锌对仔猪及小肠上皮细胞免疫功能的调节作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以断奶仔猪和小肠上皮细胞(IPEC-J2)为试验模型,通过四个试验考察了锌对不同免疫状态下仔猪和小肠上皮细胞免疫功能的调节作用。
     试验一日粮锌水平对仔猪生长性能和免疫功能的影响
     本试验采用单因子设计,选用72头28日龄断奶的杂交仔猪(DLY),在基础日粮中分别添加0、60、120mg/kg锌(ZnSO_4),研究了日粮锌水平对断奶仔猪生长性能、组织锌含量、碱性磷酸酶活性、外周血淋巴细胞转化率、牛血清白蛋白(BSA)抗体水平、肝脏金属硫蛋白(MT)含量及MTmRNA水平的影响。试验全期共21天。试验结果表明:在本试验条件下,不同锌添加水平对断奶仔猪生长性能、组织锌含量、外周血淋巴细胞转化率、肝脏MT含量及MTmRNA水平无显著影响(P>0.05);随日粮锌水平增加,仔猪血清碱性磷酸酶(AKP)活性极显著增加(P<0.01),牛血清白蛋白(BSA)抗体水平在免疫后第7天,随日粮锌水平增加而显著降低(P<0.05),在第14天则不受影响。研究结果证明,NRC(1998)推荐的锌水平可满足断奶仔猪最佳生长速度和免疫应答的需要。
     试验二日粮锌水平和免疫应激对仔猪生长性能和免疫功能的影响
     本试验采用2×3因子设计,(1)免疫应激处理(注射大肠杆菌脂多糖或生理盐水),(2)日粮类型(基础日粮中添加0、60、120mg/kg锌)。在试验的第7天,每日粮处理组随机选取半数仔猪按200μg/kg体重的剂量腹腔注射脂多糖(LPS),另一半注射同样剂量的生理盐水。试验全期共21天。注射LPS后3h,每个重复选择1头猪采集血清,测定细胞因子白介素1(IL-1)和白介素2(IL-2)浓度。注射LPS后第2天,每个重复1头猪从前腔静脉采血测定外周血淋巴细胞转化率;另外选1头猪从耳后肌肉注射牛血清白蛋白(BSA),并于注射后第7和12天从前腔静脉采血,测定血清BSA抗体水平。试验结果表明:LPS刺激显著降低了仔猪注射后第一周的日增重和采食量(p<0.01),但对饲料转化效率无影响。LPS刺激提高了外周血淋巴细胞转化率(p<0.05)和血清IL-1浓度(p<0.01),但未影响血清IL-2浓度和BSA抗体水平。在LPS刺激后第一周,随日粮锌水平增加,仔猪日增重有增加的趋势(p<0.10),而采食量和饲料转化效率未受影响。随着锌水平提高,淋巴细胞转化率有增加趋势(p<0.10)。日粮处理没有影响BSA抗体水平、血清IL-1、IL-2浓度。提示经历短期免疫应激的仔猪对锌的需要量要高于健康仔猪。
     试验三锌和脂多糖对小肠上皮细胞(IPEC-J2)免疫功能的影响
     肠上皮细胞在肠腔抵御病原体和细菌的先天性免疫应答中,起到了非常重要的作用。在本次试验中,我们以肠细胞因子IL-8、TNF-α和TGF-β的基因表达为反应标识,考察了锌和脂多糖(LPS)对猪小肠上皮细胞系(IPEC-J2)免疫功能的影响。试验结果表明:
     1.IPEC-J2细胞内锌含量随培养基锌浓度升高而增高。与普通培养基对照组(6μmol/L锌)相比较,50μmol/L和100μmol/L硫酸锌组细胞锌含量分别提高55.69%和98.75%,差异极显著(P<0.01);50μmol/L和100μmol/L乙酸锌组细胞锌含量分别提高67.65%和116.58%(P<0.01)。IPEC-J2细胞的ZnT1和MTmRNA表达随着培养基锌浓度升高而增高,与对照组相比差异均显著(P<0.05);在培养基锌浓度为50μmol/L时,DMT1mRNA表达量达到峰值,显著高于对照组(P<0.01),达到100μmol/L时,与培养基锌浓度50μmol/L相比较。DMT1mRNA表达水平有所下降,但仍高于对照组(P<0.05)。
     2.在脂多糖刺激下,与对照组相比较,细胞锌含量下降5.10%,而培养基锌浓度为50μmol/L和100μmol/L的硫酸锌组细胞锌含量分别提高27.36%和45.64%(P<0.01);培养基锌浓度为50μmol/L和100μmol/L的乙酸锌组细胞锌含量分别提高26.11%和73.07%(P<0.01)。LPS刺激对小肠上皮细胞ZnT1、DMT1和MTmRNA表达量均无显著影响(P>0.05)。IPEC-J2细胞经内毒素刺激后,随培养液中锌浓度的增加,ZnT1mRNA(P<0.01)和MTmRNA(P<0.05)的表达显著提高。在培养基锌浓度为50μmol/L时,DMT1mRNA表达量达到最高峰,显著高于对照组(P<0.01),锌浓度为100μmol/L时,与培养基锌浓度50μmol/L相比较,DMT1mRNA表达水平显著下降(P<0.05),与对照组DMT1mRNA表达量相同。
     3.培养液中不同锌源和锌水平没有影响细胞IL-8、TNF-α和TGF-β的基因表达水平。
     4.LPS刺激可使IL-8(P<0.01)和TNF-α(P<0.05)的mRNA表达水平显著上调,TGF-β的mRNA表达水平显著下调(P<0.01);且同对照组相比较,随着锌浓度的提高,IL-8、TNF-α和TGF-β基因表达量的增加(P<0.05)。
     试验四锌和环磷酰胺对小肠上皮细胞(IPEC-J2)免疫功能的影响
     环磷酰胺是一种常用抗肿瘤药物,是常用免疫抑制剂。现已证明环磷酰胺通过降低抗体产量抑制B淋巴细胞的免疫功能,另外环磷酰胺也可促进TNF-α诱导的凋亡细胞死亡。为了探索锌和环磷酰胺对猪小肠上皮细胞免疫功能的影响,在本次试验中,我们以肠细胞因子IL-8、TNF-α和TGF-β的基因表达位反应标识,测定了锌和脂多糖(LPS)对猪小肠上皮细胞系(IPEC-J2)免疫功能的影响。试验结果表明:
     1.无论有无环磷酰胺刺激,IPEC-J2细胞内锌含量均随培养基锌浓度升高而增高。
     2.在环磷酰胺作用下,细胞锌含量下降7.07%,而培养基锌浓度为50μmol/L和100μmol/L硫酸锌组细胞锌含量分别提高4.54%和39.91%(P<0.01);培养基锌浓度为50μmol/L和100μmol/L乙酸锌组细胞锌含量分别提高7.92%和22.52%(P<0.01)。与对照组比较,ZnT1mRNA表达量显著增加(P<0.01),而DMT1和MTmRNA的表达量及显著降低(P<0.01)。随着锌水平的提高,ZnT1和MTmRNA表达量显著提高(P<0.01)。DMT1mRNA的表达量显著下降(P<0.05)。
     3.环磷酰胺刺激可使IL-8和TNF-α的基因表达量被显著下调(P<0.05),而对TGF-β的基因表达量无影响。与对照组(环磷酰胺组)比较,硫酸锌水平提高,使IL-8mRNA的表达量显著升高(P<0.01),而对TGF-β和TNF-α的基因表达量则影响不大,但随锌水平的增加,两者的mRNA表达水平有上调趋势;乙酸锌水平提高,使IL-8和TNF-α的基因表达量显著增加(P<0.05)。
     上述结果揭示,NRC(1998)推荐的锌水平可满足断奶仔猪最佳生长速度和免疫应答的需要。提示经历短期免疫应激的仔猪对锌的需要量要高于健康仔猪。锌对处于免疫应激状态下的小肠上皮细胞的免疫功能有调节作用。
Four in vivo and in vitro experiments were conducted in tiffs study to investigate nutritional regulatory effects of zinc on immune response in weanling pigs and porcine epithelial cells.
     Exp.1 Effects of dietary zinc level on performance and immune response of weanling pigs
     An experiment was conducted to determine the effect of dietary zinc level on growth performance and immune function in normal weanling pigs.Treatments consisted of the following:1) a corn-soybean meal basal diet contained 36.75 mg/kg total Zn,2) basal diet+60 mg/kg added Zn as ZnSO_4,3) basal diet+120mg/kg added Zn as ZnSO_4.Each diet was fed to six pens of four pigs per pen.In Exp 1,the dietary zinc level had no effect on average daily growth(ADG),average daily feed intake(ADFI),or Feed conversion ratio(FCR).Concentrations of tissue and serum zinc were not affected.AIK ativity was increased.Metalodlionein(MT) concentration,MTmRNA level were not affected.Peripheral blood lymphocyte proliferation(PBLP) was not affected by dietary treatments.Supplementation of 120 mg/kg Zn decreased(p<0.05) the antibody response to bovine serum albumin(BSA) on d 7 compared with pigs fed the basal diet,but not on d 14.Results indicate that the level of Zn recommended by NRC(1998) for weanling pigs was sufficient for optimal growth performance and immune responses.
     Exp.2 Effects of dietary zinc level and an inflammatory challenge on performance and immune response of weanling pigs
     An experiments were conducted to determine the effect of dietary zinc level on growth performance and immune function in immunologically challenged weanling pigs.Treatments consisted of the following:1) a corn-soybean meal basal diet contained 36.75 mg/kg total Zn,2) basal diet+60 mg/kg added Zn as ZnSO_4,3) basal diet+120mg/kg added Zn as ZnSO_4.Each diet was fed to six pens of three pigs per pen.In Exp 2,LPS challenge did not effect on ADG,ADFI and FCR in the entire trial(from d 0 to 21).LPS challenge significantly decreased ADG and ADFI (p<0.01) from d 7 to 14,but FCR was not affected.LPS challenge increased PBLP (p<0.05) and serum concentration of interleukin-1(IL-1)(p<0.01),whereas the antibody response to BSA and serum concentration of interleukin-2(IL-2) were not affected.Supplementation of Zn did not affect ADFI and FCR from d 7 to 14,but there was a trend for ADG to be enhanced with Zn supplementation(p<0.10). Supplementation of Zn tended to increase PBLP(p<0.10).Dietary treatment had no effect on the antibody response to BSA,concentrations of serum IL-1 and IL-2. Results indicate that the level of Zn recommended by NRC(1998) for weanling pigs was sufficient for optimal growth performance and immune responses.Zn requirements may be higher for pigs experiencing an acute phase response than for healthy pigs.
     Exp.3 Effects of zinc level and LPS on immune response of swine intestinal epithelial cell lines(IPEC-J2)
     Intestinal epithelial cells play an important role in the innate immune response against pathogenic bacteria in the lumen of the gut.In the present study,we determined the effects of LPS and zinc on immune response of porcine epithelial cell lines(IPEC-J2) by regarding mRNA expression of proinflammatory mediators,such as cytokines(TNF-α,TGF-β) and chemokine(IL-8) as representative marker.The results were as follows:
     1.The zinc content of cells was enhanced with Zn supplementation.Treatments with 50μmol/LZnSO_4 and 100μmol/LZnSO_4 increased cellular zinc uptake by 55.69%and by 98.75%,respectly,compared with control cells.Treatments with 50μmol/L and 100μmol/L zinc acetate increased zinc content of cells by 67.65% and 116.58%(P<0.01),respectively.The expression of ZnT1,DMT1 and MT were upregulated with Zn concentration of medium(P<0.05).In cells treated with 50μmol/L,the expression of DMT1mRNA reacheded peak(P<0.01).
     2.After LPS challenge,zinc content of cells was decreased by 5.10%.However, treatments with 50μmol/LZnSO_4 and 100μmol/LZnSO_4 increased zinc content of cells by 27.36%and by 45.64%(P<0.01) 98.75%,respectly,compared with control cells.Treatments with 50μmol/L and 100μmol/L zinc acetate increased zinc content of cells by 26.11%(P<0.05) and 73.07%(P<0.01),respectively.LPS challenge had no feffect on the expression of IL-8,TNF-αand MT(P>0.05).The expression of ZnT1mRNA(P<0.01) and MTmRNA(P<0.05) were increased with Zn supplementation.In cells treated with 50μmol/L,the expression of DMT1mRNA reacheded peak(P<0.01).
     3.zinc resources and zinc levels had no effect on the expression of of TNF-α,IL-8 and TGF-β.
     4.LPS challenge upregulated the expression of IL-8(P<0.01) and TNF-α(P<0.05),but downregulated the expression of TGF-β(P<0.01).After LPS challenge,supplementation of Zn upregulated the expression of IL-8,TNF-αand TGF-β,compared with untreated cells.
     Exp.4 Effects of zinc level and Cyclophosphamide(CP) on immune response of swine intestinal epithelial cell lines(IPEC-J2)
     Cyclophosphamide(CP) is a widely used anti-cancer prodrug,is effective for autoimmune diseases.It has been shown that CP suppresses B-cell function with decreased antibody production and enhances TNF-α-induced apoptotie cell death. In this study,We determined the effects of Cyclophosphamide(CP) and zinc on immune response of porcine epithelial cell lines(IPEC-J) by regarding mRNA expression of proinflammatory mediators,such as cytokines(TNF-a,TGF-β) and chemokine(IL-8) as representative marker.The results were as follows:
     1.The zinc content of cells was enhanced with Zn supplementation.
     2.After Cyclophosphamide challenge,zinc content of cells was decreased by 7.07%. However,treatments with 50μmol/LZnSO_4 and 100μmol/LZnSO_4 increased zinc content of cells by 4.54%and by 39.91%,respectly,compared with control cells. Treatments with 50μmol/L and 100μmol/L zinc acetate increased cellular zinc uptake by 7.92%and 22.52%,respectively.The expression of ZnT1mRNA was upregulated by(P<0.01).However,the expression of DMT1 and MT were downregulated by (P<0.01),compared with control cells.The expression of ZnT1mRNA and MTmRNA were upregulated by(P<0.01) with Zn supplementation.But,the expression of DMT1mRNA was downregulated by(P<0.05)
     3.After Cyclophosphamide challenge,the expression of IL-8 and TNF-αwere downregulated by(P<0.05),but the expression of TGF-βwas affected.Compared with control cells,the expression of IL-8 mRNA was upregulated(P<0.01).However, the expression of TGF-βand TNF-αwere not affected.Zn supplementation upregulated the expression of TGF-βand TNF-α(P>0.05).Zn(zinc acetate)supplementation upregulated the expression of TGF-β,IL-8 and TNF-α(P<0.05).zinc resources and zinc levels had no effect on the expression of TNF-α, IL-8 and TGF-β.
     Implications
     These results in vitro and in vivo showed that the level of Zn recommended by NRC(1998) for weanling pigs was sufficient for optimal growth performance and immune responses.Zn requirements may be higher for pigs experiencing an acute phase response than for healthy pigs.Zinc play an important role in the regulatory of immune respone in immunologically challenged weanling pigs and porcine epithelial cells
引文
[1]National Research Council.Nutrient Requirements of Swine.10th Ed National Academic Press Washington,DC,1998.
    [2]余冰.不同锌源和水平对断奶仔猪生产性能和免疫机能影响的研究.[硕士学位论文].四川:四川农业大学,2000.
    [3]Smith W.H,Plumlce M.P,Beeson W.M.Inactivations of oxytocin suggesting peptide denaturation.Science,1958,128(3334):1280-1281.
    [4]蒋宗勇,许振英,霍贵成,等.饲粮不同水平锌对幼猪血液生化指标和组织器官矿物浓度的影响.东北农学院学报,1987,18(4):353-358.
    [5]徐孝义,李杰,王安,等.仔猪早期断奶对铁、铜、锰、锌、硒需要量的研究.动物营养学报,1995,7(3):1-7.
    [6Ivan Heugten E,Spears JW,Kegley EB,et al,Qureshi MA.Effects of organic forms of zinc on growth performance,tissue zinc distribution,and immune response of weanling pigs.Journal of animal science,2003,81(8):2063-2071.
    [7]KlasingK.C.Protecting animal health and well-being:nutrition and immune function.In:Scientific Advances in Animal Nutrition.NRC Natl Acad Press,Washington,DC,2001,pp.13-20.
    [8]Johnson S.The possible crucial role of iron accumulation combined with low tryptophan,zinc and manganese in carcinogenesis.Medical hypotheses,2001,57(5):539-543.
    [9]王恬,钟翔.仔猪肠黏膜营养与肠道修复.饲料工业,2008,29(2):2-7.
    [10]Cook M.E,C.C.Miller,Y.Park,et al.Immnue modulation by altered nutrient metabolism:nutritional control of immune-induced growthd epression.Poul.Sci,1993,72:1301-1305.
    [11]Johnson R.W.Inhibition of growth by pro-inflammatory cytokines:an integrated view.Journal of animal science,1997,75(5):1244-1255.
    [12]Klasing K.C.Nutritional aspects of leukoeytic cytokines.The Journal of nutrition,1988,118(12):1436-1446.
    [13]Klasing K.C,Barnes D.M.Decreased amino acid requirements of growing chicks due to immunologic stress.The Journal of nutrition,1988,118(9):1158-1164.
    [14]李德发.猪的营养[M].北京:中国农业科学技术出版社,2003.
    [15]Williams N.H,T.S.Stahly,D.R.Zimmerman.Effects of chronic immune system activation on the rat, efficiency, and composition of growth and lysine needs of pigs fed from 6 to 27kg. J.anim.Sci, 1997a, 75(2463-2471).
    
    [16]Williams N.H, T.S.Stahly, D.R.Zimmerman. Effects of chronic immune system activation on body nitrogen retention, partial efficiency of utilization, and lysine needs of pigs. J.anim.Sci, 1997b, 75:2472-2480.
    
    [17] Johnson R.W, von Borell E. Lipopolysaccharide-induced sickness behavior in pigs is inhibited by pretreatment with indomethacin. Journal of animal science, 1994, 72(2):309-314.
    
    [18]Swinkels J.W, Kornegay ET, Zhou W, Lindemann MD, Webb KE, Jr., Verstegen M.W. Effectiveness of a zinc amino acid chelate and zinc sulfate in restoring serum and soft tissue zinc concentrations when fed to zinc-depleted pigs. Journal of animal science, 1996, 74(10):2420-2430.
    
    [19]Brink M.F, Becker DE, Terrill SW, H.Jensen A. Zinc toxicity in the weanling pig. J AnimSci, 1959,18:836.
    
    [20]LeMieux F.M, Ellison LV, Ward TL, Southern LL, D.Bidner T. Excess dietary zinc for pigs weaned at 28 days. J.Anim. Sci, 1995, 73(Suppl. 1)(72 (Abstr.).).
    
    [21] Jensen-Waern M, Melin L, Lindberg R, Johannisson A, Petersson L, Wallgren P. Dietary zinc oxide in weaned pigs—effects on performance, tissue concentrations, morphology, neutrophil functions and faecal microflora. Research in veterinary science, 1998, 64(3):225-231.
    
    [22]Chandra R.K. Trace elements and immune tesponse. Immunology today, 1983, 4:32-35.
    
    [23]Fletcher M, .Gershwin ME, C. L. Keen, Hurley L. Trace element deficiencies and immune responsiveness in human and animal models. Nutrition and Immunology, 1988, R. K.Chandra, ed .Alan R .Liss, Inc., New York, N Y.:215-239.
    
    [24]Wellinghausen N, Martin M, Rink L. Zinc inhibits interleukin-1-dependent T cell stimulation. European journal of immunology, 1997; 27(10):2529-2535.
    
    [25]Good R.A, West A, Fernandes G. Nutritional modulation of immune responses. Federation proceedings, 1980;39(13):3098-3104.
    
    [26]Beach R.S, Gershwin ME, Hurley LS. Reversibility of developmental abd retardation following murine fetal zinc deprivatio.1982; 112(J. Nutr):1169 -1181.
    
    [27] Paula D.E Pasquale-Jardieu, Pamela J Frake R. The role of corticosterone in the loss in immune function in the zinc-deficient A/J mouse. J Nutr, 1979; 109:1847-1855.
    
    [28] Cook-Mills J.M, Fraker PJ. Functional capacity of the residual lymphocytes from zinc-deficient adult mice.The British journal of nutrition,1993;69(3):835-848.
    [29]Fraker P.J,King L,Garvy B,Medina C.Immunopathology of zinc deficiency:a role for apoptosis.In:Human Nutrition:A comperhensive Teratise(Klurfeld,D,ed),1993;8:pp.263-283,Plenum Press,New York,N Y.
    [30]PimentelJL,Cook ME,Greger J.Immune responses of chicks fed various levels of zinc.Poultry Sci,1991;70:947-954.
    [3l]张日俊.微量元素锌、锰对肉鸡免疫功能的影响及其机理研究.[博士学位论文].北京:中国农业大学,1996.
    [32]Shi H.N,Scott ME,Stevenson MM,Koski KG.Energy restriction and zinc deficiency impair the functions of murine T cells and antigen-presenting cells during gastrointestinal nematode infection.J Nutr,1998,128(1):20-27.
    [33]FrakerPJ,King LE,Laakko T,Vollmer T.The dynamic link between the integrity of the immune system.J Nutr,2000;130:1399S-1406S.
    [34]DardenneM,Pleau JM,Nabarra B,Lefancier P,Derrien M,Chosy J,et al.Contribution of zinc and other metals to the biological activity of sertun thymic factor.Proceedings of the National Academy of Sciences USA,1982;79:5370-5373.
    [35]Beck FW,Prasad AS,Kaplan J,Fitzgerald JT,Brewer GJ.Changes in cytokine production and T cell subpopulations in experimentally induced zinc-deficient humans.The American journal of physiology,1997;272(6 Pt 1):E1002-1007.
    [36]JamesS,Swendseid.M,MaKinodan.T.Micro phage-mediated depression of T-cell proliferation in zinc-deficient mice.J Nutr,1987;117:1982-1988.
    [37]Hall V.L,Ewan RC,Wannemuehler.MJ.Effect of zinc deficiency and zinc source on performance and immune response in young pigs.J Anim Sci,1993;71(Suppl.1):173.
    [38]吕广宙,陆治年,丁晓明.低锌日粮补锌对断奶前后犊牛免疫机能的影响.畜牧兽医学报,1995;26(3):207-213.
    [39]Kincaid R.L,Chew BP,Cronrath JD.Zinc oxide and amino acids as sources of dietary zinc for calves:effects on uptake and immunity.Journal of dairy science,1997;80(7):1381-1388.
    [40]Allen J.I,Perri RT,McClain CJ,Kay NE.Alterations in human natural killer cell activity and monocyte cytotoxicity induced by zinc deficiency.The Journal of laboratory and clinical medicine,1983;102(4):577-589.
    [41]Keen C.L,Gershwin ME.Zinc deficiency and immune function.Annual review of nutrition,1990;10:415-431.
    [42]Prasad A.Effects of zinc deficiency on immune functions[J].TraceElemExpMed,2000;13:1-20.
    [43]Ravaglia G,Forti P,Maioli F,Bastagli L,Facchini A,Mariani E,et al.Effect of micronutrient status on natural killer cell immune function in healthy free-living subjects aged >/=90y.The American journal of clinical nutrition,2000;71(2):590-598.
    [44]Wirth J,Fraker.P,Kierszenbaun.F.Changes in the level of marker expression by mononuclear phagocytes in zinc deficient mice.Journal of Nutrition,1984;114:1826-1833.
    [45]Dreessen C,Hirv K,Rink L,Kirchnner H.Induction of eytokines by zinc ions in human peripheral blood mononuclear cells and separated monocytes.Lymphokine Cytokine Res,2004;13:15-20.
    [46]Wirth J,J FP,F.K.Zinc requirement for macrophage function:effect of zinc deficiency on uptake and killing of a protozoan parasite.Immunology 1989;68(1):114-119.
    [47]刘宗平.现代动物营养代谢病学[M].化学工业出版社,2003.
    [48]Miller G.G,Strittmatter W.J.Identification of human T cells that require zinc for growth.Scandinavian journal of immunology,1992;36(2):269-277.
    [49]Dowd P.S,Kelher J,Guillou P.J.T-lymphocyte subsets and interleukin-2production in zinc- deficient rats.BrJ Nutr,1986;55:59-69.
    [50]Salas M,Kirchner H.Induction of interferon gammain human leukocyte cultures stimulated by Zn~(2+).Clin ImmunolImmunopathol,1987;45:139-142.
    [51]Beck F.W,Prasad A.S,Kaplan J,Fitzgerald JT,Brewer GJ.Changes in cytokine production and T cell subpopulations in experimentally induced zinc-deficient humans.Am J Physiol Endocrinol Metab,1997;272:E1002-E1007.
    [52]Cui L,Takagi Y,Wasa M,Liboshi Y,Inoue M,K han J,et al.Zinc deficiency enhances interleukin-lalpha-induced metallothionein-1 expression in rats.J N utr,1998;128:1092-1098.
    [53]王进,龙振洲,张枢贤.锌与免疫系统的双向调节.中国免疫学杂志,1990;6(6):377-378.
    [54]Zazobico R,Fenrabdes G,Good RA.The differential sensitivity of T cell and B cell mitogenesis to in vitro zinc deficiency.Cell Immunol,1981;60:203-211.
    [55]Flynn A.Control of in vitro lymphocyte proliferation by copper,maganesium and zinc deficiency.J Nutr,1984;114:2034-2042.
    [56]Fraker P.J,Telford W.G.A reappraisal of the role of zinc in life and death decisions of cell.Proc Soe Exp Biol Med,1997;215:229-236.
    [57]Verma P.C,Gupta R.P,Sadana J.R,Gupta R.K.Effect of experimental zinc deficiency and repletion on some immunological variables in guinea-pigs.The British journal of nutrition,1988;59(1):149-154.
    [58]Kidd M,Anthony.N,Newberry.L,etal.Progeny performance when dams and chicks are fed supplemental zinc.Poultry Science,1993;72:1492-1499.
    [59]Pimentel J.L,Cook M.E,Greger JL.Immune response of chicks fed various levels of zinc.Poultry science,1991;70(4):947-954.
    [60]Ahn S.H,Um JS,Kim DH,Paik IK.Effects of the sources and levels of supplemental zinc on the performance of weanling pigs.Korean Journal of Animal Science,1998;40(1):9-20.
    [61]韦习会,东夏,李文艺.不同形态锌对断奶仔猪补锌效果的研究.1998(4):6-7.
    [62]Clegg M.S,Keen CL,Hurley LS,pp.129-145.Springer-Verlag N.Biochemical pathologogies of zinc deficiency.In:Zinc in Human Biology(M ills,C.R.,ed.).1989:pp.129-145.Springer-Verlag,New York.
    [63]Chandra R.K.Trace elements and immune response.ImmunolToday,1983;4:32-35.
    [64]Iwata T,Incefy GS,Tanaka T,Fernandez-Botet CJ,Pih K,Good RA.Circulating thymic hormone levels in zinc deficiency.Cell Immunol,1979;47:100-105.
    [65]Wellinghausen N,Kirehner H,R ink L.The immmiobiology of zinc.ImmunolToday,1997(18):519-531.
    [66]Shi H,Scot M,Stevenseon M,Koski K.Energy restriction and zinc deficiency repair the function of murine T cells and antigen-persenting cells during gastrointestinal nematode infection.J Nutr,1998;128:20-27.
    [67]Bhandari N,Bahl R,Hambidge K.M,Bhan M.K.Increased diarrhoeal and respiratory morbility in association with zinc deficiency-a perliminary report[J].Acta Paediatrica,1996;85:148-150.
    [68]Bahl R,Bhandari N,Harnbidge K.M,Blum M.K.Plasma zinc as a predictor of diarthoeal and respiratory morbility in childern in an urban slun seting.AmJ ClinNutr,1998;68(Suppl.):4145-4175.
    [69]Sharkar A.H,Prasad A.S.Zinc and immune function:the biological basis of altered resitance to infection.Am J ClinNutr,1998;8:447s-463s.
    [70]Kirchgessner M.Underwood Memorial lecture:Homeostasis and homeorhesis in trace element metabolism[M].In:Trace elements in mall and animals TEMAS(Anke,M.,Meissner,D.and Mills,C.F.,eds.),1993:4-21.
    [71]August D,Janghorban M,Young V.Determination of zinc and copper absorption at three dietary Zn—Cu ratios by using stable isotope methods in young adult and elderly subjects.Am J ClinNutr,1989;50:1457-1463.
    [72]Damgaard H.P,Larsen T.生长猪饲粮中添加氧化锌对锌沉积和排泄的影响[.第六届猪消化生理国际学术会议论文集[M].四川:四川科学技术出版社.1997:135-136.
    [73]Krebs N.F.Overview of zinc absorption and excertion in the human gastrointestinal tract.J Nutr,2000;130:1374S-1377S.
    [74]King J.C,DM S,LR W.Zinc homeostasis in humans.J Nutr,2000;130(5s Supp1):1360s-1366s.
    [75]Palmiter R.D,Huang L.Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers.Pflugers Arch,2004;447(5):744-751.
    [76]Eide D.J.The SLC39 family of metal ion transporters.Pflugers Arch,2004;447(5):796-800.
    [77]Liuzzi J.P,Cousins RJ.Mammalian zinc transporters.Annual review of nutrition,2004;24:151-172.
    [78]Evans G.W,Grace C,Votava H.A proposed mechanism of zinc absorption in the rat.Am J Physiol,1975;228(2):501-505.
    [79]Cragg R.A,Phillips SR,Piper JM,Varma JS,Campbell FC,Mathers JC,et al.Homeostatic regulation of zinc transporters in the human small intestine by dietary zinc supplementation.Gut,2005;54(4):469-478.
    [80]Kury S,Dreno B,Bezieau S,Giraudet S,Kharfi M,Kamoun R,et al.Identification of SLC39A4,a gene involved in acrodermatitis enteropathica.Nature genetics,2002;31(3):239-240.
    [81]Wang F,Kim BE,Petris MJ,Eide DJ.The mammalian Zip5 protein is a zinc transporter that localizes to the basolateral surface of polarized cells.The Journal of biological chemistry,2004;279(49):51433-51441.
    [82]Jodi Dufner-Beattie,P B,Weaver,Geiser J,Bilgen M,Larson M,et al.The mouse acrodermatitis enteropathica gene Slc39a4(Zip4) is essential for early development and heterozygosity causes hypersensitivity to zinc deficiency.Human Molecular Genetics,2007;16(12):1391-1399.
    [83]Jodi DBS,MK Yien,Gitschier J.The adaptive response to dietary zinc in mice involves the differential cellular localization and zinc regulation of the zinc transporters ZIP4 and ZIP5.Biol Chem,2004;279:49082-49090.
    [84]沈慧,秦海宏,龙建纲,等.锌对Caco2细胞ZIP4 mRNA表达的影响.卫生研究,2006;35(4):426-427.
    [85]沈慧,秦海宏,龙建纲,等。锌对Caco-2细胞锌转运体mRNA表达的影响.中国临床康复,2006;10(24):187-189.
    [86]Dufner-Beattie J,Langmade SJ,Wang F,Eide D,Andrews GK.Structure,function,and regulation of a subfamily of mouse zinc transporter genes.The Journal of biological chemistry,2003;278(50):50142-50150.
    [87]Yu YY,Kirschke CP,Huang L.Immunohistochemical analysis of ZnT1,4,5,6,and 7 in the mouse gastrointestinal tract.J Histochem Cytochem,2007;55(3):223-234.
    [88]Ruth A,Valentine,A K,Jackson,R G,Christie,et al.ZnT5 Variant B Is a Bidirectional Zinc Transporter and Mediates Zinc Uptake in Human Intestinal Caco-2 Cells.J Biol Chem,2007;282(19):14389-14393.
    [89]张式,李正银,LiJing,等,.高锌对Caeo-2细胞铁、锌含量及其调控基因mRNA表达的影响.第二军医大学学报,2004;27(1):41-44.
    [90]Palmiter R.D,Cole TB,Findley SD.ZnT-2,a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration.The EMBO journal,1996;15(8):1784-1791.
    [91]Liuzzi J.P,Bobo J.A,Cui L,McMahon R.J,Cousins R.J.Zinc transporters 1,2and 4 are differentially expressed and localized in rats during pregnancy and lactation.The Journal of nutrition,2003;133(2):342-351.
    [92]Kirschke CP,Huang L.ZnT7,a novel mammalian zinc transporter,accumulates zinc in the Golgi apparatus.The Journal of biological chemistry,2003;278(6):4096-4102.
    [93]Devergnas S,Chimienti F,Naud N,Pennequin A,Coquerel Y,Chantegrel J,et al.Differential regulation of zinc efflux transporters ZnT-1,ZnT-5 and ZnT-7 gene expression by zinc levels:a real-time RT-PCR study.Biochemical pharmacology, 2004;68(4):699-709.
    [94]Cousins R.J,LM LA.Nuclear zinc uptake and interactions and metallothionein gene expression are influenced by dietary zinc in rats.J Nutr,1992;122:56-64.
    [95]Levenson C,WShay,JM N,al.e.Expression of cysteine-rich intestinal protein in rat intestine an d transfected cels in not zinc dependen.J Nutr,1994;124:13-17.
    [96]Palmiter R.D,Findley S.D.Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc.The EMBO journal,1995;14(4):639-649.
    [97]McMahon R.J,Cousins RJ.Regulation of the zinc transporter ZnT-1 by dietary zinc.Proceedings of the National Academy of Sciences of the United States of America,1998;95(9):4841-4846.
    [98]Fudi Wang,KIM BE,J M.The Mammalian Zip5 protein is a zinc transporter that localizes to the basolateral surface of polarized cells.Biol Chem,2004;279:51433-51441.
    [99]Neutra M.R.Current concepts in mucosal immunology V Role of M cells in transepithelial transport of antigen and pathogens to the mucosal immune system[J].Am J Physiol,1998;274:G785.
    [100]Clark M.A,Jepson M.A,Simmons N,Hirst B.Selective binding and transcytosis of Ulex europaeus 1 lectin by mouse Peyer's patch M-cells in vivo.Cell and Tissue Res,1995;282(3):455-461.
    [101]Sansonetti P.J,A P.M cells as ports of entry for enteroinvasive pathogens:Mechanisms of interaction,consequences for the disease process.Seminars in Immunology 1999;11(3):193-203
    [102]王岚.肠粘膜上皮细胞在天然免疫中的作用[J.生物技术通讯,2002;13(5):368-370.
    [103]KlimpelGR,AK C,KE L,al e.A role for stem cell factor and c-kit in the murine intestinal tract secretory response to Choler Toxin.J Exp Med,1995;182:1931-1942.
    [104]KlimpelGR,KE L,J W,al e.A role for stem cell factor(SCF):c-kit interaction(s)in the interstinal tract response to Salmonella typhimurium infection.J Exp Med,1996;84:271-276.
    [105]YamadaK,M S,K N,al e.Bacterial invasion induces interleukine-7 receptor expression in colonic epithelial cell line,T84.Eur J Immunol,1997;27:3456-3460.
    [106]GoodrichME,DW M.Preferential enhancement of B cell IgA secretion by intestinal epithelial cell-derived cytokines and interleukin2.Immunol Invest 1999;28(1):67-75.
    [107]Mardrigal-EstebasL,R M,B B,ale.Human small in-testinal epithelial cells secrete interleukin27and differentially express two different interleukin27 mRNA transcripts:implications for extrathymic T-cell differentiation.Human Immunology,1997;58:83-90.
    [108]JiangY,DW M.Regulation of human lymphocyte IL-4 secretion by intestinal epithelial cell-derived interleukin-7 and transforming growth factor-β.Clin Immunol Immunopathology,1998;88(3):287-296.
    [109]KagnoffMF.Mueosal immunology:new frontiers.Immunology Today,1996;17(2):57-59.
    [110]WatanabeM,Y U,T Y,al e.Interleukine-7 transgenic mice develop chronic colitis with decreased interleukine-7 protein accumulation in the colonic mucosa.J Exp Med,1998;187(3):389-402.
    [111]Daig R,G R,E A,et al.Human intestinal epithelial cells secrete interleukin-1receptor antagonist and interleukin-8 but not interleukin-1 or interleukin-6.Gut,2000;46:350-358.
    [112]孙德文,詹勇,许梓荣.日粮营养调控动物肠道粘膜免疫研究[J].中国畜牧杂志,2004;40(5):36-29.
    [113]Murphy W.J,H R,L LD.Effects of growth hormone and prolaetin immune development and function.Life sciences,1995;57(1):1-14.
    [114]石辛甫.肠粘膜上皮细胞的免疫学功能.国外医学免疫学分册,1999,22(4):203-206.
    [115]刘玉兰,李德发,龚利敏,等.免疫应激对断奶仔猪免疫和神经内分泌激素的影响.中国畜牧杂志,2004;40(4):4-6.
    [116]Klasing K.C,Laurin DE,Peng RK,Fry DM.Immunologically mediated growth depression in chicks:influence of feed intake,corticosterone and interleukin-1.The Journal of nutrition,1987;117(9):1629-1637.
    [117]TakahashiK,Kawamata K,Akiba Y,Iwata T,Kasa M.Influence of dietary conjugated linoleic acid isomers on early inflammatory responses in male broiler chickens.Br Poult Sci,2002;43:47-53.
    [118]van Heugten EV,Spears JW.Immune response and growth of stressed weanling pigs fed diets supplemented with organic or inorganic forms of chromium. Journal of animal science, 1997;75(2):409-416.
    
    [119]Balaji R, Wright KJ, Hill CM, Dritz SS, Knoppel EL, Minton JE. Acute phase responses of pigs challenged orally with Salmonella typhimurium. Journal of animal science, 2000;78(7): 1885-1891.
    
    [120]Zannelli M.E, Touchete KJ, llee GLA, atteri RLM, eausang LAB, uchene LJL, et al. A comparison of the immunological response to Lipopolysaccharide(LPS) versus E.coli challenge in the weaned pig. J Anim Sci, 2000;78 (Suppl.2):77.(A bstr.).
    
    [121]Kegley E.B, Spears JW, Auman SK. Dietary phosphorus and an inflammatory challenge affect performance and immune function of weanling pigs. Journal of animal science, 200l;79(2):413-419.
    
    [122]J.Bassaganya-Riera, Hontecillas-Magarzo R, K. Bregendahl, Wannemuehler MJ, Zimmerman DR. Effects of dietary conjugated linoleic acid in nursery pigs of dirty and clean environments on growth, empty body composition, and immune competence. Journal of animal science, 2001;79(3):741-721.
    
    [123]Williams N.H, taetly TSS, immerman DRZ. Impact of immune system activation and dietary amino acid regimen on nirtogen retention in pig. J AnimSci, 1993a;71 (Suppl.1):171.(Abst)r.
    
    [124]Williams N.H, taetly TSS, immerman DRZ, annemuehler MW. Impact of immune system activation on the amino acid needs of pigs. J A nimSci, 1993b;71 (Suppl.1) (61(Absrt.)).
    
    [125]Williams P.H, Haynesl RJ. Comparison of initial wetting pattern, nutrient concentrations in soil solution and the fate ofl5N-labelled urine in sheep and cattle urine patch areas of pasture soil. Plant and Soil, 1994; 162:49-59.
    
    [126]Williams N.H, Stahly TS, .Zimmerma DR. Effects of level of chronic immune system activation on the growth and dietary lysine needs of pigs fed from 6 to I I2 kg. J AnimSci, 1997c;75:2481-2496.
    
    [127]van Heugten E, Spears J.W, Coffey MT. The effect of dietary protein on performance and immune response in weanling pigs subjected to an inflammatory challenge. Journal of animal science, 1994;72(10):2661-2669.
    
    [128]van Heugten E, Coffey MT, Spears JW. Effects of immune challenge, dietary energy density, and source of energy on performance and immunity in weanling pigs. Journal of animal science, 1996;74(10):2431-2440.
    [129]Dritz S.S,Owen K.Q,Goodband R.D,Nelssen JL,Tokach MD,Chengappa MM,et al.Influence of lipopolysaccharide-induced immune challenge and diet complexity on growth performance and acute-phase protein production in segregated early-weaned pigs.Journal of animal science,1996;74(7):1620-1628.
    [130]Webel DM,Mahan DC,Johnson RW,Baker DH.Pretreatment of young pigs with vitamin E attenuates the elevation in plasma interleukin-6 and cortisol caused by a challenge dose of lipopolysaccharide.The Journal of nutrition,1998;128(10):1657-1660.
    [131]McHughK,Collins JSM,Weingarten HP.Central interleukin-1 receptors contribute to supperssion of feeding after acute colitis in the rat.AmJ P hysiol,1994;266:R.1659-R1663.
    [132]Wright K.J,Balaji R,Hill CM,Dritz SS,Knoppel EL,Minton JE.Integrated adrenal,somatotropic,and immune responses of growing pigs to treatment with lipopolysaccharide.Journal of animal science,2000;78(7):1892-1899.
    [133]EatonDL,Toal B.Evaluation of the Cd/hemoglobin affinity assay for rapid determination of metallothionein in biological tissues.ToxicolAAplPharmaco,1982;66:134-142.
    [134]Jepson M.M,.Pell J.M,ates PCB,illward DJM.The effects of endotoxaemia on protein metabolism in skeletal muscle and liver of fed and fasted rat.Biochem,1986;23 5:.329-336.
    [135]Webel D.M,Finck BN,Baker DH,Johnson RW.Time course of increased plasma cytokines,cortisol,and urea nitrogen in pigs following intraperitoneal injection of lipopolysaccharide.Journal of animal science,1997;75(6):1514-1520.
    [136]Fuller M.F,McWilliam R,T.C.Wang,.RGile L.The optimum dietary amino acid pattern for growing pigs.2.Requirements for maintenance and for tissue protein accretion.Br J Nut,1989;62:255-267.
    [137]TayekJA.Effects of tumor necrosis factor alpha on skeletal muscle amino acid metabolism studied in-vivo.J Am Coll Nurt,1996;15:164-168.
    [138]Richards C,Gauldie J,Baumann H.Cytokine control of acute phase protein expression.Eur Cytokine Netw,1991;2:89-98.
    [139]Krones CJ,Klosterhalfen B,Anurov M,Stumpf M,Klinge U,Oettinger AP,et al.Missing effects of zinc in a porcine model of recurrent endotoxemia.BMC surgery,2005;5:22.
    [140]Heugten EV,Spears JW.Immune response and growth of stressed weanling pigs fed diets supplemented with organic or inorganic forms of chromium. Journal of animal science, 1997; 75(2):2409-2416.
    
    [141]Spurlock ME. Regulation of metabolism and growth during immune challenge: an overview of cytokine function. Journal of animal science, 1997; 75(7): 1773-1783.
    
    [142]Reeds P.J, Fjeld CR, Jahoor F. Do the diferences between the amino acid compositions of acute-phase and muscle porteins have a bearing on nirtogen loss in traumatic states?. J Nur,l 994; 124:906-910.
    
    [143]Memon R.A, Feingold KR, Grunfeld C. The efects of cytokines on intermediary metabolism. Endocrinologis,1994;4:59-63.
    
    [144]Andus T, J.Bauer, erok WG Effects of cytokines on the liver. Hepatology, 1991;13:364-375.
    
    [145]Barber E.F, Cousins RJ. Interleukin-1-stimulated induction of ceruloplasmin synthesis in normal and copper-deficient rats. J N utr, 1988; 118:375-381.
    
    [146]Tufft L.S, Nockels C.F, Fettman M.J. Effects of Escherichia coli on iron, copper, and zinc metabolism in chicks. Avian diseases, 1988;32(4):779-786.
    
    [147]HillCH. Effect of Salmonella gallinarum infection on zinc metabolism in chicks. Poultry Scienc, 1989; 68:297-305.
    
    [148]Butler E.J, . CM. The effect of Escheirchia coli endotoxin and ACTH on the plasm zinc concentraton in the domestic fowl. ResVetSci, 1973;15:363-367.
    
    [149]Verbanac D, ilin CM, adosevic-Stasic BR, robonjaca ZT, Domitrovic R, iacometti JG, et al. Tissue zinc dynamics during the immune reaction in minc. BinTrace ElemRes, 1998 (65):97-108.
    
    [150]KlasingKC. Effect of inflammatory agents and interleukl on iron and zinc metabolism. AmJPhysiol, 1984;247:901-904.
    
    [151]LindaST, Cheryl FN, Martin J. Effect of Escherichia coli on iron, copper, and zinc metabolism in chicks. Avian Diseas, 1988;32:779-786.
    
    [152]CousinsRJ. Absorption,transport,and hepatic metabolism of copper and zinc:Special reference to metallothionein and ceruloplasmin. PhysiolRev, 1985;65:238-309.
    
    [153]Sugarman B. zinc and infection.. RevInfectDis, 1983;5:137-147.
    
    [154]Giroux E, Schechter P.J, Shoun J, Sjoerdsma A. Reduced binding of added zinc in serum of patients with decompensated hepatic cirrhosis. EurJ ClinInvest, 1977;7:71-75.
    
    [155]Gaetke L.M, McClain CJ, Talwalkar R.T, Shedlofsky S.T. Effects of endotoxin on zinc metabolism in human volunteers. AmJ P hysiol, 1997;272(( Endorcrinol.M etab.35 )):E952-956.
    
    [156]CousinsRJ, Hempe JM. Zinc, in Present Knowledge in Nutrition. M L Brown, ed,International Life Science Institute, Nutrition Foundation, Washington,D C,1990:pp .251-261.
    
    [157]Dunn M.A, Cousin R. Kinetics of zinc metabolism in the rate:effect of dibutyryl cyclic AMP. Am J Ph ysiol, 1989;256:E420-E430.
    
    [158]Blalock T.L, Dunn.M.A, Cousins.R.J. Metallothionein Gene Expression in Rats: Tissue-Specific Regulation by Dietary Copper and Zinc. J Nutr, 1988;118:222-228.
    
    [159]Richards M.P. Characterization of the metal composition of metallothionein isoforms using reversed-phase high-performance liquid chromatography with atomic absorption specrtophotometric detection. J Chromatogr,1989;482:87-97.
    
    [160]Henrandez J, Giralt M, Belloso E, Rebollo DV, Romero B, Hidaigo J. Interaction between metallotionein inducers in rat liver and primary culture of rat hepatocyes. ChemBioInteract, 1996; 100:27-40.
    
    [161]PhilcoxJC, Coyle P, Michalska A, Choo CHA, Rofe AM. Endotoxin-induced inflammation dose not cause hepatic zinc accumulation in mice lacking metallothionein gene experssion. Biochem J,1995;308:543-546.
    
    [162]CoyleP, Philcox JC, rofe AM. Hepatic zinc in metallothionein-null mice following zinc challenge: in vivo and in vitro studies. BiochemJ, 1995;309:25-31.
    
    [163]Philcox J.C, Sturkenboom M, Coyle P, Rote AM. Metallothein in mice reduces intestinal zinc loss during acute endotoxin inflammation,but not during starvation or dietary zinc restriction. JNutr, 2000; 130:1901-1909.
    
    [164]S. E. Goldblum, Cohen DA, Jay M, McClain CJ. Interleukin 1-induced depression of iron and zinc: role of granulocytes and lactoferrin. Endocrinology and Metabolism, 1987;252(1):E27-E32.
    
    [165]E. van Heugten, Coffey M.T, Spears JW. Effects of immune challenge, dietary energy density, and source of energy on performance and immunity in weanling pigs. Journal of animal science, 1996;74(10):2431-2440.
    
    [166]Sauber T.E, Stahly T.S, Nonnecke BJ. Effect of level of chromic immune system activation on the lactational performance of sows. J A nimSci, 1999; 77:1985-1993.
    
    [167]Fuller M.F, McWilliam R, Wang T, Giles LR. The optimum dietary amino patern for gorwing pigs.2. Requirements for mainteinance and tissue portcin accertion.Br J Nutr,1989;62:255-267.
    [168]Wang T.C,Fulle M.F.The optimum dietary amino acid patern for growing pigs.1 Experiment by amino acid deletion.BrJ Nutr,1989;62 77-86.
    [169]Stahly T.S,Cook D.R.Dietary B vitamin needs of pigs with a moderate or high level of antigen exposure.J AnimSci,1996;74(Suppl.1)(170(Abstr.)).
    [170]Yao Y,Yu Y,Chen J.The effect of intestinal ischemia/reperfusion onBioavailability of zinc from inorganic and organic sources for pigs fed corn-soybean meal diets increased sensitivity to endotoxin and its potential mechanism.Zhonghua zheng xing shao shang wai ke za zhi,1999;15(4):301-304.
    [171]林洪远,盛志勇.全身炎症反应和MODS认识的变化及现状.中国危重病急救医学,2001;13(11):643-646.
    [172]蔺宏伟.多器官功能障碍综合征与免疫失衡[J].中国危重病急救医学,2001;13(9):565-567.
    [173]周华,王培训,刘良,等.环磷酞胺对小鼠Peyer's结和肠道粘膜相关淋巴细胞的影响[J].中国免疫学杂志,2000;17(4):186-189.
    [174]Roura,E and K.C.Klasing.Dietary antibiotics reduce immunological stress elicited by poor sanitation or consumption of excerta in boriler chicks.PoultSci,1993;72(suppl.1) 1.(Abstr).
    [175]Hill G..M,Miller E.R,Whetter PA,et al.Concentration of Minerals in Tissues of Pigs from Dams Fed Different Levels of Dietary Zinc.J Anim Sci,1983,57:130-138.
    [176]Wedekind K.J,Lewis AJ,Giesemann MA,et al.Bioavailability of zinc from inorganic and organic sources for pigs fed corn-soybean meal diets.Journal of animal science,1994,72(10):2681-2689.
    [177]Mosmann T.Rapid colorimetric assay for cellular growth and cytotoxicity assays.J Immune Methods 1988,65:55-63.
    [178]Liu YL,Li DF,Gong LM,Yi GF,et al.Effects of fish oil supplementation on the performance and the immunological,adrenal,and somatotropic responses of weaned pigs after an Escherichia coli lipopolysaccharide challenge.Journal of animal science,2003,81(11):2758-2765.
    [179]Mao XF,Piao XS,Lai CH,et al.Effects of beta-glucan obtained from the Chinese herb Astragalus membranaceus and lipopolysaccharide challenge on performance,immunological,adrenal,and somatotropic responses of weanling pigs. Journal of animal science,2005,83(12):2775-2782.
    [180]成廷水,呙于明.脂多糖应激对添加不同锌源蛋鸡免疫反应和组织锌代谢的影响.畜牧兽医学报,2005,36(5):446-452.
    [181]Cheng J,Kornegay ET,Schell T.Influence of dietary lysine on the utilization of zinc from zinc sulfate and a zinc-lysine complex by young pigs.Journal of animal science,1998,76(4):1064-1074.
    [182]Hahn J.D,Baker DH.Growth and plasma zinc responses of young pigs fed pharmacologic levels of zinc.Journal of animal science,1993,71(11):3020-3024.
    [183]Schell T.C,Kornegay E.T.Zinc concentration in tissues and performance of weanling pigs fed pharmacological levels of zinc from ZnO,Zn-methionine,Zn-lysine,or ZnSO4.Journal of animal science,1996,74(7):1584-1593.
    [184]Case C.L,Carlson M.S.Effect of feeding organic and inorganic sources of additional zinc on growth performance and zinc balance in nursery pigs.Journal of animal science,2002,80(7):1917-1924.
    [185]董晓慧,韩有文,周桂莲,徐丽.不同锌源生物学效价的研究.动物营养学报,2004,16(3):20-25.
    [186]阴季悌,刘纹芳,许振英.肉仔鸡锌生物效价方法研究.东北农学院学报,1993,24(1):33-36.
    [187]Miller E.R,Luecke R.W,Ullrey DE,et al.Biochemical,skeletal and allometric changes due to zinc deficiency in the baby pig.The Journal of nutrition,1968,95(2):278-286.
    [188]Lalles J.P,Favier C,Jondreville C.Diet moderately deficient in zinc induces limited intestinal alterations in weaned pigs.Livestock Science,2007,108:153-155.
    [189]周明,刘琦山.黑白花奶牛日粮锌适宜添加量的研究.中国奶牛,2005,(3):39-41.
    [190]Carlson M.S,Hill G.M,Link JE.Early- and traditionally weaned nursery pigs benefit from phase-feeding pharmacological concentrations of zinc oxide:effect on metallothionein and mineral concentrations.Journal of animal science,1999,77(5):1199-1207.
    [191]Martinez M.m,Hill.J.M,Link.J.E,Raney.N.E,et al.Pharmacological Zinc and Phytase Supplementation Enhance Metallothionein mRNA Abundance and Protein Concentration in Newly Weaned Pigs.J Nutr,2004,134:538-544.
    [192]Carlson D,Sehested J,Poulsen H.D.Zinc reduces the electrophysiological responses in vitro to basolateral receptor mediated secretagogues in piglet small intestinal epithelium.Comparative biochemistry and physiology,2006,144(4):514-519.
    [193]Spurlock M.E.Regulation of metabolism and growth during immune challenge:An overview of cytokine function.J Anim Sci,1997,75:1773-1783.
    [194]Feldmann M,ale.DM.Cell cooperation in the immun response.In:1 Roit,J B rostoff,and D Male(ed) Immunology Crower Medical Publishing,London.pp 180-192,1989.
    [195]Groote De D,PF Z,Y G,,et al.Direct stimulation of cytokines(IL-1 beta,TNF-alpha,IL-6,IL-2,IFN-gamma and GM-CSF) in whole blood.I.Comparison with isolated PBMC stimulation..Cytokine,1992,4(3):239-248.
    [196]Scarino M.L,Poverini.R,Dilullo.G,et al.Inhibition of protein synthesis after exposure of Caco-2 cells to heavy metals.ATLA,1992,20:325-333.
    [197]Moltedo.O,C.Verde,A.Capasso,et al.Zinc transport and metallothionein secretion in the Intestinal human cell line Caco-2.J Biol Chem,2000,275(41):31819-31825.
    [198]Bettina,Zodla,Zeiner M,Sargazi M,et al.Toxic and biochemical effects of zinc in Caco-2 cells.Journal of Inorganic Biochemistry,2003;97:324-330.
    [199]王安,许振英.不同来源锌对肉雏鸡生物效价的研究.中国动物营养学报,1994;6(1):44-51.
    [200]McMahon R.J,Cousins R.J.Mammalian zinc transporters.The Journal of nutrition,1998,128(4):667-670.
    [201]Gunshin.H,Mackenzie B,Berger U.V,et al.Cloning and characterization of a mammalian proton-coupled metal-ion transporter.Nature,1997,388:482-488.
    [202]Blalock T.L,Dunn.M.A,Cousins.R.J.Metallothinoein gene expression in rats:tssue-specific regulation by dietary copper and zinc.J.Nutr,1998,118:222-228.
    [203]李越中.药物微生物技术[M].北京:化学工业出版社,2004,127-129.
    [204]Yoshimura T,K M,S T,et al.Purification of a human monocyte2derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines.Proc Natl Acad Sci USA,1987,84:9233.
    [205]姚文柱,胡家露,吴开春,等.大鼠肠粘膜不同状态下转化生长因子的表达.第四军医大学学报,2001,22(5):422-424.
    [206]YanakaA,Muto.H,H F,et al.Role of transforming growth factor β in the restitution of the injured guinea gastric mucosa in vitro[J].Am J Physiol,1996;271(1):75.
    [207]荔霞,刘永明,齐志明,等.锌对小鼠血清中细胞因子水平的调控作用研究.家畜生态学报,2007,28(6):13-15.
    [208]DetmarBeyersmann,Haasel\H.Functions of zinc in signaling,proliferation and differentiation of mammalian cells 14,2001,3-3.
    [209]金伯泉.细胞和分子免疫学实验技术[M].西安:第四军医大学出版社,2002.
    [210]Arce C,Ramirez-Boo M,Lucena C,et al.Innate immune activation of swine intestinal epithelial cell lines(IPEC-J2 and IPI-2I) in response to LPS from Salmonella typhimurium.Comparative immunology,microbiology and infectious diseases,2008.
    [211]Agren M.S,Chvapil M,Franzen L.Enhancement of reepithelialization with topical zinc oxide in porcine partial-thickness wounds.J Surg Res,1991,50:101-105.
    [212]David P,Fund A,Tuckova L,et al.CD14 Is Expressed and Released as Soluble CD14 by Human Intestinal Epithelial Cells In Vitro:Lipopolysaccharide Activation of Epithelial Cells Revisited.INFECTION AND IMMUNITY,2001,69(6):3772-3781.
    [213]Matthew Hirschfeld,Ma Y,Weis J.H,et al.Cutting Edge:Repurification of Lipopolysaccharide Eliminates Signaling Through Both Human and Murine Toll-Like Receptor 2.2000,165(The Journal of Immunology):618-622.
    [214]张道杰,蒋建新,陈永华,等.人肠上皮细胞内毒素低反应性及其机制探讨.解放军医学杂志,2003,28(3):194-196.
    [215]袁媛,孙梅.黄芪多糖LPS损伤小肠上皮细胞的保护作用.世界华人消化杂志,2008,16(1):15-19.
    [216]Olaya,V N,A U.Lipopolysaccharide of Eschericha coil,polyamines and acetic acid stimulate cell proliferation in intestinal epithelial cells In vitro,cell dev biol-Aminal,1999,34(1):43-48.
    [217]Olaya,V N,C S.Bacterial wall compoments such as lipothecoid acid,peptidoglyean,liposacharide and lipid A stimulate cell proliferation in intestinal epithelial cells.Microb Eool health Dis,2000;13(2):124-128.
    [218]钟世顺,张振书,王继德,等.双歧杆菌粘附素对脂多糖和H2O2调节肠上皮细胞增殖和凋亡的影.第一军医大学学报,2004,24(3):264-268.
    [219]胥飞,许强,郑怀芳.环磷酰胺冲击治疗难治性肾病的临床疗效及对血清细胞因子的影响.中国血液流变学杂志,2002,12(4):339-340.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700