双共轭链有机分子双光子吸收的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来,随着激光器的诞生以及激光技术突飞猛进的发展,非线性光学逐渐成为现代光学的一个重要分支,它主要研究物质与强光之间的相互作用。与此同时,非线性光学材料在激光的倍频、混频、参量放大与振荡、集成光学、光学通讯、光束转向、光束畸变消除、图像放大与变换、光信息处理与光信号控制、光受限与阈值监测、全光学连接、光计算机等方面显示出诱人的应用前景,使得寻找非线性光学性质好而响应速度极快的新型材料成为科研工作者研究的热点。由于有机分子非线性光学材料具有大的非线性光学系数,宽的响应波段、良好的柔韧性、高的光损伤阈值和较低成本,以及易于合成、可以进行裁减和修饰等特点而备受重视。
     本论文主要是基于从头计算的量子化学理论,利用各种不同的理论和计算方法,研究了一系列实验室合成的有机分子的线性和非线性光学性质,讨论了分子的结构与特性之间的关系。并且研究了溶剂对分子的几何结构和光学性质的影响。本文的主要工作分为三大部分:第一部分用不同理论和方法研究了一维D-π-D有机分子和最近实验室合成的双共轭链分子1,4-二(4-二乙胺基苯乙烯基)-2-[4-(N-甲基-N-羟乙基)氨基-4?-硝基偶氮苯]-5-己烷氧基苯(简称BSBAB)在气相下的单光子和双光子吸收性质;第二部分讨论了溶剂效应对一维D-π-A分子结构和非线性光学性质的影响。第三部分研究了三苯胺单支化合物(PVMB)和双支化合物(DPVMB)的的单光子和双光子吸收性质。下面简要介绍本论文研究的主要内容与结果。
     1、气相下有机分子的单光子和双光子吸收特性。
     本文在含时密度泛函理论基础上研究了双共轭链分子BSBAB和其支链分子在气相中的非线性光学性质。首先在密度泛函理论基础上优化了气相下BSBAB分子体系的几何结构,优化结果表明,单共轭链分子具有良好的平面性,而双共轭链分子的横链与纵链几乎垂直。然后利用ZINDO-SOS、少态模型、响应函数方法计算了一维D ?π? D型对称型有机分子的双光子吸收截面。对于一维D -π- D型对称电荷转移分子,不同理论水平下,单光子吸收主要有基态到第一激发态的吸收决定,而其最大的单光子和双光子吸收态不处于同一个激发态。对于一维D -π- A型不对称电荷转移分子,其最大的单光子和双光子跃迁都发生在第二激发态。分子BSBAB有两个电荷转移态,且分别来自于两个单共轭链,BSBAB分子的双光子吸收截面通过有限态求和方法求得。研究结果表明,分子BSBAB较好地继承了两个单共轭链分子的光学特性。在低能量范围内,分子BSBAB具有三个双光子吸收峰,从理论上证明了双共轭链分子BSBAB是一种具有宽带强双光子吸收的分子材料。理论结果和实验结果符合的较好。
     2、溶剂对分子的结构和光学性质的影响。
     由于实验对分子非线性光学性质的测量都是在溶剂中进行的,当分子溶解在溶剂中时,溶质分子将使溶剂发生极化现象,被极化的溶剂反过来又会产生一个反应场作用于溶质分子,从而影响溶质分子的几何结构和光学性质,因此,理论计算要想更好地模拟实验结果,应该考虑溶剂的影响。
     在从头计算的水平上,利用杂化密度泛函理论研究了4-(N-(2-羟乙基)-N-甲基)-氨基-4--硝基偶氮苯分子在溶剂四氢呋喃(THF)中的几何结构、分子内的电荷分布和光学特性。我们考虑了由极化连续模型模拟的溶剂和溶质分子的长程相互作用和溶剂和溶质分子的短程相互作用(氢键作用)。研究结果表明,该分子与溶剂分子THF发生短程相互作用,形成氢键,考虑短程作用和长程作用后分子的BLA降低,最大单光子和双光子吸收峰出现红移。
     3、三苯胺衍生物PVMB和DPVMB分子线性和非线性光学特性。
     在密度泛函的水平上,用响应函数方法计算了实验合成的1-{(1E)-2-[4-(二苯胺基)苯基]乙烯基}-4-[4- N,N -二甲胺]苯和1-([1E)-2(-4(-1E)-2-{4-[4- N,N -二甲胺]苯基}乙烯基)苯基]苯胺}苯基)乙烯基]-4-[4- N,N -二甲胺]苯两分子的单光子和双光子吸收特性。计算结果表明,在低能量范围内,该分子的最大单光子吸收发生在第一激发态,而最大的双光子吸收则发生在第二激发态。以三苯胺为耦合中心以二苯乙烯基为分支的双支DPVMB分子与单支PVMB分子相比,增加分子的分支数可以使分子在多个激发态上具有较大的双光子吸收截面。理论计算与实验结果符合的较好。
     本论文分为六章。第一章为综述,简单介绍了非线性光学以及非线性光学材料的研究现状。第二章介绍了研究非线性光学特性的量子化学理论方法,包括玻恩-奥本海默近似、Hartree-Fock近似、密度泛函理论以及含时微扰理论。第三章介绍了近年来基于量子化学从头算法而发展起来的几种计算非线性光学性质的方法。第四章介绍了介绍了研究分子的非线性光学性质的溶剂效应时所采用的理论模型和方法。第五章介绍了本论文的研究过程和计算结果,对结果进行了讨论,并和已有的实验测量结果进行了比较。第六章是总结与展望。
Nonlinear optics is the study of the interaction of intense laser light with matter, and it is a rapidly developed subject since the birth of the laser. As the important embranchment of modern optics, nonlinear optics has more and more attracted one’s considerable attention. It has become an important project to find new nonlinear optical materials with strong nonlinear optical properties and quick response velocity due to their attractive applications, for instance, in modern laser technology, optical communication, data storage, optical information processing, and other fields. Much emphasis has been put on organic nonlinear optical materials because they have many advantages, such as large nonlinear optical coefficient, wide response wave band, good flexibility, high optical damage threshold, low cost, and easy combination and modification.
     The thesis studies the linear and nonlinear optical properties of a variety of newly synthesized organic molecules utilizing theoretical and computational approaches on the base of the ab initio level, discusses the relation of the molecular structures and properties, and investigates solvent effects on the molecular geometry structures and optical properties. The whole works contain three parts: one part is the study of the one- and two-photon absorption (OPA and TPA) properties of a double-conjugated-segment molecule (BSBAB) and two single-conjugated-segment molecules which compose BSBAB in gas; another part is about the solvent effects on the molecular structures and optical properties; the last part is the nonlinear optical properties of two triphenylamine derivatives (PVMB and DPVMB). The main contents and results are represented as follows.
     一、The one- and two-photon absorption properties of organic molecules in gas On the base of density functional theory, we study the nonlinear properties of a double-conjugated-segment molecule (BSBAB) and two single-conjugated-segment molecules which compose BSBAB in gas. First, the geometry of BSBAB and two one-dimensional molecules in gas phase is optimized on the base of density functional theory. The results indicate that the one-dimensional molecules are well complanate, while the two single-conjugated-segment parts in molecule BSBAB hold their own coplanarity and are nearly perpendicular with each other. Then we use ZINDO-SOS, a few states and response functions methods to calculate the two-photon absorption cross section of a one-dimensional D -π-D molecules. The results indicate that the maximum one- and two-photon transitions all take place in the first excited state for one-dimensional D -π- A type asymmetry charge-transfer molecules, but it is different for one-dimensional D -π- D type symmetry charge-transfer molecules where the maximum one- and two-photon absorptions do not appear at the same excited state. There are two charge transfer states for the double-conjugated-segment molecule BSBAB, which are from the two single-conjugated-segment molecules respectively. The two-photon absorption cross section of BSBAB is calculated using a few states method. It is found that this molecular has three TPA peaks in lower energy region. So the strong TPA and broadband optical power limiting properties in the near infrared region have been demonstrated. The numerical values of the TPA cross sections are in agreement with the experimental results.
     二、The solvent effects on the molecular structures and optical properties Now, many experiments measurements of the TPA cross sections of organic molecules take place in solvents. When solute molecules are solvated in the solvents, the solute molecular charge distribution will polarization solvents around it and this gives rise of a reaction field which acts back on the molecules, then, the molecular geometry structure and optical properties will be modified. So the solvent should be considered in order to realizing the good agreement between the numerical simulation and the experimental results.
     Time-dependent hybrid density functional theory in combination with Onsager model and hydrogen bonding effects has been applied to study the solvent effects on the geometrical and electronic structures, as well as one/two-photon absorption processes, of 4-(N-(2-hydroxyethyl)-N-methyl)-amino-4’-nitroazobenzene. It is found that geometrical and electronic properties of the solute molecule show great changes, and red-shift of one/two-photon absorption is caused by solvent effects. Solvent effects reduce the bond length alternation and the charge variation for the donor and acceptor in compounds between the charge transfer state and ground state.
     三、Theoretical studies on nonlinear optical properties of triphenylamine derivatives PVMB and DPVMB
     The one-photon and two-photon absorption properties of 1-{(1E)-2-[4- (diphenylamino)phenyl]vinyl}-4-[4-N,N-di-methylamino]benzene(PVMB) and1-[(1E)-2-(4-{[4-((1E)-2-{4-[4-N,N-di-methylamino]pheny}vinyl)phenyl]phenylamino}phenyl)vinyi]-4[4-N,N-di-methyl-amino]benzene(DPVMB) is investigated by use of the analytic response theory at DFT level. The calculations show that two molecules have strong two-photon absorption cross-sections in the visible light region. The two-branch molecule DPVMB has more charge-transfer states and larger TPA cross sections than one-branch molecule PVMB. DPVMB is a broadband strong two-photon absorption chromophore. The charge-transfer process for the charge-transfer states is visualized.The theoretical results are in good agreement with the available measurements.
     The content of this thesis is as follows. The first chapter gives a brief introduction of nonlinear optics and also the developing process of the nonlinear optics and nonlinear optical materials. In the second chapter, some quantum chemistry theories of studying the nonlinear properties are introduced, including the Born-Oppenheimer approximation, the Hartree-Fock approximation, the density functional theory and the time-dependent perturbation theory. The fundamental ways of representing the solvent environment are discussed in the third chapter. In the fourth chapter, the different approaches developed recently for calculating molecular nonlinear optical properties are summarized, including sum-over-state, few-state model, finite field, analytic derivative and response theory methods. The fundamental ways of representing the solvent environment are discussed in the fifth chapter. The research process and the results are given particularly and the results are discussed and compared with the experimental results in the sixth chapter. The summary and prospect are represented in the last chapter.
引文
1. Shen Y. R. The Principle of Nonlinear Optics. John Wiley & Sons, Inc., 1984,4
    2. Franken P. A, Hill A. E.,Peters C. W., Weinreich G., Phys. Rev. Lett.,1961, 7: 118
    3. Bloembergen N., Nonlinear Optics. Benjamin, New York, 1965
    4. Franken P. A., Hill A. E., Reters C. W., Weinreich G., Phys. Rev. Lett., 1961, 19: 556
    5. Bloembergen N., Nonlinear Optics, Benjamin, 1965
    6. Butcher P. N., Nonlinear optical Phenomena, Ohio State University Press, 1965
    7. Danc C. B., Neuman W. A., Hackel L. A., IEEE QE, 1994, 30: 1907
    8. Qian W., Lin L. et al., J. Appl. Phys., 2000, 87: 612
    9. 叶成,化学通报,1997,1: 6
    10. Drobizhev M., Karotki A., Dzenis Y., Rebane A., Suo Z., Spangler C. W., J. Phys. Chem. B, 2003, 107: 7540
    11. Yoo J., Yang S. K., Jeong M. Y., Ahn H. C., Cho B. R., Org. Lett., 2003, 5: 645
    12. Chung S.J., Kim K.S., Lin T.C., He G.S., Swiatkiewitz J., Prasad P.N., J. Phys.Chem.B., 1999, 103: 10741
    13. Meyers F., Marder S. R., Pierce B. M., Brédas J. L., J. Am. Chem. Soc., 1994, 116: 10703
    14. Shen Y. R., The Principles of Nonlinear Optics, John Wiley & Sons. Inc., New York, 1984
    15. Clays K., Persoons A., and Maeyer L. D., Modern Nonlinear Optics, John Wiley & Sons. Inc., New York, 1994
    16. Luo Y., Norman P., Macak P. and ?gren H., J. Chem. Phys., 1999, 111: 9853
    17. Shelton D. P., Rice J. E., Chem. Rev., 1994, 94: 3
    18. Norman P., Macak P., Luo Y., ?gren H., J. Chem. Phys., 1999, 110: 7960
    19. Macak P., Norman P., Luo Y., ?gren H., J. Chem. Phys., 2000, 112: 1868
    20. 王煦,杨明理,孙泽民, 高等学校化学学报, 2001, 22: 257
    21. 赵波, 祁铁流, 物理学报, 2001, 50: 1699
    22. Orr B. J. and Ward J. F., Mol. Phys., 1971, 20: 513
    23. Kurtz H. A., Stewart J. J. P. and Dieter K. M., J. Comput. Chem., 1990, 11: 82
    24. Kawabe Y., Jarka F., Peyghambarian N., Guo D., Mazumdar S., Dixit S. N., and Kajzar F., Phys. Rev. B, 1991, 44: 6530
    25. Olsen J. and J?rgensen P., J. Chem. Phys., 1985, 82: 3235
    26. Wang C. K., Macak P., Luo Y., ?gren H., J. Chem. Phys., 2001, 114: 9813
    27. Cho B. R., Son K. H., Lee S. H., Song Y. S., Lee Y. K, Jeon S. J., Choi J. H, Lee H., Cho M., J. Am. Chem. Soc., 2001, 123: 10039
    28. Kannan R, He G S, Yuan L, Xu F, Prasad P N, Reinhardt B A, Baur J W, Vaia R A, Tan L S 2001 Chem. Mater. 13: 1896
    29. Chung S., Kim K., Lin T., He G. S., Swiatkiewitz J., Prasad P. N., 1999 J. Phy. Chem. B, 103: 10741
    30. Macak P, Luo Y, Norman P, ?gren H 2000 J. Chem. Phys. 113: 7055
    31. Yoo J., Yang S. K., Jeong M. Y., Ahn H. C., Jeon S. J., Cho B. R., Org. Lett., 2003,
    5: 645
    32. 苏燕,王传奎,王彦华,陶丽敏,物理学报,2004, 53: 2112
    33. Wang C. K., Zhao K., Su Y., Ren Y., Zao X., Luo Y., J. Chem. Phys., 2003, 119: 1208
    34. Gao J., Alhambra C., J. Am. Chem. Soc., 1997, 119: 2962
    35. Luo Y., Norman P., ?gren H., J. Chem. Phys., 1998, 109: 3589
    36. Meyers F., Marder S. R., Pierce B. M., Brédas J. L., J. Am. Chem. Soc., 1994, 116: 10703
    37. Cammi R., Mennucci B., Tomasi J., J. Am. Chem. Soc., 1998, 120: 8834
    38. Wang C. K., Wang Y. H., Su Y., Luo, Y., J. Chem. Phys., 2003, 119: 4409
    39. Luo Y., Norman P., Macak P., ?gren H., J. Phys. Chem.A , 2000, 104: 4718
    40. 丁大同,固体理论讲义,南开大学出版社,2001,1
    41. Hohenberg P., Kohn W., Phys. Rev., 1964, 136: B864
    42. 谢希德,陆栋主编.固体能带理论,复旦大学出版社,1998,12
    43. Dirac P. A. M., Proc. Camb. Phil. Soc., 1930, 26: 376
    44. Becke A. D., J. Chem. Phys., 1993, 98: 1372
    45. Becke A. D., J. Chem. Phys., 1993, 98: 5648
    46. Stevens P. J., Devlin J. F., Chabalowski C. F., Frisch M. J., J. Phys. Chem., 1994, 98: 11623
    47. Becke A. D., J. Chem. Phys., 1995, 104: 1040
    48. Becke A. D., J. Chem. Phys., 1998, 88: 1053
    49. Becke A. D., J. Chem. Phys., 1997, 107: 8554
    50. Becke A. D., J. Chem. Phys., 1998, 109: 2092
    51. Adamo C., Barone V., J. Chem. Phys., 1999, 110: 6158
    52. Atkins P W and Friedman R S. Molecular Quantum Chemistry, Oxford University Press, Oxford, 1997
    53. Sakurai J J. Modern Quantum Mechanics, Addison-Wesley, Reading, 1995
    54. Branaden B H and Joachain C J. Introduction to Quantum Mechanics, Longman Scientific & Technical, 1994
    55. Albota M, Beljonne D, Brédas J L, Ehrlich J E, Fu J Y, Heikal A A , Hess S E, Kogej T, Levin M D, Marder S R, McCord-Maughton D, Perry J W, R?ckel H, Rumi M, Subramaniam G, Webb W W, Wu X L, Xu C 1998 Science 281 1653
    56. Olsen J and J?rgensen P. J. Chem. Phys., 1985, 82: 3235
    57. DALTON Reference in http://www.kjemi.kjimi.uio.no/software/dalton
    58. Luo Y., Norman P., Mack P., ?gren H., J. Phys. Chem. A, 2000, 104: 4728
    59. Sin F., Chin S., Dupius M. and Rice J. E., J. Phys. Chem., 1993, 97: 1158
    60. 何国华, 张俊祥, 叶莉华, 崔一平, 李振华, 来建成, 贺安之, 物理学报, 2003, 52: 1929
    61. Ste’phane D., Paul R. and Nunzi J. M., Chem .Phys., 1997, 219: 341
    62. Albota M, Beljonne D, Brédas J. L, Ehrlich J. E, Fu J. Y, Heikal A. A., Hess S. E., Kogej T., Levin M. D., Marder S. R.,. Perry J. W., R?ckel H., Rumi M., Subramaniam G., Webb W. W,. Wu X. L. and Xu C., Science., 1998, 281:1653
    63. Gel′mukhanov F., Baev A., Macak P., Luo Y. and ?gren H., J.Opt.Soc.Am.B., 2002, 19: 937
    64. Gao J., Alhambra C., J. Am. Chem. Soc., 1997,119: 2962
    65. Mikkelsen K. V., Luo Y., ?gren H., J?rgensen P., J. Chem. Phys., 1995, 102: 9362
    66. Guo Y. H., Sun Y. H., Tao L. M., Zhao K. and Wang C. K., Chinese. Phys., 2005, 14: 2202
    67. Song Y. Z., Li D. M., Song X. N., Huang X. M. and Wang C. K., J. Mol. Struc., 2006, 772: 1
    68. Sun Y. H., Zhao K. and Wang C. K., Acta Chimica Sinica, 2005, 63: 1116
    69. He G. S., Bhawalkar J. D., Zhao C. F., Park C. K. and Prasad P. N., Opt. Lett., 1995, 20: 2393
    70. Zhang X., Yu X. Q., Sun Y. M., He W., Wu Y. H., Feng Y. T., Tao X. T. and Jiang M. H., Opt. Mater., 2006, 28: 1366

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700