新疆阿尔泰古生代碎屑沉积岩的沉积时代、物质来源及其构造背景
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国阿尔泰造山带位于我国新疆自治区北部,北邻萨彦—蒙古造山带,南接准噶尔盆地,沿南东—北西向展布2000余公里,是中亚造山带的重要组成部分。现有研究表明,中亚造山带是一个复杂大洋演化的产物,该大洋类似现今的西太平洋,其中存在不同时代的岛弧、海山和微陆块等,是一典型的显生宙增生型造山带。但对于我国新疆阿尔泰造山带,虽然研究显示陆壳的垂向增生是该造山带地壳生长的重要方式之一,但有关该造山带的基底形成时代和构造演化模式的争论仍旧没有解决。传统观点认为阿尔泰造山带存在前寒武纪结晶基底,该造山带的构造演化模式以开合构造演化为主。
     新疆阿尔泰造山带西北和南缘广泛分布了一套古生代的浅变质及未变质的碎屑沉积岩,主要岩性为砂岩、粉砂岩、泥岩,以及浅变质的千枚岩、云母片岩和绿泥石片岩等。由于该套碎屑沉积岩被广泛出露的古生代花岗岩侵入并受到断层系统的切割,因而连续性差且区域对比困难。目前,对于该套碎屑沉积岩的沉积时代及其构造背景存在不同认识。一种观点认为,阿尔泰西北碎屑沉积岩形成时代为震旦一早寒武世,沉积于被动陆缘构造环境;而阿尔泰南缘的浅变质碎屑沉积岩形成时代为早—中泥盆世,沉积于被动大陆边缘拉张裂谷环境。
     阿尔泰西北的哈巴河群碎屑沉积岩和南缘的康布铁堡组及阿勒泰组碎屑沉积岩的主量元素含量变化大,而微量元素含量比较一致。哈巴河群的砂岩和角闪石片岩具有相近的主量元素含量(SiO_2=68-77wt%,Al_2O_3=9-14wt%,Fe_2O_3=2.3-5.7wt%,MgO=0.7-4.6wt%,CaO=0.3-3.5wt%,Na_2O=0.7-3.1wt%;K_2O=0.3-4.0wt%)。与之相比,泥岩和黑云母片岩含有较低的SiO_2(58-64wt%)和较高的Al_2O_3(15-19wt%)、Fe_2O_3(6.4-11.5wt%)和MgO(3.3-5.0wt%)含量。该群所有碎屑沉积岩具有比较一致的稀土配分特征,轻稀土富集(La_N/Yb_N=3-13),重稀土平坦型,并伴有明显的Eu负异常(Eu/Eu~*=0.43-0.80)。
     阿尔泰南缘的康布铁堡组绿泥石片岩主量元素组成(SiO_2=61-64wt%,Al_2O_3=15-18wt%,Fe_2O_3=7.5-8.0wt%,MgO=3.3-3.7wt%)与哈巴河群的泥岩和黑云母片岩一致,而该组云母片岩及千枚岩则(SiO_2=63-77wt%,Al_2O_3=11-17wt%,Fe_2O_3=3.5-6.2wt%,MgO=0.8-3.4wt%)类似于哈巴河群的砂岩和角闪石片岩。康布铁堡组碎屑沉积岩中大离子亲石元素Sc、Th和U及高场强元素(如Nb、Ta、Zr、Hf、Y)含量与后太古代澳大利亚页岩(PASS)接近,而大离子亲石元素Rb和Sr含量低于PASS。除个别云母片岩外,该组碎屑沉积岩稀土配分模式与哈巴河群碎屑沉积岩类似,轻稀土富集(La_N/Yb_N=2.88-8.24),并具有明显的Eu负异常(Eu/Eu~*=0.45-0.89)。阿尔泰组碎屑沉积岩主体与哈巴河群的砂岩和角闪石片岩类似,具有相似的主量元素组成(SiO_2=72-79wt%,Al_2O_3=10-13wt%,Fe_2O_3=3.4-5.5wt%,MgO=2.3-2.9wt%)和稀土配分特征(La_N/Yb_N=4.29-9.90,Eu/Eu~*=0.46-0.65)。
     阿尔泰造山带西北及南缘的碎屑沉积岩中的碎屑锆石比较自形,整体磨圆度较差,以岩浆锆石成因为主,其~(206)Pb/~(238)U年龄主要介于463-542Ma之间,此外还有一定量的元古代及个别太古代碎屑锆石(~30%),其中检获的最古老的碎屑锆石为一粒比较谐和的太古代岩浆锆石(~(207)Pb/~(206)Pb年龄3087±20Ma,Th/U=0.36),确认了源区中有太古代物质的加入。寒武纪—早奥陶世的碎屑锆石多具有正的或近于零的εHf(t)值。
     通过对阿尔泰古生代碎屑沉积岩详细的地球化学及其碎屑锆石年代学和Hf同位素组成研究,得出以下主要认识:
     1、阿尔泰西北哈巴河群与阿尔泰南缘的康布铁堡组和阿勒泰组碎屑沉积岩的岩石学和地球化学特征相似,经历了相对较弱的化学风化作用及相对简单的沉积演化过程,其源区物质以中—酸性岛弧火成岩为主,形成于活动大陆边缘构造环境,而不是传统观点所认为的被动大陆边缘构造环境。
     2、哈巴河群沉积于中奥陶世之后,早泥盆世之前,并非形成于前寒武纪;康布铁堡组碎屑沉积岩沉积于早志留世之后,与前人给出的晚志留—早泥盆世年龄一致;对于阿勒泰组,出露于塔尔浪及哈拉苏南的该组碎屑沉积岩形成时代应早于早泥盆世,介于中奥陶世(~470Ma)和早泥盆世(~412Ma)之间,既不是早期所认为的中泥盆世,也不是后来所认定的早元古代,说明阿勒泰组不同地段的形成时代可能不同。
     3、阿尔泰西北与阿尔泰南缘的碎屑沉积岩中的碎屑锆石均以比较自形的寒武纪—早奥陶世(~460-540Ma)的岩浆锆石为主,多数具有正的εHf(t)值,说明二者的碎屑沉积物均主要来自寒武纪—早奥陶世形成的岩浆弧,并具有相同的主要物质源区,可能为相同构造环境下不同时期沉积的产物。
     4、阿尔泰西北与阿尔泰南缘的碎屑沉积岩源区物质均以早古生代为主,并含有一定量的新元古代物质和极少太古代碎屑物质,不同于华北板块碎屑沉积物源区物质组成,可能与西伯利亚板块具有亲缘性。
     5、阿尔泰南缘的阿勒泰组碎屑沉积岩的角闪岩相变质作用发生在中泥盆世(389Ma),与此同时,阿尔泰西北哈巴河群碎屑沉积岩发生了混合岩化变质作用(384±6Ma),该期区域变质作用是阿尔泰早古生代一期重要变质事件。结合区域二叠纪的变质事件,说明阿尔泰造山带存在多期变质作用。
     6、阿尔泰存在前寒武纪结晶基底的证据不足,需要进一步深入研究。阿尔泰碎屑沉积岩系,如哈巴河群、康布铁堡组和阿勒泰组,均形成于中奥陶世之后,不能代表阿尔泰造山带基底。
The Chinese Altai orogen is situated in the northern Xijiang Uygur Autonomous, between the Sayan and associated belts to the north and the Junggar basin to the south, extending northwestwards for more than 2000 km. The Chinese Altai orogen is a part of the Central Asian Orogenic Belt (or Altaids), which is one of the largest Phanerozoic accretionary type orogens in the world, with both lateral and vertical accretion of juvenile materials contributing to the crustal growth. As for the Chinese Altai orogen, recent studies have shown that the continental vertical accretion is an important aspect of the crustal growth in this orogen. However, controversies on its tectonic evolution and timing of its basement still exist. The traditional viewpoints proposed that the basement of the Chinese Altai formed in Precambrian and the Open-closing model was the probable model for the geological evolution of this orogen.
     In northwestern and southern Chinese Altai orogen, thick Palaeozoic clastic sedimentary rocks are extensively distributed. These rocks mainly consist of sedimentary rocks and metasedimentary rocks, such as sandstone, siltstone, pelite, schist and phyllite, which were intrude by widely distributed Paleozoic granites and cut by complex fault system. As for the deposition time and tectonic setting of the clastic sedimentary rocks, most studies suggested that the clastic sedimentary rocks in northwestern Altai formed in Sinian to Early Cambrian and deposited on a passive continental margin, while the clastic sedimentary rocks in the south margin of the Chinese Altai formed in Early to Middle Devonian and deposited in rift-related tectonic setting on a passive continental margin.
     The clastic sedimentary rocks of the Habahe Group in Northwest Altai are different to those rocks of the Kangbutiebao Formation and the Altay Formation in South Altai in the major element contents, but similar in their REE and trace element contents. In comparison with the sandstones and hornblende-bearing schists of the Habahe Group (SiO_2= 68-77 wt%, Al_2O_3= 9-14 wt%, Fe_2O_3= 2.3-5.7 wt%, MgO= 0.7-4.6 wt%, CaO= 0.3-3.5 wt%, Na_2O= 0.7-3.1 wt%; K_2O= 0.3-4.0 wt%), the Habahe pelites and biotite-bearing schists possess slightly higher Al_2O_3 (15-19 wt%), Fe_2O_3 (6.4-11.5 wt%) and MgO (3.3-5.0 wt%) and lower SiO_2 (58-64 wt%) contents. However, all clastic sedimentary rocks from the Habahe Group show similar REE patterns with distinct LREE enrichments (La_N/Yb_N= 3-13) and negative Eu anomalies (Eu/Eu*= 0.43-0.80).
     In the south margin of the Chinese Altai, the chlorite-bearing schists from the Kangbutiebao Formation have similar compositions of the major elements (SiO_2= 61-64 wt%, Al_2O_3= 15-18 wt%, Fe_2O_3= 7.5-8.0 wt%, MgO= 3.3-3.7 wt%) to the Habahe pelites and biotite-bearing schists, while the mica-bearing schists and phyllites (SiO_2= 63-77 wt%, Al_2O_3= 11-17 wt%, Fe_2O_3= 3.5-6.2 wt%, MgO 0.8-3.4 wt%) are similar to the Habahe sandstones and hornblende-bearing schists. The Kangbutiebao clastic sedimentary rocks show similar ranges of the HFSEs (e.g. Nb, Ta, Zr, Hf, Y) and some LILEs (e.g. Sc, Th, U) contents to those of Post-Archaean Australian Shale (PASS), with lower Rb and Sr contents. Except for few mica-bearing schist, most Kangbutiebao clastic sedimentary rocks display similar REE patterns to Habahe clastic sedimentary rocks, with distinct LREE enrichments (La_N/Yb_N= 2.88-8.24) and negative Eu anomalies (Eu/Eu*= 0.45- 0.89) too. The geochemical characteristics of clastic sedimentary rocks from the Altai Group are consistent with those of the Habahe sandstones and hornblende-bearing schists. The Altai clastic sedimentary rocks posssess high SiO_2 (72-79 wt%) and low Al_2O_3(10-13 wt%), Fe_2O_3 (3.4-5.5 wt%), MgO (2.3-2.9 wt%) contents, also show LREE enrichments (La_N/Yb_N= 4.29-9.90) and negative Eu anomalies (Eu/Eu*= 0.46-0.65).
     The detrital zircons separated from these rocks have oscillatory compositional zoning, possess high Th/U ratios, and are enhedral to subhedral, showing short transportation from an igneous provenance. Their predominant ~(206)Pb/~(238)U ages were between~460 and~540 Ma, mostly with positiveεHf values. Except for this predominant group, a small population of Proterozoic and few Archean zircons also existed. Moreover, a concordant detrital zircon with Archean ~(207)Pb/~(206)Pb age (3087±20 Ma) had been discovered, which confirmed the involvement of Archean material in the source.
     Based on our geochemical data of the Palaeozoic clastic rocks in the Chinese Altai, U-Pb ages and Hf isotope data for the detrital zircons from these rocks, the following major conclusions can be drawn:
     (1) The clastic sedimentary rocks in northwestern and southern Chinese Altai orogen have similar characteristics of petrology and geochemistry. Their source materials experienced relatively weak chemical weathering and simple sedimentary recycling, and were dominated by intermediate to acidic arc sources. These rocks probably deposited on active continental margins, instead of passive continental margins proposed by previous reserchers.
     (2) The Habahe Group was deposited in the Middle Ordovician or later, not in the Precambrian. The deposition age of the Kangbutiebao Formation was later than the Early Silurian, which is consistent with the upper Silurian to lower Devonian age assigned to this formation. The clastic sedimentary rocks in Tarlang and southern Halasu from Altay Formation deposited before Early Devonian (470 Ma to 412 Ma), probably indicating that the clastic sedimentary rocks from this formation have different deposition ages in different areas.
     (3) The detrital zircons separated from these clastic sedimentary rocks was predominated by Cambrian- Early Ordovician magmatic zircons with enhedral to subhedral shape and positiveεHf values, suggesting similar sources mainly derived from Cambrian to Early Ordovician magmatic arcs. These clastic sedimentary rocks were different sedimentary products in same tectonic settings.
     (4) The source materials of these rocks were dominated by Early Palaeozoic clastic sediments, with subordinate Proterozoic and minor Archean crustal materials. These characteristics are different to the composition of clastic sedimentary rocks from North China Plate, indicating close affinities to Siberian Plate.
     (5) The migmatite from the Habahe Group and the garnet-sillimanite gneiss from the Altay Formation both underwent strong metamorphism in the Devonian. Together with the Permian regional metamorphism, these metamorphism events show a multiple thermal history for the Chinese Altai.
     (6) The evidences were not enough to prove the existence of Precambrian basement in the Chinese Altai orogen, inviting further detailed study. The clastic sedimentary rocks, such as the Habahe Group, Kangbutiebao Formation and Altay Formation, deposited after Middle Ordovician and could not represent the basement of the Chinese Altai orogen.
引文
1 蔡克大,袁超,孙敏,肖文交,陈汉林,龙晓平,赵永久,李继亮.2007.阿尔泰塔尔浪地区斜长角闪岩和辉长岩的形成时代、地球化学特征和构造意义.岩石学报,出版中.
    2 蔡克大.2007.阿尔泰造山带西段古生代岩浆活动的时代、岩石成因机制及其构造意义.中科院广州地球化学研究所硕士学位论文.
    3 陈汉林,杨树峰,历子龙,肖文交,李继亮,董传万,余星.2006a.阿尔泰晚古生代早期长英质火山岩的地球化学特征及构造背景.地质学报,80(1):38-42。
    4 陈汉林,杨树锋,厉子龙,余星,肖文交,袁超,林秀斌,李继亮.2006b.阿尔泰造山带富蕴基性麻粒岩锆石SHRIMP U-Pb年代学及其构造意义.岩石学报,22(5):1351-1358.
    5 陈汉林,杨树锋,厉子龙,袁超,肖文交,李继亮,余星,林秀斌.2006c.阿尔泰造山带南缘基性杂岩的形成背景及其动力学含义.岩石学报,22(1):127-134.
    6 陈毓川,叶庆同,冯京.1996.阿舍勒铜锌成矿带成矿条件和成矿预测.北京:地质出版社,1-85.
    7 陈毓川,叶庆同,王京彬,芮行健.2003.中国新疆阿尔泰成矿带矿床地质、成矿规律与技术经济评价.北京:地质出版社,1-43.
    8 陈哲夫,徐新,梁云海.1993.新疆构造手风琴式开合演化的基本特点.中国区域地质,1:45-58.
    9 陈哲夫,成守德,梁云海等.1997.新疆开舍构造与矿成.鸟鲁丰齐:新疆科技卫生出版社.
    10 陈哲夫.2004.新疆开合构造与成矿特征的有关问题.地质通报,23(3),214-221.
    11 陈哲夫.2002.阿舍勒铜锌矿床的开合构造特征及找矿方向新疆地质,20(1):34-37.
    12 成守德,王元龙.1998.新疆大地构造演化基本特征.新疆地质,16(2):97-107.
    13 单强,牛贺才,于学元,张海祥.2005.新疆北部哈纳斯盆地火山岩地球化学特征、锆石U-Pb年龄及其构造意义.地球化学,34(4):11-23.
    14 高振家,王务严,彭昌文,肖兵.1985.新疆震旦系.新疆人民出版社,1-173.
    15 高振家,陈晋镰,陆松年,彭吕文,秦正永,1993.新疆北部前寒武系.北京:地质出版社,35-36.
    16 韩宝福,何国琦.1991.中国阿尔泰南缘泥盆纪火山岩带的大地构造性质.新疆地 质科学,(3).北京:地质科学出版社,89-100.
    17 何国琦 刘德权,李茂松等.1995.新疆主要造山带地壳发展的五阶段模式及成矿系列专辑.新疆地质.13{2):115-144.
    18 何国琦,韩宝福,岳永君,王嘉桁.1990.中国阿尔泰造山带的构造分区和地壳演化.新疆地质科学,(2).北京:地质科学出版社,9-20.
    19 何国琦,李茂松,刘德权,唐延龄,周汝洪.1994.中国新疆古生代地壳演化及成矿.乌鲁木齐:新疆人民出版社,香港:香港文化教育出版社,1-437.
    20 胡霭琴,王中刚,涂光炽等.1997.新疆北部地质演化及其成岩成矿规律.北京:科学出版社,9-105.
    21 胡霭琴,韦刚健,邓文峰,陈林丽.2006.阿尔泰地区青河县西南片麻岩中锆石SHRIMP U-Pb定年及其地质意义.岩石学报,22(1):1-10.
    22 胡霭琴,韦刚健.2003.关于准噶尔盆地基底时代问题的讨论——据同位素年代学研究结果.新疆地质,21(4):398-406.
    23 胡霭琴,韦刚健.2006.塔里木盆地北缘新太古代辛格尔灰色片麻岩形成时代问题.地质学报,80(1):126-134.
    24 胡霭琴,张国新,陈义兵,张前锋.2001.新疆人陆基底分区模式和主要地质事件的划分.新疆地质,19(1):12-19.
    25 胡霭琴,张国新,李启新,范嗣昆,张前锋.1993.新疆北部同位素地球化学与地壳演化.见:涂光炽主编,新疆北部固体地球科学新进展.北京:科学出版社,27-37.
    26 胡霭琴,张国新,李启新,张前锋,胡树荣,范嗣昆,郭陀珠.1995.新疆北部主要地质事件同位素年表.地球化学,24(Ⅰ):20-3.
    27 胡霭琴,张国新,张前锋,李天德,张积斌.2002.阿尔泰造山带变质岩系时代问题的讨论.地质科学,37(2):129-142
    28 黄汲清,姜春发,王作勋.1990.新疆及邻区板块开合构造及手风琴式运动.新疆地质科学,(1).北京:地质出版社,3-16.
    29 李会军,何国琦,吴泰然,吴波,2006.阿尔泰—蒙古微大陆的确定及其意义.岩石学报,22(5):1369-1379.
    30 李锦轶,肖序常.1999.对新疆地壳结构与构造演化几个问题的简要评述.地质科学,34(4),405-419.
    31 李锦轶,徐新.2004.新疆北部地质构造利成矿作用的主要问题.新疆地质,22(2): 119—124.
    32 李锦轶.1991.试论新疆东准噶尔古生代板块构造演化.见:肖序常,汤耀庆主编.古中亚复合巨型缝合带南缘构造演化.北京:北京科学技术出版社,92-108.
    33 李天德,波里扬斯基.2001.中国和哈萨克斯坦阿尔泰大地构造及地壳演化.新疆地质,19(1):27-32.
    34 李天德,祁志明,肖世录,吴柏青.1996.中国和哈萨克斯坦阿尔泰地质及成矿研究的新进展.见:中国地质学会编.献给三十届国际地质大会“八五”地质科技重要成果学术交流会议论文选集.北京:冶金工业出版社,256-259.
    35 刘德权,唐延龄,周汝洪.1998.新疆前震旦纪基底陆壳问题.新疆地质,16(3):195-202.
    36 刘峰标.1984.阿尔泰古板块与内生矿产.西北地质,4,14-21.
    37 刘伟.1990.中国阿尔泰花岗岩的时代及成因类型特征.大地构造与成矿雪,14(1):43-56.
    38 龙晓平,孙敏,袁超,肖文交,陈汉林,赵永久,蔡克大,李继亮,2006.东准噶尔石炭系火山岩的形成机制及其对准噶尔洋盆闭合时限的制约.岩石学报.22(1):31-40.
    39 梅厚钧,1994.新疆北部火山岩及其与成矿的关系.新疆地质,12:16-24
    40 牟传龙,刘宝瑶,朱晓镇,邢雪芬.1996.新疆阿舍勒一冲乎尔地区泥盆纪火山沉积盆地构造背景及其演化特提斯地质,20:70-84.
    41 牛贺才,许继峰,于学元,陈繁荣,郑作平.1999.新疆阿尔泰富镁火山岩系的发现及其地质意义.科学通报,44(9):1002-1004.
    42 彭昌文.1989.新疆白哈巴地区哈巴河群的微古植物及其地层意义.新疆地质,7(4):19-22.
    43 曲国胜,崇美英.1991.阿尔泰造山带的铅同位素地质及其构造意义.现代地质,5(1):100-110.
    44 曲国胜,何国琦.1992.阿尔泰造山带的构造运动.地质学报,66(3):193-205.
    45 芮行键,吴玉金.1984.中国阿尔泰花岗岩的成因.见:徐克勤,涂光炽主编.花岗岩地质与成矿关系.江苏:科技出版社,14-21.
    46 童英,王涛,V P Kovach,洪大卫.2006.韩宝福.阿尔泰中蒙边界塔克什肯口岸后造山富碱侵入岩体的形成时代、成因及其地壳生长意义.岩石学报,22(5):1267-1278.
    47 王登红,陈毓川,徐志刚,李天德,傅旭杰.2002.阿尔泰成矿省的成矿系列及成矿 规律.北京:原子能出版社.
    48 王方正,杨梅珍,郑建平,2002.准噶尔盆地陆梁地区基底火山岩的岩石地球化学及其构造环境.岩石学报,18:9-16.
    49 王广耀,张玉亭.1983.新疆阿尔泰震旦系微古植物的发现.地层学杂志,7(4):313-316.
    50 王广耀,张玉亭.1984.新疆阿尔泰震旦系的初步划分与对比.地层学杂志,8(4):296-300.
    51 王京彬,李博泉,张积斌.1999.额尔齐斯聚矿带金铜成矿条件及找矿预测.北京:冶金工业出版社,1-4.
    52 王京彬,秦克章,吴志亮,胡剑辉,邓吉牛.1998.阿尔泰山南缘火山喷流沉积型铅锌矿床.北京:地质出版社,1-3.
    53 王仁民,贺高品,陈珍珍,1987.变质岩原岩图解判别法.北京:地质出版社,1-199.
    54 王永,张峰,朱哗.1998.从准噶尔煤盆地的构造演化观其基底性质.西北大学学报(自然科学版),28(3):239-242.
    55 王中刚,赵振华,邹天人.1998.阿尔泰花岗岩类地球化学.北京:科学出版社,1-152.
    56 王中刚,赵振华.1990.阿尔泰花岗岩的成因类型与演化.新疆地质科学,第1辑.北京:地质出版社.47-68.
    57 王宗秀,周高志,李涛.2003.对新疆北部蛇绿岩及相关问题的思考和认识.岩石学报,19(4):683-691.
    58 肖序常,汤耀庆,冯益民,朱宝清,李锦轶,赵民.1992.新疆北部及其邻区大地构造.北京:地质出版社,1-162.
    59 肖序常,汤耀庆,李锦轶,赵民,冯益民,朱宝清.1990.试论新疆北部大地构造演化.新疆地质科学,(1).北京:地质出版社,47-68.
    60 新疆地质局区域地质测量大队.1978.阿勒泰幅1:20万地质图.
    61 新疆地质局区域地质测量大队.1978.琼库尔幅1:20万地质图.
    62 新疆维吾尔自治区地质矿产局.1993.新疆维吾尔自治区区域地质志.北京:地质出版社.1-135.
    63 新疆维吾尔自治区区域地层表编写组.1981.西北地区区域地层表—新疆维吾尔自 治区分册.北京:地质出版社.1-300.
    64 邢雪芬.1996.新疆阿舍勒冲乎尔地区泥盆纪火岩系的研究及其大地构造环境的探讨.特提斯地质,20:115-127.
    65 许继峰,梅厚钩,于学元,白正华,牛贺才,陈繁荣,郑作平,王强.2001.准噶尔北缘晚古生代岛弧中与俯冲作用有关的adakite火山岩:消减板片部分熔融的产物.科学通报,46(8):684—688.
    66 杨巍然,郑剑东.2002.中国开合构造研究的回顾与展望.地质科技情报,21(4):31-34.
    67 于学元,梅厚钧,姜福芝,罗才让,刘铁庚,白正华,杨学昌,王俊达,1995.额尔齐斯火山岩和成矿作用.科学出版社,北京,pp.17-30.
    68 袁超,孙敏,肖文交,夏小平,陈汉林,李继亮.2005.阿尔泰南缘花岗岩的锆石U-Pb年代学及其地球化学特征.2005年全国岩石学与地球动力学研讨会摘要,418-419.
    69 袁超,肖文交,陈汉林.李继亮,孙敏.2006.东准扎河坝钾质玄武岩的地球化学特征及其构造意义.地质学报,80:254-263.
    70 袁峰,周涛发,岳书仓.2001.新疆阿尔泰诺尔特地区石炭纪火山作用.新疆地质,2:133-137.
    71 袁学诚.1995.论中国人陆基底构造.地球物理学报,38(4):48-459.
    72 张海祥,牛贺才,Hiroaki Sato,单强,于学元,Jun'ichi Ito,张旗,2004.新疆北部晚古生代埃达克岩、富铌玄武岩组合:古亚洲板块南向俯冲的证据.高校地质学报,10:106-113.
    73 张海祥,牛贺才,K.Terada,于学元,H.Sato,J.Ito.2003.新疆北部阿尔泰地区库尔提蛇绿岩中斜长花岗岩的SHRIMP年代学研究.科学通报,48(12):1350-1354.
    74 张立飞,艾永亮,李强,李旭平,宋述光,魏春景.2005.新疆西南天山超高压变质带的形成与演化.岩石学报,21(4):1029-1038.
    75 张进红.王京彬.2000.阿尔泰造山带康布铁堡组变质火山岩锆石特征利铀一铅年龄.中国区域地质,19(3):281-287.
    76 郑建平,王方正,成中梅,吴晓智,张义杰,2000.拼合的准噶尔盆地基底:基底火山岩Sr-Nd同位素证据.地球科学,25:179—185.
    77 中国地质调查局地层古生物研究中心.2005.中国各地质时代地层划分与对比.北京:地质出版社.20,50,114.
    78 周世泰.1984.对17种恢复变质岩原岩的岩石化学方法的检验结果.地质论评,30(1):81-84.
    79 庄育勋,陈斌.1993.阿尔泰造山带花岗片麻岩穹窿的形成与演化.岩石矿物学杂志,12(2):115-125.
    80 庄育勋.1991.递增变质作用中变斑晶形成的时间标志:兼论阿尔泰地区变质带形成顺序.长春地质学院学报,21(1):17-24.
    81 庄育勋.1994a.中国阿尔泰造山带热动力时空演化和造山过程.吉林:吉林科学技术出版社,10-36.
    82 庄育勋.1994b.中国阿尔泰造山带变质作用PTSt演化和热.构造.片麻岩穹窿形成机制.地质学报,68(1):35-47.
    83 邹天人,曹惠志,吴柏青.1988.新疆阿尔泰造山花岗岩和非造山花岗岩及其判别标志.地质学报,3:229-243.
    84 Andersen, T., Laajoki K., Saeed A. 2004. Age, provenance and tectonostratigraphic status of the Mesoproterozoic Blefjell quartzite, Telemark sector, southern Norway, Precambrian Res., 135,217-244.
    85 Badarch G., Cunningham W. D., Windley B. F., 2002. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. Journal of Asian Earth Sciences, 21:87-110.
    86 Berzin, N.A., Dobretsov, N.L., 1993. Geodynamic evolution of Southern Siberia in Late Precambrian-early Paleozoic time. Reconstruction of the Paleosian Ocean. VSP Inter. Sci. Publishers, Netherlands, 45-62.
    87 Bhat, M.I., Ghosh, S.K., 2001. Geochemistry of the 2.51 Ga old Rampur group pelites, western Himalayas: implications for their provenance and weathering. Precambrian Research 108, 1-16.
    88 Bhatia, M.R., 1983. Plate tectonics and geochemical composition of sandstones. J. Geol. 91, 611-627.
    89 Bhatia, M.R., 1985. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: provenance and tectonic control. Sedimentary Geology 45, 97-113. 90 Bhatia, M.R., Crook, K.A.W., 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basin. Contrib. Mineral. Petrol. 92, 181-193.
    91 Bhatia, M.R., Taylor, S.R., 1981. Trace-element geochemistry and sedimentary provinces: a study from the Tasman geosyncline, Australia. Chem. Geol. 33, 115-125.
    92 Bibikova, E.V., Grachova, T.V., Makarov, V.A., Seslavinsky, K.B., 1981. The oldest metamorphic rocks of the north-east of the USSR (U-Pb method of dating). In: Krats, K.O., Kulish, E.A. (Eds.), Geology and Metallogeny of Precambrian of Far East. Nauka Press, Leningrad, pp. 46-55, in Russian.
    93 Blichert-Toft, J., Albarede, F., 1997. The Lu-Hf geochemistry of the chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 148, 243-258 (Errtum. Earth Planet. Sci. Lett. 1998. 154, pp. 349).
    94 Bruguier, O., 1996. U-Pb ages on single detrital zircon grains from the Tasmiyele Group: implications for the evolution of the Olekma Block (Aldan Shield, Siberia). Precambrian Res. 78, 197-210.
    95 Buchan, C. et al., 2002. Timing of accretion and collisional deformation in the Central Asian Orogenic Belt: implications of granite geochronology in the Bayankhongor Ophiolite Zone. Chemical Geology, 192(1-2): 23-45.
    96 Buslov, M.M. et al., 2002. A Vendian-Cambrian island arc system of the Siberian continent in Gorny Altai (Russia, Central Asia). Gondwana Research, 5(4): 781-800.
    97 Buslov, M.M. et al., 2004b. Late Paleozoic faults of the Altai region, Central Asia: tectonic pattern and model of formation. Journal of Asian Earth Sciences, 23(5): 655-671.
    98 Buslov, M.M., Fujiwara, Y., Iwata, K. and Semakov, N., 2004a. Late Paleozoic-Early mesozoic geodynamics of Central Asia. Gondwana Research, 7(3): 791-808.
    99 Carroll, A. R., Grapham, S. A., Hendrix, M. S., Ying, D., Zhou, D., 1995. Late Paleozoic tectonic amalgamation of northwestern China: sedimentary record of the northern Tarim, northwestern Turpan, and southern Junggar basins. Geological Society of America Bulletin, 107, 571-594.
    100 Chang, E.Z., Coleman, R.G., Ying, D.X., 1995. Tectonic transect map across Russia-Mongolia-China. Stanford University Press, Stanford.
    101 Chaudhuri, S., Cullers, R.L., 1979. The distribution of rare earth elements in deeply buried Gulf coast sediments. Chem. Geol. 24, 327-338.
    102 Chen, B., Jahn, B.M., 2002. Geochemical and isotopic studies of the sedimentary and granitic rocks of the Altai orogen of NW China and their tectonic implications. Geol. Mag. 139(1), 1-13.
    103 Chen, B., Jahn, B.M., 2004. Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd-Sr isotope and trace element evidence. J. Asian. Earth. Sci. 23,691-703.
    104 Chen, F.W., Li, H.Q. and Lu, Y.F., 2002. Temporo-spatial distribution of rare metal and REE deposits in Xinjiang, northwest China. Acta Geologica Sinica-English Edition, 76(4): 478-487.
    105 Chen, F.W., Li, H.Q., Wang, D.H., Cai, H. and Chen, W., 2000. New chronological evidence for Yanshanian diagenetic mineralization in China's Altay orogenic belt. Chinese Science Bulletin, 45(2): 108-114.
    106 Clarke F.W. 1889. The relative abundance of the chemical elements. Phil. Soc. Washington Bull. Ⅺ, 131-142.
    107 Condie, K.C., 1982. Plate tectonics and crustal evolytion, Sedcond Edition. Pergamon Press.
    108 Condie, K.C., 1993. Chemical composition and evolution of the upper continental crust: constrasting results from surface samples and shales. Chem. Geol. 104, 1-37.
    109 Corfu F, Hanchar JM, Hoskin PW and Kinny P. 2003. Atlas of zircon textures. Rev. Mineral. Geochem., 53: 468-500
    110 Cox, R., Lowe, D.R., Cullers, R.L., 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta. 59(14), 2919-2940.
    111 Crook, K.A.W., 1974. Lithogenesis and geotectonics: the significance of compositional variation in flysch arenites (graywackes), In: Dott, R.H., Shaver, R.H. (eds), Modern and ancient geosynclinal sedimentation. SEPM Spec. Pub, 19, pp. 304-310.
    112 Cullers, R.L., 1988. Mineralogical and chemical changes of soil and stream sediment formed by intense weathering of the Danburg granite, Georgia, USA. Lithos. 21, 301-14.
    113 Cullers, R.L., 1994. The geochemical signatures of source rocks in size fractions of Holocene stream sediment derived from metamorphic rocks in the Wet Mountains region, USA. Chem. Geol. 113, 327-343.
    114 Cullers, R.L., Podkovyrov, V.N., 2000. Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling. Precambrian Res. 104, 77-93.
    115 Cullers, R.L., Podkovyrov,V.N., 2002. The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, southeastern Russia. Precambrian Res. 117, 157-1183.
    116 Darbya, B.J. Gehrelsb, G., 2006. Detrital zircon reference for the North China block. J. Asian Earth Sci. 26, 637-648.
    117 Dickinson, W.R., Suczek, C.A., 1979. Plate tectonics and sandstone compositions. AAPG Bull. 63, 2164-2182.
    118 Dobretsov, N.K., 2000. Collision processes in paleozoic foldbelts of Asia and exhumation mechanisms. Petrology, 8(5): 403-427.
    119 Dobretsov, N.L., Buslov, M.M., Yu, U., 2004. Fragments of oceanic islands in accretion-collision areas of Gorny Altai and Salair, southern Siberia, Russia: early stages of continental crustal growth of the Siberian continent in Vendian-Early Cambrian time. J. Asian Earth Sci. 23, 673-690.
    120 Fedo, C.M., Eriksson K.A., Krogstad E.J., 1996. Geochemistry of shales from the Archean (~3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: Implications for provenance and source-area weathering. Geochimica et Cosmochimica Acta 60 (10), 1751-1763.
    121 Fedo, C.M., Nesbitt, H.W., Young, G.M., 1995. Unraveling the eVects of potassium metasomatism in sedimentary rocks and paleosoils, with implications for paleoweathering conditions and provenance. Geology 23, 921-924.
    122 Fedo, C.M., Sircombe K.N., Rainbird R.H. 2003. Detrtial zircon analysis of the sedimentary record, Rev. Mineral. Geochem., 53, 277-303.
    123 Feng, R., Kerrich, R., 1990. Geochemistry of fine grained clastic sediments in the Archean Abitibi greenstone belt,Canada:Implications for provenance and tectonic setting. Geochimca et Cosmochimica Acta, 54, 1061-1081.
    124 Flowerdew, M. J., Millar, I. L., Vaughan, A. P. M., Horstwood, M. S. A., Fanning, C. M., 2006. The source of granitic gneisses and migmatites in the Antarctic Peninsula: a combined U-Pb SHRIMP and laser ablation Hf isotope study of complex zircons. Contributions to Mineralogy and Petrology, 151 (6), 751-768
    125 Floyd, P.A., Leveridge, B.E., 1987. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. Journal of the Geological Society of London 144, 531-542.
    126 Floyd, P.A., Winchester, J.A., Park, R.G., 1989. Geochemistry and tectonic setting of Lewisian clastic metasediments from the early Proterozoic lock marie group of Gairlock, Scotland. Precambrian Research 45 (1-3), 203-214.
    127 Fralick, P.W., Kronberg, B.I., 1997. Geochemical discrimination of clastic sedimentary rock sources. Sedimentary Geology, 113, 111-124.
    128 Frost, B.R., Avchenko, O.V., Chamberlain, K.R., Frost, C.D., 1998. Evidence for extensive Proterozoic remobilization of the Aldan shield and implications for Proterozoic plate tectonic reconstructions of Siberia and Laurentia. Precambrian Res. 89, 1-23.
    129 Gao, S., Ling, W.L., Qiu, Y.M., Lian, Z., Hartmann, G., Simon, K., 1999. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: Evidence for cratonic evolution and redistribution of REE during crustal anatexis. Geochimica et Cosmochimica Acta. 63(13-14), 2071-2088.
    130 Geist, D., Howard, K.A., Larson, P., 1995. The generation of oceanic rhyolites by crystal fractionation: the basalt-rhyolite association at Vocan Alcedo, Galapagos Archipelago. Journal of Petrology, 36, 965-982.
    131 Gladkochub, D.P., Wingate, M.T.D., Pisarevsky, S.A., Donskaya, T.V., Mazukabzov, A.M., Ponomarchuk, V.A., Stanevich, A.M., 2006. Mafic intrusions in southwestern Siberia and implications for a Neoproterozoic connection with Laurentia. Precambrian Res. 147, 260-278.
    132 Gordienko, I.V., 2006. Geodynamic evolution of Late Baikalides and Paleozoids in the folded periphery of the Siberian craton. Russian Geology and Geophysics, 47(1), 51-67.
    133 Griffin, W.L., Belousova, E.A., Shee, S.R., Pearson, N.J., O'Reilly, S.Y., 2004. Archaean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf isotope evidence from detrital zircons. Precambrian Res. 131, 231-282.
    134 Gromet, L.P., Dymek, R.F., Haskin, L.A., Korotev, R.U, 1984. The north American shale composite: its implications, major and trace element characteristics. Geochimica et Cosmochimica Acta. 48, 2469-2482.
    135 Gu, X.X., 1994. Geochemical characteristics of the Triassic tethys-turbidites in northwestern Sichuan, China: Implications for provenance and interpretation of the tectonic setting. Geochimca et Cosmochimica Acta, 58(21): 4615-4631.
    136 Guo, S.J., Zhang, Z.C., Liu, S.W., Li, H.M., 2003. U-Pb geochronological evidence for the early Precambrian complex of the Tarim Craton. NW China. Acta Petrol. Sin. 19, 537-542.
    137 Han, B.F., Ji, J.Q., Song, B., Chen, L.H. and Li, Z., 2004. SHRIMP zircon U-Pb ages of kalatongke No. 1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes, North Xinjiang, and geological implications. Chinese Science Bulletin, 49(22): 2424-2429.
    138 Han, B.F., Wang, S.G., Jahn, B.M., Hong, D.W., Kagami, H., Sun, Y.L., 1997. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China: geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth. Chemical Geology. 138, 135-159.
    139 Han, C.M. et al., 2006. Major types, characteristics and geodynamic mechanism of Upper Paleozoic copper deposits in northern Xinjiang, northwestern China. Ore Geology Reviews, 28(3): 308-328.
    140 Hanchar JM and Rundnick RL. 1995. Revealing hidden structures: the application of cathodoluminescene and back-scattered electron imaging to dating zircons from lower crustal xenoliths. Lithos, 36: 289-303
    141 Haskin, L.A., Wildeman, T.R., Frey, F.A., Collins, K.A., Keedy, C.R., Haskin, M.A., 1966. Rare earths in sediments. J. Geophysical Res. 71, 6091-6105.
    142 Helo, C., Hegner, E., Kroner, A., Badarch, G., Tomurtogoo, O., Windley, B.F., Dulski, P., 2006. Geochemical signature of Paleozoic accretionary complexes of the Central Asian Orogenic Belt in South Mongolia: Constraints on arc environments and crustal growth. Chem. Geol. 227, 236-257.
    143 Hendrix, M. S., 2000. Evolution of Mesozoic sandstone compositions, southern Junggar, northern Tarim, and western Turpan basins, northwest China: A detrital record of the ancestral Tian Shan. Journal of Sedimentary Research, 70, 520-532.
    144 Hofmann, A., 2005. The geochemistry of sedimentary rocks from the Fig Tree Group, Barberton greenstone belt: implications for tectonic, hydrothermal and surface processes during mid-Archaean times. Precambrian Res. 143, 23-49.
    145 Hong, D. W., Wang, S. G., Xie, X.L., Zhang, J.S. and Wang, T., 2003. Metallogenic province derived from mantle sources: Nd, Sr, S and Pb isotope evidence from the Central Asian Orogenic Belt. Gondwana Research, 6(4): 711-728.
    146 Hong, D.W., Zhang, J.S., Wang, T., Wang, S.G., Xie, X.L., 2004. Continental crustal growth and the supercontinental cycle: evidence from the Central Asian Orogenic Belt. J. Asian Earth Sci. 23, 799-813.
    147 Hoskin PWO and Black LP. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircons: J. Meta. Geo., 18: 423-439
    148 Hu, A.Q., Jahn, B.M., Zhang, G., Chen, Y., Zhang, Q., 2000. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotope evidence. 1. Isotopic characterization of basement rocks. Tectonophys. 328, 15-51.
    149 Iizuka, T., Hirata, T., 2005. Improvements of precision and accuracy in in-situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique. Chem. Geol. 220, 121-137.
    150 Jahn, B.M., 2004. The Central Asian Orogenic Belt and growth of the contitental crust in the Phanerozoic. In: Malpas, J., Fletcher, C.J.N., Ali, J.R., Aitchison, J.C. (eds). Aspects of the Tectonic Evolution of China. Special Publications, London, 226, 73-100.
    151 Jahn, B.M., Gruau, G, Capdevila, R., Comichet, J., Nemchin, A., Pidgeon, R., Rudnik, V.A., 1998. Archean crustal evolution of the Aldan Shield, Siberia: geochemical and isotopic constraints. Precambrian Res. 91, 333-363.
    152 Jahn, B.M., Wu, F., Chen, B., 2000. Granitoids of the Central Asian orogenic belt and continental growth in the Phanerozoic. Trans. R. Soc. Edinb. Earth Sci. 91, 181-193.
    153 Joo, Y. J., Lee, Y., Bai, Z.Q., 2005. Provenance of the Qingshuijian Formation (Late Carboniferous), NE China: Implications for tectonic processes in the northern margin of the North China block. Sedimentary Geology, 177(1-2), 97-114.
    154 Kamp, P. C., Leake, B.E., 1985. Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin. Transactions of Royal Society of Edinburgh, Earth. Science, 76, 411-499.
    155 Ketchum, J.W.F., Jackson, S.E., Culshaw, N.G., Barr, S.M., 2001. Depositional and tectonic setting of the Paleoproterozoic Lower Aillik Group, Makkovik Province, Canada: evolution of a passive margin-foredeep sequence based on petrochemistry and U-Pb (TIMS and LAM-ICP-MS) geochronology. Precambrian Research, 105 (2-4), 331-356
    156 Khain, E.V., Bibikova, E.V., Salnikova, E.B., Kroner, A., Gibsher, A.S., Didenko, A.N., Degtyarev, K.E., Fedotova, A.A., 2003. The Palaeo-Asian ocean in the Neoproterozoic and early Palaeozoic: new geochronologic data and palaeotectonic reconstructions. Precambrian Res. 122, 329-358.
    157 Khudoley, A.K., Rainbird, R.H., Stern, R. A., Kropachev, A.P., Heaman, L.M., Zanin, A.M., Podkovyrov, V.N., Belova, V.N., Sukhorukov, V.I., 2001. Sedimentary evolution of the Riphean-Vendian basin of southeastern Siberia. Precambrian Res. 111, 129-163.
    158 Kimbrough, D.L., Smith, D.P., Mahoney, J.B., Moore, T.E., Grove, M., Gastil, R.G., Ortega-Rivera, A., Fanning, C.M., 2001. Forearc-basin sedimentary response to rapid Late Cretaceous batholith emplacement in the Peninsular Ranges of southern and Baja California. Geology, 29, 491-494.
    159 Kroer, A., Wilde, S. A., Li, J.H., Wang, K.Y., 2005. Age and evolution of a late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan-Hengshan-Fuping terrain of northern China. J. Asian Earth Sci. 24, 577-595.
    160 Kuzmichev, A., Kroner A., Hegner, E., Liu, D.Y., Wan, Y.S., 2005. The Shishkhid ophiolite, northern Mongolia: A key to the reconstruction of a Neoproterozoic island-arc system in central Asia. Precambrian Res. 138, 125-150.
    161 Kuzmichev, A., Kroner A., Hegner, E., Liu, D.Y., Wan, Y.S., 2005. The Shishkhid ophiolite, northern Mongolia: A key to the reconstruction of a Neoproterozoic island-arc system in central Asia. Precambrian Res. 138, 125-150.
    162 Kuzmichev, A.B., Bibikova, E.V., Zhuravlev, D.Z., 2001. Neoproterozoic (800 Ma) orogeny in the Tuva-Mongolian Massif (Siberia): island arc-continent collision at the northeast Rodinia margin. Precambrian Res. 110, 109-126.
    163 Kuzmin, V. V., Chukhonin, A.P., Shulezhko, I.K., 1995. Stages of metamorphic evolution of rocks of crystalline basement of the Kukhtui Uplift (Okhotsk Massif). Doklady Russian Acad. Sci. 142, 789-791, in Russian.
    164 Lahtinen, R., 2000. Archaean-Proterozoic transition: geochemistry, provenance and tectonic setting of metasedimentary rocks in central Fennoscandian Shield, Finland. Precambrian Research 104 (3-4), 147-174.
    165 Li, T.D., Poliyangsiji, B.H., 2001. Tectonics and crustal evolution of Altai in China and Kazakhstan. Xinjiang Geol. 19, 27-32, in Chinese.
    166 Liu, D.Q., Tang, Y.L., Zhou, R.H., 1998. On basic continental crust of the pro-Sinian of Xinjiang. Xinjiang Geology, 16(3), 195-202, in Chinese.
    167 Long, X.P., Sun, M., Yuan, C., Xiao, W.J., 2006. Geochemistry of Zhaheba Carboniferous volcanic rocks in the East Junggar and tectonic implications. Eos Trans. AGU, 87(36), West. Pac. Geophys. Meet. Suppl., Abstract V41B-0209.
    168 Lu, X.P., Wu, F.Y., Guo, J.H., Wilde, S.A., Yang, J.H., Liu, X.M., Zhang, X.O., 2006. Zircon U-Pb geochronological constraints on the Paleoproterozoic crustal evolution of the Eastern block in the North China Craton. Precambrian Ras. 146, 138-164.
    169 Ludwig, K.R., 2003. User's Manual for Isoplot 3.00. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication No. 4a, Berkeley, CA.
    170 Luo, Y., Sun, M., Zhao, G.C., Li, S.Z., Xu, P., Ye, K., Xia, X.P., 2004. LA-ICP-MS U-Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton: constraints on the evolution of the Jiao-Liao-Ji Belt. Precambrian Res. 134, 349-371.
    171 McLennan, S.M., 1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Rev. Mineral. 21, 169-200.
    172 McLennan, S.M., Hemming, S., McDaniel, D.K., Hanson, G.N., 1993. Geochemical approaches to sedimentation, provenance, and tectonics. Geological Society of America Special Paper 284, 21-40.
    173 McLennan, S.M., Taylor, S.R., 1980. Th and U in sedimentary rocks: crustal evolution and sedimentary recycling. Nature 285, 621-624.
    174 McLennan, S.M., Taylor, S.R., 1991. Sedimentary rocks and crustal evolution: Tectonic setting and secular trends. J. Geol. 99, 1-21.
    175 McLennan, S.M., Taylor, S.R., McCulloch, M.T., Maynard, J.B., 1990. Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta. 43, 375-388.
    176 Moecher, D.P., Samson S.D. 2006. Differential zircon fertility of source terranes and natural bias in the detrital zircon record: Implications for sedimentary provenance analysis, Earth Planet. Sci. Lett., 247, 252-266.
    177 Najman, Y., 2006. The Detrital record of orogenesis: A review of approaches and techniques used in the Himalayan sedimentary basins. Earth-Science Reviews, 74, 1-72.
    178 Nance, W.B., Taylor, S.R., 1976. Rare earth element patterns and crustal evolution Ⅰ: Australian post-Archean sedimentary rocks. Geochimica et Cosmochimica Acta. 40, 1539-1551.
    179 Nelson, D.R., 2001. An assessment of the determination of depositional ages for Precambrian elastic sedimentary rocks by U-Pb dating of detrital zircon. Sedimentary Geology, 141-142, 37-60.
    180 Nesbitt, H.W., Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature. 199, 715-717.
    181 Nesbitt, H.W., Young, G.M., 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamics and kinetic considerations. Geochimica et Cosmochimica Acta 48, 1523-1534.
    182 Ota, T.U., Buslov, M.M. and Watanabe, N., 2002. Metamorphic evolution of Late Precambrian eclogites and associated metabasites, Gorny Altai, southern Russia. International Geology Review, 44(9): 837-858.
    183 Payne, J.L., Barovich K.M., Hand M., 2006. Provenance of metasedimentary rocks in the northern Gawler Craton, Australia: Implications for Palaeoproterozoic reconstructions, Precambrian Res., 148, 275-291.
    184 Pin, C., Paquette, J.L., 1997. A mantle derived bimodal suite in the Hecynian belt: Nd isotope and trace elements evidence for a subduction-related origin of the late Devonian Brevennen metavolcaniacs, Massif Central (France). Contribution to Mineralogy and Petrology, 129, 222-238.
    185 Qi, L., Gregoire, D.C., 2000. Determination of trace elements in 26 Chinese Geochemistry Reference Materials by inductively coupled plasma-mass spectrometry. Geostand. Newsl. 24, 51-63.
    186 Qin, K.Z. et al., 2005. Eight stages of major ore deposits in northern Xinjiang, NW-China: Clues and constraints on the tectonic evolution and continental growth of Central Asia. In: J. Mao and F.P. Bierlein (Editors), Mineral Deposit Research: Meeting the Global Challenge, Vols 1 and 2, pp. 1327-1330.
    187 Rainbird, R.H., Stern, R.A., Khudoley, A.K., Kropachev, A.P., Heaman, L.M., Sukhorukov, V.I., 1998. U-Pb geochronology of Riphean sandstone and gabbro from southeast Siberia and its bearing on the Laurentia-Siberia connection. Earth Planet. Sci. Lett. 164, 409-420.
    188 Rashid, S.A., 2002. Geochemical characteristics of Mesoproterozoic elastic sedimentary rocksfrom the Chakrata Formation, Lesser Himalaya: implications for crustalevolution and weathering history in the Himalaya. Journal of Asian Earth Sciences, 21: 283-293
    189 Roser, B.P., Coombs, D.S., Korsch, R.J., Campbell, J.D., 2002. Whole-rock geochemical variations and evolution of the arc-derived Murihiku Terrane, New Zealand. Geological Magazine. 139(6), 665-685.
    190 Roser, B.P., Korsch, R.J., 1986. Determination of tectonic setting of sandstone-mudstone suites using SiO_2 content and K_2O/Na_2O ratio. J. Geol. 94, 635-650.
    191 Roser, B.P., Korsch, R.J., 1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chem. Geol. 67, 119-139.
    192 Ross, G.M., Villeneuve, M.E., 1998, Provenance of the Belt Purcell Supergroup, southern British Columbia: A SHRIMP study of detrital zircons. In: Cook F.A., Erdmer P. (Eds.), Slave-Northern Cordillera lithoprobe evolution (SNORCLE) and Cordilleran Tectonics Workshop Meeting Lithoprobe Rept, vol. 64, pp. 186-191.
    193 Rui, Z.Y. et al., 2002. Paleozoio-early mesozoic gold deposits of the Xinjiang Autonomous Region, northwestern China. Mineralium Deposita, 37(3-4), 393-418.
    194 Safonova, I.Y., Buslov, M.M., Iwata, K. and Kokh, D.A., 2004. Fragments of Vendian-early Carboniferous oceanic crust of the Paleo-Asian Ocean in foldbelts of the Altai-Sayan region of Central Asia: Geochemistry, biostratigraphy and structural setting. Gondwana Research, 7(3), 771-790.
    195 Salnikova, E.B., Kozakov, I.K., Kotov, A.B., Kroner, A., Todt, W., Bibikova, E.V., Nutman, A., Yakovleva, S.Z., Kovach, V.P., 2001. Age of Palaeozoic granites and metamorphism in the Tuvino-Mongolian Massif of the Central Asian Mobile Belt: loss of a Precambrian microcontinent. Precambrian Res. 110, 143-164.
    196 Scherer, E., Munker, C., Mezger, K., 2001. Calibration of the Lutetium-Hafnium clock. Science. 293, 683-687.
    197 Sengor, A.M.C. and Natal'in, B.A., 2004. Phanerozoic analogues of archaean oceanic basement fragments: Altaid ophiolites and ophirags, Precambrian Ophiolites and Related Rocks. Developments in Precambrian Geology, pp. 675-726.
    198 Sengor, A.M.C., and Natal'in, B.A., 1996. Paleotectonics of Asia: fragments of a synthesis. In Yin, A., and Harrison, M., (eds). The tectonic evolution of Asia. Cambridge University Press, Cambridge, pp. 486-640.
    199 Sengor, A.M.C., Natal'in, B.A., Burtman, V.S., 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Asia. Nature. 364, 299-307.
    200 Shaw D.M., Reilly G.A., Muysson J.R., Pattenden G.E., Campbell F.E. 1967. An estimate of the chemical composition of the Canadian Precambrian shield. Can. J. Earth Sci. 4, 829-853.
    201 Shaw, D.M., 1968. A review of K-Rb fractionation trends by covariance analysis. Geochimica et Cosmochimica Acta 32, 573-602.
    202 She, Z.B., Ma, C.Q., Masom R., Li, J.W., Wang, G.C., Lei, Y.H., 2006. Provenance of the Triassic Sonpan-Ganzi flysch, west China. Chemical Geology, 231, 159-175.
    203 Simonen, A., 1953. Stratigraphy and sedimention of the Svecofennidie, early Archean supracrustal rocks in southwestern Finland. Bull. Comm Geol. Finland, 160, 1-64.
    204 Sugitani, K., Yamashita, F., Nagaoka, T., Yamamotod, K., Minamie, M., Mimurad, K., Suzuki, K., 2006. Geochemistry and sedimentary petrology of Archean clastic sedimentary rocks at Mt. Goldsworthy, Pilbara Craton, Western Australia: Evidence for the early evolution of continental crust and hydrothermal alteration. Precambrian Res. 147, 124-147.
    205 Sun S-S, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A. D. & Norry M. J. (eds), Magmatism in the Ocean Basin, Geological Society Special Publication. Blackwell Scientific Publications 42, 313-346.
    206 Sun, M., Yuan, C., Xiao, W., Long, X., Xia, X., Han, C., Lin, S., 2006. Granitic gneisses and gneissic granites from the Central Terrane of the Chinese Altai Orogen: zircon ages and tectonic significance. Eos Trans. AGU, 87(36), West. Pac. Geophys. Meet. Suppl., Abstract V25A-06.
    207 Taylor, S.R., McLennan, S.M., 1985. The continental crust: its composition and evolution. Blackwell Scientific Publications, Oxford, UK, pp. 312.
    208 Thomas, W.A., Becker, T.P., Samson, S.D., Hamilton, M.A., 2004. Detrital zircon evidence of a recycled orogenic foreland provenance for Alleghanian clastic-wedge sandstones. The Journal of Geology, 112, 23-37.
    209 Vernikovskaya, A.E., Vernikovsky, V.A., Sal'nikova, E.B., Datsenko, V.M., Kotov, A.B., Kovach, V.P., Travin, A.V., Yakovleva, S.Z., 2002. Yeruda and Cherimba granitoids (Yenisey Ridge) as indicators of Neoproterozoic collisions. Russ. Geol. Geophys. 43,245-259, in Russian.
    210 Vernikovsky, V.A., Vemikovskaya, A.E., Kotovb, A.B., Sal'nikovab, E.B., Kovach, V.P., 2003. Neoproterozoic accretionary and collisional events on the western margin of the Siberian craton: new geological and geochronological evidence from the Yenisey Ridge. Tectonophysics. 375, 147-168.
    211 Vernikovsky, V.A., Vernikovskaya, A.E., Sal'nikova, E.B., Kotov, A.B., Kovach, V.P., 2002. Postcollision granitoid magmatism in the Transangara region of the Yenisey Ridge: an event 750-720 Ma. Dokl. Earth Sci. 384, 362-366.
    212 Volkova, N.I. et al., 2005. Blueschists from the Uimon Zone as evidence for Ordovician accretionary-collisional events in Gorny Altai. Russian Geology and Geophysics, 46(4): 361-378
    213 Volkova, N.I., Stupakov, S.I., Simonov, V.A. and Tikunov, Y.V., 2004. Petrology of metabasites from the Terekta Complex as a constituent of ancient accretionary prism of Gorny Altai. Journal of Asian Earth Sciences, 23(5), 705-713.
    214 Wan, B., and Zhang, L.C., 2006. Sr-Nd-Pb isotope geochemistry and tectonic setting of Devonian polymetallogenic belt on the southern margin of Altaid, Xinjiang. Acta Petrologica Sinica, 22(1), 145-152.
    215 Wan, Y.S., Wilde, S.A., Liu, D.Y., Yang, C.X., Song, B., Yin, X.Y., 2006. Further evidence for~1.85 Ga metamorphism in the Central Zone of the North China Craton: SHRIMP U-Pb dating of zircon from metamorphic rocks in the Lushan area, Henan Province. Gondwana Res. 9, 189-197.
    216 Wang, J.B., Zhang, J.H., Ding, R.F. and Fang, T.H., 2000. Tectono-metallogenic system in the Altay orogenic belt, China. Acta Geologica Sinica-English Edition, 74(3), 485-491.
    217 Wang, T., Hong, D. W., Jahn, B.M., Tong, Y., Wang, Y.B., Han, B.F., Wang, X.X., 2006. Timing, Petrogenesis, and Setting of Paleozoic Synorogenic Intrusions from the Altai Mountains, Northwest China: Implications for the Tectonic Evolution of an Accretionary Orogen. J. Geology 114, 735-751.
    218 Wang, T., Hong, D. W., Jahn, B.M., Tong, Y., Wang, Y.B., Han, B.F., Wang, X.X., 2006. Timing, Petrogenesis, and Setting of Paleozoic Synorogenic Intrusions from the Altai Mountains, Northwest China: Implications for the Tectonic Evolution of an Accretionary Orogen. J. Geology 114, 735-751.
    219 Wei, C., Clarke, G., Tian, W., Qiu.,L., 2007. Transition of metamorphic series from the Kyanite-to andalusite-types in the Altai orogen, Xinjiang, China: Evidence from petrography and calculated KMnFMASH and KFMASH phase relations, Lithos, in press
    220 Wilde, S.A., Wu, F.Y., Zhang, X.Z., 2003. Late Pan-African magmatism in northeastem China: SHRIMP U-Pb zircon evidence from granitoids in the Jiamusi Massif. Precambrian Res. 122, 311-327.
    221 Wilde, S.A., Zhang, X.Z., Wu, F.Y., 2000. Extension of a newly identified 500 Ma metamorphic terrane in North East China: further U-Pb SHRIMP dating of the Mashan Complex, Heilongjiang Province, China. Tectonophysics. 328, 115-130.
    222 Wilde, S.A., Zhao, G..C., 2005. Archean to Paleoproterozoic evolution of the North China Craton. J. Asian Earth Sci. 24, 519-522.
    223 Williams IS. 2001. Response of detrital zircon and monazite, and their U-Pb isotopic systems, to regional metamorphism and host-rock partial melting, Cooma Complex, southeastern Australia. Aust. J. Earth Sci., 48, 557-580
    224 Windley, B.F., Alexeiev, D., Xiao, W.J., Kroner, A. and Badarch, G., 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164, 31-47.
    225 Windley, B.F., Kroner, A., Guo, J., Qu, G., Li, Y., Zhang, C., 2002. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: New zircon age data and tectonic evolution. J. Geol. 110, 719-739.
    226 Wronkiewicz, D.J., Condie, K.C., 1989. Geochemistry and provenance of sediments from the Pongola Supergroup, South Africa: evidence for a 3.0-Ga--old continental craton. Geochimica et Cosmochimica Acta 53, 1537-1549.
    227 Wu, F.Y., Wilde, S.A., Zhang, G.L. and Sun, D.Y., 2004. Geochronology and petrogenesis of the post-orogenic Cu-Ni sulfide-bearing mafic--ultramafic complexes in Jilin Province, NE China. Journal of Asian Earth Sciences, 23(5): 781-797.
    228 Wu, F.Y., Yang,Y.H., Xie, L.W., Yang, J.H., Xu, P., 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem. Geol. 234, 105-126.
    229 Xia, X.P., Sun M., Zhao GC., Luo Y. 2006. LA-ICP-MS U-Pb geochronology of detrital zircons from the Jining Complex, North China Craton and its tectonic significance, Precambrian Res., 144, 199-212.
    230 Xia, X.P., Sun, M., Zhao, G.C., Li, H.M., Zhou M.F., 2004. Spot zircon U-Pb isotope analysis by ICP-MS coupled with a frequency quintupled (213 nm) Nd-YAG laser system, Geochem. J. 38, 191-200.
    231 Xiao, W.J., Windley, B.F., Badararch, G, Sun S., Li J., Qin K., Wang, Z., 2004. Paleozoic accretionary and convergent tectonics of the southern Altaids: implications for the growth of central Asia. J. Geol. Soc. London. 161, 1-4.
    232 Xiao, W.J., Windley, B.F., Hao, J., Zhai, M.G., 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics, 22: Art no. 1069.
    233 Xiao, W.J., Windley, B.F., Yan, Q.R., Qin, K.Z., Chen, H.L., Yuan, C., Sun, M., Li, J.L., 2006. SHRIMP Zircon Age of the Aermantai Ophiolite in the North Xinjiang Area, China and Its Tectonic Implications. Acta Geol. Sin. 80 (1), 32-37, in Chinese.
    234 Xu D. R., Gu X. X., Li P.C., Chen G.H., Xia B., Bachlinski R., He Z.L., Fu G.G. 2006. Mesoproterozoic-Neoproterozoic transition: Geochemistry, provenance and tectonic setting of clastic sedimentary rocks on the SE margin of the Yangtze Block, South China. J. Asian Earth Sci, in press.
    235 Xu, B., Jian, P., Zheng, H.F., Zou, H.B., Zhang, L.F., Liu, D.Y., 2005. U-Pb zircon geochronology and creochemistry of Neoproterozoic volcanic rocks in the Tarim Block of northwest China: implications for the breakup of Rodinia supercontinent and Neoproterozoic glaciations. Precambrian Res. 136, 107-123.
    236 Xu, J., Xie, Y., Zhong, C., Yuan, X. and Ding, R., 2005. Fluid inclusions in gold mineralization in the Sarekoubu area of the southern Altai Mountains, Xinjiang, China. In: J. Mao and F.P. Bierlein (Editors), Mineral Deposit Research: Meeting the Global Challenge, Vols 1 and 2, pp. 1359-1362.
    237 Xu, J.F. et al., 2003. Geochemistry of late Paleozoic mafic igneous rocks from the Kuerti area, Xinjiang, northwest China: implications for backarc mantle evolution. Chemical Geology, 193(1-2): 137-154.
    238 Yakubchuk, A. 2002. The Baikalide-Altaid, Transbaikal-Mongolian and North Pacific Orogenic collage: similarities and diversity of structural pattern and metallogenic zoning. In: Blundell, D.J., Neubauer, F. & Von Quadt, A. (eds) The Timing and Location of Major Ore Deposits in an Evolving Orogen. Geological Society, London, Special Publications, 204, 273-297.
    239 Yakubchuk, A., 2004. Architecture and mineral deposit settings of the Altaid orogenic collage: a revised model. Journal of Asian Earth Sciences, 23(5): 761-779.
    240 Yakubchuk, A., Seltmann, R., Shatov, V. & Cole, A. 2001. The Altaids: tectonic evolution and metallogeny. Society of Economic Geologists, Newsletter, 46, 7-14.
    241 Yakubchuk, A., Shatov, V.V., Kirwin, D., Edwards, A., Badarch, G. & Buryak, V.A. et al. 2005. Gold and base metal metallogeny of the Central Asian orogenic supercollage. In: Society of Economic Geologists, 100th Anniversary Volume. 1035-1068.
    242 Yuan C., Sun M., Xiao W.J., Li X.H., Chen H.L., Lin S.F., Xia X.P., Long X.P. 2007. Accretionary Orogenesis of Chinese Altai Insights from the Paleozoic Granitoids. Chemical Geology, in press.
    243 Yuan, F., Zhou, T.F., Tan, L.G., Luo, X.R. and Yue, S.C., 2004. Geochemistry, geochronology and genesis of gold mineralization in Nurt of Northem Altay, Xinjiang: A case study on the Aketishikan gold deposit. Acta Geologica Sinica-English Edition, 78(2), 562-567.
    244 Zhai, M.G., Liu, W.J., 2003. Palaeoproterozoic tectonic history of the North China craton: a review. Precambrian Res. 122, 183-199.
    245 Zhai, M.G., Shao, J.A., Hao, J., Peng, P., 2003. Geological Signature and Possible Position of the North China Block in the Supercontinent Rodinia. Gondwana Res. 6, 171-183.
    246 Zhang, C.L., Li, Z.X., Li, X.H., Ye, H.M., Wang, A.G., Guo, K.Y., 2006. Neoproterozoic bimodal intrusive complex in the southwestern Tarim Block, Northwest China: Age, geochemistry, and implications for the rifling of Rodinia. Inter. Geol. Rev. 48, 112-128.
    247 Zhang, K.J., 2004. Secular geochemical variations of the lower Cretaceous siliciclastic rocks from central Tibet (China) indicate a tectonic transition from continental collision to back-arc rifling. Earth and Planetary Science Letters, 229, 73-89.
    248 Zhang, Z.H. et al., 2005. Magmatic Cu-Ni sulfide deposits in northern Xinjiang, China: A review. In: J. Mao and F.P. Bierlein (Editors), Mineral Deposit Research: Meeting the Global Challenge, Vols 1 and 2, pp. 1373-1375.
    249 Zhang, Z.Q., Shen, Q.H., Geng, Y.S., Tang, S.H., Wang, J.H., 1996. Geochemistry and ages of Archean metamorphic rocks in northwestern Hebei Province, China, and formation time of the paleocrust in the region. Acta Petrol. Sin. 12, 315-328.
    250 Zhao, G.C., Cawood, P.A., Wilde, S.A., Sun, M., Lu, L., 2000. Metamorphism of basement rocks in the Central Zone of the North China craton: implications for Palaeoproterozoic tectonic evolution. Precambrian Res. 103, 55-88.
    251 Zhao, G.C., Sun, M., Wilde, S.A., Li, S.Z., 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Res. 136, 177-202.
    252 Zhou, Y.Q., 1994. Discussion on the basement property of Junggar basin. Geoscience of Xinjiang. 5, 19-27, in Chinese.
    253 Zhu, B., Kidd, W. S. F., Rowley, D. B., Currie, B. S., Shafique, N., 2005. Age of initiation of the India-Asia collision in the east-central Himalaya. Journal of Geology, 113, 265-285.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700