material. Opt. Commun., 1997,140,49-52.
    [13] Guang S. He, Chan F. Zhao, Jayant D. Bhawalkar, and Paras N. Prasad Two-photon pumped cavity lasing in novel dye doped bulk matrix rods. Appl. Phys. Lett, 1995,67, 3703-3705.
    [14] Guang S. He, Jayant D. Bhawalkar, Chan F. Zhao, Chi K. Park, and Paras N. Prasad, Upconversion dye-doped polymer fiber laser. Appl. Phys. Lett, 1996, 68, 3549-3551
    [15]. S.Maruo,O.Nsakamura, S.K awata, Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt.Lett.,22:132(1997).
    [16]. H.B.Sun, S.M atsuo,H.M isawa, Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin.Appl.Phys.Lett.,74,786(1998).
    [17]. H.B.S u,T.K awakami,Y Xu, et al., Real three-dimensional microstructures fabricated by photopolymerization of resins through two-photon absorption. Opt.Lett.,25, 1110(2000).
    [18]. P. G alajda, P. Ormos, Complex micromachines produced and driven by light. Appl.Phys.Lett.,78,29(2001).
    [19] Guang S. He, Gen C. Xu, Paras N. Prasad, Bruce A. Reinhardt, Jay C. Bhatt, Ann G. Dillard, Two-photon absorption and optical-limiting properties of novel organic compounds, Opt. Lett. 1995, 20, 435.
    [20] J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-Y. Hu, H. Rckel, S. R. Marder, J. W. Perry, Two-photon absorption and broadband optical limiting with bis-donor stilbenes. Opt. Lett, 197,24,1843
    [21] Guang S. He, Jayant D. Bhawalkar, Chan F. Zhao, and Paras N. Prasad, Optical limiting effect in a two-photon absorption dye doped solid matrix. 1995,67,2433
    [22] Ehrlich, J. E.; Wu, X.-L.; Lee, I.-Y. S.; Hu, Z.-Y.; Ro"ckel, H.; Marder, S. R.; Perry, J. W. In Materials Research Society Symposium Proceedings, Materials for Optical Limiting Ⅱ, Vol. 479; Sutherland, R., Patcher, R.,Hood, P., Hagan, D., Lewis, K., Perry, J. W., Eds.; MRS: Pittsburgh, 1997;pp 9-15.
    [23]. Zhao, P.D.; Chen, P.; Tang, G.Q.; et al., Two-photon spectroscopic properties of a new chlorin derivative photosensitizer. Chem.Phys.Lett., 390,2004,41-44.
    [24] J. D. Bhawalkar, G. S. He, and N. Y. Prasad, "Nonlinear multiphoton processes in organic and polymeric materials," Rep. Prog. Phys. 59, 1041-1070 (1996).
    [25] D. A. Parthenopoulos and P. M. Rentzepis Two-photon volume information storage in doped polymer systems. J. Appl. Phys, 1990, 68, 5814
    [26]. A.S.Dvornikov and M.P. Rentzepis, Accessing 3D memory information by means of nonlinear absorption. Opt.Commun., 119,341 (1995)
    [27]. J.H. Strickler, W.W. Webb, Three-dimensional optical data storage in refractive media by two-photon point excitation. Opt. Lett. 16, 1991, 1780.
    
    [28].ParthenopouIos,D .A ; Rentzepis,P M .Three-dimensional optical memory. Science, 1989,245,843- 835.
    
    [29].Parthenopoulos,D.A; Rentzepis, P M. Two-photon volume information,storage in doped polymer systems. J. Appl.Phys. 1990,68 (11);5814-5818
    
    [30].Cumpston,B .H .;AnanthaveLS.E ;Barlow,S. ;et al .Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature, 1999,398,51-54
    
    [31]Piryatinski, Andrei; Deck, Robert T., Excimer states and enhanced two-photon absorption in intramolecular charge-transfer crystals. Chem. Phys. Lett., 1997,269, 156-160.
    
    [32]Diener, J.; Kovalev, D.; Polisski, G.; Koch, F., Luminescence properties of two-photon excited silicon nanocrystals. Optical Materials,2001, 17, 117-120.
    
    [33]Dabbicco, Maurizio; Catalano, Ida Maria, Measurement of the anisotropy of the two-photon absorption coefficient in ZnSe near half the band gap. Optic.Commun. 2000,178,117-221.
    
    [34]Keiji Tanaka, Two-photon optical absorption in amorphous materials. J. Non-Crystalline Solids 338-340 (2004) 534-538
    
    [35]T. Hashimoto, T. Yamamoto, T. Kato, H. Nasu, K. Kamiya, Z-scan analyses for PbO-containing glass with large optical nonlinearity. J.Appl. Phys. 90 (2001) 533.
    
    [36]K.S. Bindra, H.T. Bookey, A.K. Kar, B.S. Wherrett, X. Liu, Nonlinear optical properties of chalcogenide glasses: Observation of multiphoton absorption, Appl. Phys. Lett. 79 (2001) 1939.
    
    [37]Petek, H.; Ogawa, S., Two-photon photoemission spectroscopy at clean and oxidized Cu(110) and Cu(100) surfaces. Surface Science, 1996, 363, 313-320.
    
    [38]Fauster, Th.; Wallauer, W. Two-photon excitation processes and linewidths of surface and image states on Cu(111). Surface Scienc,1991, 374,44-50.
    
    [39]Korol, A.V., Calculation of the two-photon bremsstrahlung spectra for a 70-KeV electron on Al, Cu, Fe, Y and Ag atoms. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 1995, 99, 160-162.
    
    [40]Akio Yoshizawa and Hidemi Tsuchida, Generation of polarization-entangled photon pairs in 1550 nm band by a fiber-optic two-photon interferometer. Appl. Phys. Lett. 85, 2457 (2004)
    
    [41]Mizunami, Tom; Hashimoto, Masato; Gupta, Sanjay; Uchida, Yasunao; Shimomura, Teruo, Wavelength dependence of two-photon absorption in germanosilicate optical fibers. Optic. Commun. 1997, 138, 40-44.
    [42] Mizunami, Toru; Yamashiro, Mamoru; Gupta, Sanjay; Shimomura, Teruo,Two-photon absorption coefficient measurements in hydrogen-loaded germanosilicate optical fiber. Optic. Commun., 1999, 162, 85-90.
    [43] Takeshi Oka and Tadao Shimizu, Observation of Infrared-Microwave Two-Photon Transitions in NH_3. Appl. Phys. Lett. 19, 88 (1971)
    [44] J. A. Gelbwachs, P. F. Jones, and J. E. Wessel, Doppler-free two-photon electronic absorption of nitric oxide and benzene. Appl. Phys. Lett. 27, 551 (1975)
    [45] D. Prosnitz, Ralph R. Jacobs, William K. Bischel, and Charles K. Rhodes, Stimulated emission at 9.75 lain following two-photon excitation of methyl fluoride. Appl. Phys. Lett. 32, 221 (1978)
    [46]. M.Goppert-Mayer, Uber elementarakt emit zwei quanten sprungen, Ann.Phys.Lpz,9: 273(1931)
    [47] Kaiser, W.,Garrett, C.G.B.,Two-Photon excitation in CaF_2:Eu~(2+), Phy.Rev.Lett., 7(6),(1961), 229-231
    [48] Albota, M.; Beljonne, D.; Bre'das, J.-L.and Ehrlich, J. E. et al. Design of organic molecules with large two-photon absorption cross sections. Science 1998, 281, 1653.
    [49] T.Kogej, D.Beljonne, F. Meyers et al., Mechanisms for enhancement of two-photon absorption in donor-acceptor conjugated chromophoresChem.Phys.Lett., 1998,298,1-6
    [50] Reinhardt, B. A.; Brott, L. L.; Clarson, S. J.; et.al, Highly Active Two-Photon Dyes: Design, Synthesis, and Characterization toward Application. Chem. Mater. 1998, 10, 1863.
    [51] Belfield, K. D.; Hagan, D. J.; Van Stryland, E. W.; Schafer, K. J.; Negres, R. A._New Two-Photon Absorbing Fluorene Derivatives: Synthesis and Nonlinear Optical Characterization. Org. Lett. 1999, 1, 1575.
    [52] Belfield, K. D.; Schafer, K. J.; Mourad, W.; Reinhardt, B. A. Synthesis of New Two-Photon Absorbing Fluorene Derivatives via Cu-Mediated Ullmann Condensations. J. Org. Chem. 2000, 65, 4475.
    [53] Abbotto, A.; Beverina, L.; Bozio, R.; Facchetti, A.; Ferrante, C.; Pagani, G. A.; Pedron, D.; Signorini, R., Novel Heterocycle-Based Two-Photon Absorbing Dyes. Org. Lett. 2002, 4, 1495.
    [54] Kim, O.-K.; Lee, K.-S.; Woo, H. Y.; Kim, K.-S.; He, G. S.; Swiatkiewicz, J.; Prasad, P. N. New Class of Two-Photon-Absorbing Chromophores Based on Dithienothiophene Chem. Mater. 2000, 12, 284.
    [55] Rumi, M.; Ehrlich, J. E., Heikal, A. A. and et al. Structure-Property Relationships for Two-Photon Absorbing Chromophores: Bis-Donor Diphenylpolyene and Bis(styryl)benzene Derivatives J. Am. Chem. Soc. 2000, 122, 9500.
    [56] G. Yang Chunsheng Qin, Zhongmin Su et al., Calculations of two-photon absorption cross-sections of stibene and bis (styryl) benzene derivatives by means of TDDFT-SOS method Journal of Molecular Structure: THEOCHEM 726 (2005) 61-65
    [57] Mongin, O.; Porres, L.,Moreaux, L.; Mertz, J. and et al. Synthesis and Photophysical Properties of New Conjugated Fluorophores Designed for Two-Photon-Excited Fluorescence Org. Lett. 2002, 4, 719.
    [58] Xiao-Juan Liu, Ji-Kang Feng, Ai-Min Ren and et al. Theoretical investigation of two-photon absorption properties for a series of bifluorene molecules Journal of Molecular Structure (Theochem) 620 (2003) 177-188
    [59] Badaeva, E. A.; Timofeeva, T. V.; Masunov, A.; Tretiak, S._Role of Donor-Acceptor Strengths and Separation on the Two-Photon Absorption Response of Cytotoxic Dyes: A TD-DFT Study. J.Phys. Chem. A.; 109(32); 7276-7284.
    [60] Beverina, L.; Fu, J.; Leclercq, A.; Zojer, E.; Pacher, P.; Barlow, S.; Van Stryland, E. W.; Hagan, D. J.; Bredas, J.-L.; Marder, S. R.,Two-Photon Absorption at Telecommunications Wavelengths in a Dipolar Chromophore with a Pyrrole Auxiliary Donor and Thiazole Auxiliary Acceptor J. Am. Chem. Soc.; 2005; 127(20); 7282-7283.
    [61] Ramamurthi Kannan, Guang S. He, Lixiang Yuan, et al. Diphenylaminofluorene-Based Two-Photon-Absorbing Chromophores with Various d-Electron Acceptors. Chem. Mater. 2001, 13, 1896-1904.
    [62] Z.C. Wei, H.H. Fan, N. Li, et al.,The effects of donor acceptor end groups of heterocyclic molecules on two-photon absorption properties., Journal of Molecular Structure 748 (2005) 1-4
    [63] Bernd Strehmel, Stephan Amthor, J_rgen Schelter, Two-Photon Absorption of Bis[4-(N,Ndiphenylamino)phenylethynyl]arenas. ChemPhysChem 2005, 6, 893-896
    [64] MASAHARU AKIBA,YOSHIO INAGAKI and TAKEHARU TANI, et. al. Journal of Nonlinear Optica Physic Material, 13,(2004) 475-479
    [65] YANG Li(杨丽),REN Ai-Min(任爱民),FENG Ji-Kang(封继康)et.al.含三种不同电子中心的几种双光子吸收材料的理论研究.Chem.J.Chinese University (高等学校化学学报)[J],2004,25(3),526-530
    [66] Lee, S.; Thomas, K. R. J.; Thayumanavan, S.; Bardeen, C. J. Dependence of the Two-Photon Absorption Cross Section on the Conjugation of the Phenylacetylene Linker in Dipolar Donor-Bridge-Acceptor Chromophores. J. Phys. Chem. A.; 2005; 109(43); 9767-9774.
    [67] L. Ventelon, L. Moreaux, J. Mertz, and M. Blanchard-Desce, New quadrupolar fluorophores with high two-photon excited fluorescence.Chem. Commun.(London), 1999, 2055,1999.
    [68] Chuan-Kui Wang, Peter Macak, Yi Luo, Effects of π centers and symmetry on two-photon absorption cross sections of organic chromophores. J.Chem.Phys. 114, 9813(2001)
    [69] Sung-Jae Chung, Kyoung-Soo Kim, Tzu-Chau Lin, et al. Cooperative Enhancement of Two-Photon Absorption in Multi-branched Structures. J. Phys. Chem. B 1999, 103, 10741-10745
    [70] Macak, P.; Luo, Y.; Norman, H.; (?)gren, H. Electronic and vibronic contributions to two-photon absorption of molecules with multi-branched structures. J. Chem. Phys. 2000, 113, 7055.
    [71] Xin Zhou, Ji-Kang Feng, Ai-Min Ren. Theoretical investigation on the one-and two-photon absorption properties of multi-branched oligomers with truxenone center and fluorene branches. Chem. Phys. Lett 397 (2004) 500-509
    [72] Xiao-Juan Liu, Ji-Kang Feng, Ai-Min Ren and et al. Theoretical studies of one-and two-photon absorptions for a series of three-coordinate compounds with different centers (B, Al, N and P) and distyrylbenzenes as branching chromophores. Chem. Phys. 307 (2004) 61-69
    [73] Adronov, A.; Fre'chet, J. M.; He, G. S and et al., Novel Two-Photon Absorbing Dendritic Structures. Chem. Mater. 2000, 12, 2838.
    [74] Cho, B. R.; Son, K. H.; Lee, S. H. and et al., Two Photon Absorption Properties of 1,3,5-Tricyano-2,4,6-tris(styryl)benzene Derivatives. J. Am. Chem. Soc. 2001, 123, 10039.
    [75] Lee, W.-H.; Lee, H.; Kim, J.-A and et al. Two-Photon Absorption and Nonlinear Optical Properties of Octupolar Molecules J. Am. Chem. Soc. 2001, 123, 10658.
    [76] Drobizhev, M.; Karotki, A.; Dzenis, Y.; Rebane, A.; Suo, Z.; Spangler, C. W., Strong Cooperative Enhancement of Two-Photon Absorption in Dendrimers. J. Phys. Chem. B.; 2003; 107(31); 7540-7543.
    [77] D. Beljonne, W. Wenseleers, E. Zojer, Z. Shuai, H. Vogel, S.J.K. Pond, J.W. Perry, S.R. Marder, J.-L. Bre'das, Role of Dimensionality on the Two-Photon Absorption Response of Con.jugated Molecules: The Case of Octupolar Compounds. Adv. Funct. Mater., 12 (2002) 631.
    [78] Thalladi, V. R.; Brasselet, S.; Weiss, H.-C.; Blaser, D.; Katz, A. K.; Carrell, H. L.; Boese, R.; Zyss, J.; Nangia, A.; Desiraju, G R., Crystal Engineering of Some 2,4,6-Triaryloxy-1,3,5-triazines: Octupolar Nonlinear Materials. J. Am. Chem. Soc.; 1998; 120(11); 2563-2577.
    [79] Lee, Y.-K.; Jeon, S.-J.; Cho, M., Molecular Polarizability and First Hyperpolarizability of Octupolar Molecules: Donor-Substituted Triphenylmethane Dyes. J. Am. Chem. Soc.; 1998; 120(42); 10921-10927
    [80] Chung, S.-J.; Lin, T.-C.; Kim, K.-S.; He, G. S.; Swiatkiewicz, J.; Prasad, P. N.; Baker, G. A.; Bright, F. V., Two-Photon Absorption and Excited-State Energy-Transfer Properties of a New Multibranched Molecule. Chem. Mater.; 2001; 13(11); 4071-4076.
    [81] Chung, S.-J.; Rumi, M.; Alain, V.; Barlow, S.; Perry, J. W.; Marder, S. R.,Strong, Low-Energy Two-Photon Absorption in Extended Amine-Terminated Cyano-Substituted Phenylenevinylene Oligomers. J. Am. Chem. Soc.; 2005; 127(31); 10844-10845.
    [82] J. L. Bredas, F. Meyers, B. M. Pierce, J. Zyss,On the second-order polarizability of conjugated.pi.-electron molecules with octupolar symmetry: the case of triaminotrinitrobenzene. J. Am. Chem. Soc.; 1992; 114(12); 4928-4929.
    [83] Ryohei Kishi, Masayoshi Nakan, Satoru Yamada, et al., Structure-property relation in two-photon absorption for symmetric molecules involving diacetylene π-conjugated bridge. Chem.Phys.Lett, 393 (2004)437-441
    [84] Harunori Fujita, Masayoshi Nakano, Masahiro Takahata, et al., A new strategy of enhancing two-photon absorptionin conjugated molecules: introduction of charged defects. Chem.Phys.Lett 358 (2002) 435-441
    [85] Ryohei Kishi, Masayoshi Nakan, Satoru Yamada, et al., Theoretical study on two-photon absorption for symmetric molecular systems composed of charged groups linked with a π-conjugated bridge. Synthetic Metals, 154 (2005) 181-184
    [86] A.F. Garito, J.R. Heflin, K.Y. Wong, O. Zamani-Khamiri, in: R.A. Harm, D. Bloor (Eds.), Organic Materials for Nonlinear Optics, Royal Society of Chemistry, London, 1989, p. 16.
    [87] Kenji Kamada, Koji Ohta, Yoichiro lwase. et al., Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak. Chem.Phys.Lett. 372 (2003) 386-393.
    [88] Yuan-Hong Sun, Ke Zhao, Chuan-Kui Wang, et al., Two-photon absorption properties of multi-branched bis-(styryl)benzene based organic chromophores. Journal of Molecular Structure (Theochem) 682 (2004) 185-189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700