稀土掺杂氧化物显示用荧光粉的合成与发光性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1964年发现Y_2O_3:Eu是一种高效红色荧光粉以来,稀土发光材料经历近45年的迅猛发展,己成为信息显示、照明光源、光电器件等领域的支撑材料,为社会发展和技术进步发挥着日益重要的作用。显示技术的发展向着高清晰、数字化、平板化的发展方向逐步迈进,对稀土发光材料的开发和改进也提出了新的要求。另外,大功率红外半导体激光器的成熟为上转换显示器的研发开拓了新的契机,因此,对上转换荧光粉的性能研究将加速上转换显示的实际应用。本文提出利用蔗糖燃烧法合成纳米荧光粉,研究合成机理及影响产物表面形貌、发光性能的因素。以显示、照明用荧光粉为研究对象,在合成方法、上转换荧光增强、荧光粉包覆及颜色调控等方面进行了实验研究和理论论证。
     首次采用蔗糖燃烧法合成纳米级Y_2O_3:Eu和Gd_2O_3:Eu荧光粉,研究了蔗糖络合机理和实验条件对粉体表面形貌和发光性能的影响。蔗糖燃烧法降低了荧光粉的成相温度;燃烧过程中产生的热量和气体之间存在竞争关系,影响样品表面形貌和发光性能;实验结果表明后处理温度高,蔗糖浓度大能够减少荧光粉处于表面态的Eu~(3+)。蔗糖燃烧法还可以制备其他发光材料,是一种能够广泛推广的低廉的发光材料合成方法。
     考察基质材料结构的对称性降低引起的上转换发光增强。对具有低对称性结构的单斜相Gd_2O_3:Er荧光粉的Stokes发光及上转换荧光强度与掺杂浓度的依赖关系及发光机制做了详细的讨论。研究发现,上转换荧光强度随掺杂浓度的增加而增强;与立方相Gd_2O_3:Er荧光粉的对比研究发现,单斜相较立方相可提供更多的掺杂格位,增强了离子间能量传递几率,有利于增强上转换发光;速率方程推到结果证实了相邻Er~(3+)间的能量传递4I11/2+4I11/2→4F9/2+4I13/2是红光和蓝光增强的主要原因。实验结果及理论论证认为单斜相较立方相更有利于增强上转换发光。
     以掺杂的形式向基质晶格中引入杂质离子或敏化剂实现荧光增强。对Gd_2O_3:Zn,Er多晶粉末的结构和Stokes发光及上转换发光性质研究表明,随Zn2+掺杂量的增加,荧光强度表现出先增加后减小,但并没有改变上转换发光机制;Zn2+从替代式掺杂逐渐转变成间隙式掺杂,最后以氧化锌形式析出。分析认为Zn2+的掺杂向晶格中引入了大量氧空位缺陷,造成晶格对称性降低,导致荧光增强。以Y_2O_3:Ho,Yb荧光粉为研究对象,考察了不同Ho~(3+)掺杂浓度对应的上转换发光机制。研究发现,敏化剂浓度不变的情况下,随Ho~(3+)浓度减小整体荧光强度增加。结合速率方程分析发现,中间能级5I6和5I7的布居方式影响上转换发光机制。实验结果表明,向基质晶格中适当引入缺陷造成的晶格对称性降低以及适当调节激活离子和敏化剂的浓度可以提高上转换荧光强度。
     分别以多掺杂和荧光粉混合的方法对上转换荧光进行颜色调制。对Y_2O_3:Ho,Tm,Yb的多色上转换荧光进行考察并讨论了Tm~(3+)和Ho~(3+)之间的能量传递。研究发现随Ho~(3+)离子浓度增加,Ho~(3+)(5I6)与Tm~(3+)(3H5)之间的能量传递增强,同时,上转换荧光颜色得到调节。以不同质量比混合Gd_2O_3:6Er和Gd_2O_3:0.2Tm,3Yb多晶粉末得到多色上转换荧光粉,通过调整质量比以调节混合荧光的颜色及相关色温。荧光粉的SiO2包覆阻止了颗粒间的荧光再吸收并提高了粉体的涂覆性能。这种方法几乎不受掺杂浓度引起的荧光淬灭影响,可以极大的利用具有最佳发光强度的荧光粉,因此得到的多色荧光粉的发光亮度最高。
     本文介绍了蔗糖燃烧法合成粉体发光材料,尝试了掺杂及结构改变增强荧光发射,分别利用多掺杂和混合荧光粉的方法对上转换荧光粉进行颜色调制并利用SiO2包覆技术增强荧光粉的涂覆性能。本文的工作将会降低传统荧光粉的合成成本,同时,对上转换荧光粉在显示方面的应用做了一系列的前期工作,对于稀土掺杂荧光粉的发光机制研究及其应用推广起到了积极的作用。
Since Y_2O_3:Eu oxides were found to be efficient red phosphors in 1964, the rare-earth luminescent materials developed quickly and played an important role in fields of information displaying, lighting, photoconduction device and so on. Display technology has developed on the direction of high resolution, digitalized, flattening, therefore, new requirements were presented for the researches of rare-earth luminescent materials. On the other hand, the popular of high power infra-laser diode promotes the investigation of upconversion (UC) display devices. In the present thesis, sucrose combustion synthesis was proposed for nano-sized phosphors preparation. Synthetic mechanisms and factors which impact on the surface morphology and luminescent properties were discussed. Using the phosphors for displaying and lighting as investigated subjects in this thesis, the synthetic methods, ways for enhancements of luminescence intensity, color adjustments and coating techniques were investigated both in experimental and theoretical demonstration.
     Phosphors Y_2O_3:Eu and Gd_2O_3:Eu were prepared using sucrose combustion method. The chelating mechanisms and experimental conditions on the surface morphology and luminescent properties were discussed. The crystallization temperature was lowed after the sucrose combustion; it was found that there was a competition between the heat and gases engendered during the sucrose combustion,which would greatly affect the size, morphology and luminescent properties of particles. Experimental results showed that the surface state Eu~(3+) can be greatly decreased with high post-treated temperature and sucrose content. The results show that the sucrose combustion synthesis method can be used as a low cost and easily generalized preparation way for other kinds of luminescent materials.
     Stokes and Anti-stokes (upconversion) emissions of monoclinic phase Gd_2O_3:Er with low symmetry were investigated. The dependence of doping concentration on the luminescence properties and mechanisms was discussed in details. With the increasing of doping concentration, luminescence intensities were obviously enhanced. Comparing investigation with cubic Gd_2O_3:Er, the monoclinic phase provides with more lattices, which will be much more efficient for energy transfer and UC emissions. Based on the rate equations, the increasing of red and blue light can be attributed to the energy transfer, 4I11/2+4I11/2→4F9/2+4I13/2, between two Er~(3+) ions nearby. It comes to the conclusion that, the UC emissions of monoclinic phase will be more efficient than the cubic phase Gd_2O_3.
     UC luminescence enhancing was realized by impurity doping or sensitizer introducing into the host lattice. UC luminescence of Gd_2O_3:Zn,Er showed that the luminescence increase with the Zn2+ doping concentration elevated. Structral analysis revealed that the dopant Zn2+ changes from substitutional doping to interstitial doping and precipitated in the form of ZnO. It was found that the oxygen vacancies by Zn2+ introducing will greatly decrease the symmetry of host lattices, which will result in the luminescence increasing. UC mechanisms of Y_2O_3:Ho,Yb were studied by variable Ho~(3+) concentration. It was found that the intensity of upconverion luminescence increased with the Ho~(3+) concentration decreasing. Ratio equation analysis found that the intermediate level 5I6 and 5I7 will greatly affect the UC mechanisms. The lowing of symmetry for host material by defects introducing or proper ratio of activator and sensitizer will both improve the UC emissions.
     Color adjusting for UC luminescence was by the way of multi-doping or phosphors mixing. Muti-color UC emissions in Y_2O_3:Ho,Tm,Yb were investigated and the possible energy transfer between Tm~(3+) and Ho~(3+) was discussed. With the increasing of Ho~(3+) concentration, the energy transfer between 5I6 (Ho~(3+)) and 3H5 (Tm~(3+)) became efficient. Meanwhile, the color of luminescence was modulated. Mixed phosphors were made up of the monoclinic Gd_2O_3:6Er and Gd_2O_3:0.2Tm,3Yb phosphors. The color and correlated color temperature can be tuned by mass ratios. Silica coated on the phosphors will inhibit the re-absorption of the luminescence and also improve the paintability of the phosphors. By mixing different phosphors, the concentration quenching can be easily avoided and the resulting color can be manageable in some extent. Using the most efficiency phosphors, the highest mulit-color can be obtained. In this thesis, sucrose combustion synthesis method was tried to fabricate the luminescent materials and luminescence enhancements by impurity doping or structure changing were discussed. The luminescence color was adjusted by directly co-doping in one host or mixing different phosphors. The silica coating on the phosphors will greatly improve the paintability. The work will greatly decrease the cost of traditional synthesis and promote the application of UC phosphors, which will be an active improvement both in emission mechanisms and applications.
引文
1孙家跃,杜海燕,固体发光材料,化学工业出版社,2003,590~639
    2 G. Blasse, B. C. Grabmaier, Luminescent Materials. Springer-Verlag, 1994,20~95
    3 R. P. Rao, Growth and Characterization of Y2O3:Eu3+ Phosphor Films by Sol-Gel Process. Solid State Commun. 1996, 99:439~443
    4 R. P. Rao, Preparation and Characterization of Fine-Grain Yttrium-Based Phosphors by Sol-Gel Process. J. Electrochem. Soc. 1996, 143:189~97
    5 Q. Li, L. Gao, D. S. Yan, Effects of the Coating Process on Nanoscale Y2O3:Eu3+ Powders. Chem. Mat. 1999, 11:533~535
    6 D. L. Zhang, P. R. Hua, Y. M. Cui, C. H. Chen, E. Y. B. Pun, Absorption and Emission Characteristics of Er3NbO7 Phosphor: A Comparison with ErNbO4 Phosphor and Er:LiNbO3 Single Crystal. J. Lumines. 2007, 127:453~460
    7 C. H. Lu, C. T. Chen, B. Bhattacharjee, Sol-Gel Preparation and Luminescence Properties of BaMgAl10O17:Eu2+ Phosphors. J. Rare Earths 2006, 24:706~711
    8 D. Wang, Y. X. Li, Y. H. Xiong, Q. R. Yin, SrAl2O4 :(Eu2+, Dy3+) Phosphor Thin Films Derived from the Sol-Gel Process. J. Electrochem. Soc. 2005, 152:H12~H14
    9 T. Y. Peng, L. Huajun, H. P. Yang, C. H. Yan, Synthesis of SrAl2O4 : Eu, Dy Phosphor Nanometer Powders by Sol-Gel Processes and its Optical Properties. Mater. Chem. Phys. 2004, 85:68~72
    10 M. I. Martinez-Rubio, T. G. Ireland, J. Silver, G. Fern, C. Gibbons, A. Vecht, Effect of EDTA on Controlling Nucleation and Morphology in the Synthesis of Ultrafine Y2O3:Eu Phosphors. Electrochem. Solid State Lett. 2000, 3:446~449
    11 J. Y. Zhang, Z. L. Tang, Z. T. Zhang, W. Y. Fu, J. Wang, Y. H. Lin, Synthesis of Nanometer Y2O3 : Eu Phosphor and its Luminescence Property. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2002, 334:246~249
    12 A. Bao, C. Tao, H. Yang, Synthesis and Luminescent Properties of Nanoparticles GdCaAl3O7:Re3+ (Re = Eu, Tb) via the Sol-Gel Method. J.Lumines. 2007, 126:859~865
    13 Y. X. Pan, Q. Y. Zhang, C. Zhao, Z. H. Jiang, Luminescent Properties of Novel Ho3+ and Tm3+ Doped Gadolinium Molybdate Nanocrystals Synthesized by the Pechini Method. Solid State Commun. 2007, 142:24~27
    14 L. Q. An, J. Zhang, M. Liu, S. Chen, S. W. Wang, Preparation and Photoluminescence of Sm3+ and Eu3+ Doped Lu2O3 Phosphor. Opt. Mater. 2008, 30:957~960
    15 L. Zhou, S. X. Hanxin, M. L. Gong, Synthesis and Luminescent Properties of BaGd2O4:Eu3+ Phosphor. J. Phys. Chem. Solids 2007, 68:1471~1475
    16 Y. Q. Zhai, Z. H. Yao, B. S. Liu, J. Zhai, K. X. Wang, Luminescent Properties of Y2O3:Eu Nanocrystals Synthesized by EDTA Complexing Sol-Gel Process. J. Rare Earths 2002, 20:465~470
    17 E. Zych, J. Trojan-Piegza, L. Kepinski, Homogeneously Precipitated Lu2O3:Eu Nanocrystalline Phosphor for X-Ray Detection. Sens. Actuator B-Chem. 2005, 109:112~118
    18 X. Wang, X. G. Kong, G. Y. Shan, Y. Yu, Y. J. Sun, L. Y. Feng, K. F. Chao, S. Z. Lu, Y. J. Li, Luminescence Spectroscopy and Visible Upconversion Properties of Er3+ in ZnO Nanocrystals. J. Phys. Chem. B 2004, 108:18408~18413
    19 V. Singh, R. P. S. Chakradhar, J. L. Rao, D. K. Kim, Characterization, EPR and Luminescence Studies of ZnAl2O4:Mn Phosphors. J. Lumines. 2008, 128:394~402
    20 K. Prabhakaran, N. M. Gokhale, S. C. Sharma, R. Lal, A Novel Process for Low-Density Alumina Foams. J. Am. Ceram. Soc. 2005, 88:2600~2603
    21 R. N. Das, A. Bandyopadhyay, S. Bose, Nanocrystalline Alpha-Al2O3 Using Sucrose. J. Am. Ceram. Soc. 2001, 84:2421~2423
    22 R. Das, A. Bandyopadhyay, S. Bose, Sucrose-Mediated Synthesis of Metal Oxide Nanopowders. Abstr. Pap. Am. Chem. Soc. 2001, 221:U570~U570
    23 J. Silver, T. G. Ireland, R. Withnall, Fine Control of the Dopant Level in Cubic Y2O3:Eu3+ Phosphors. J. Electrochem. Soc. 2004, 151:H66~H68
    24 K. N. Kim, H. K. Jung, H. D. Park, D. Kim, Synthesis and Characterization of Red Phosphor (Y,Gd)BO3:Eu by the Coprecipitation Method. J. Mater. Res. 2002, 17:907~910
    25 J. H. Kang, M. Nazarov, W. Bin Im, J. Y. Kim, D. Y. Jeon, Characterization of Nano-Size YVO4:Eu and (Y, Gd)VO4:Eu Phosphom by Low Voltage Cathodo- and Photoluminescence. J. Vac. Sci. Technol. B 2005, 23:843~848
    26 J. Gomes, A. M. Pires, O. A. Serra, Nanocrystalline Re2O3:Tm3+ (Re : Gd3+, Y3+) Blue Phosphors Synthesized via the Combustion Method. J. Fluoresc. 2006, 16:411~421
    27 H. Q. Liu, L. L. Wang, H. J. Li, Upconversion of Oxide Y2O3 Doped with (Yb3+, Er3+) Ions with 978 nm Excitation. Spectrosc. Spectr. Anal. 2006, 26:1396~1399
    28 G. S. Maciel, N. Rakov, M. Fokine, I. C. S. Carvalho, C. B. Pinheiro, Strong Upconversion from Er3Al5O12 Ceramic Powders Prepared by Low Temperature Direct Combustion Synthesis. Appl. Phys. Lett. 2006, 89:81109~81111
    29 A. M. Pires, S. Heer, H. U. Gudel, O. A. Serra, Er, Yb Doped Yttrium Based Nanosized Phosphors: Particle Size, "Host Lattice" and Doping Ion Concentration Effects on Upconversion Efficiency. J. Fluoresc. 2006, 16:461~468
    30 L. E. Shea, J. McKittrick, O. A. Lopez, E. Sluzky, Synthesis of Red-Emitting, Small Particle Size Luminescent Oxides Using an Optimized Combustion Process. J. Am. Ceram. Soc. 1996, 79:3257~3265
    31 L. D. Sun, J. Yao, C. G. Liu, C. S. Liao, C. H. Yan, Rare Earth Activated Nanosized Oxide Phosphors: Synthesis and Optical Properties. J. Lumines. 2000, 87-9:447~450
    32 J. S. Kim, S. W. Mho, Y. H. Park, J. C. Choi, H. L. Park, G. S. Kim, White-Light-Emitting Eu2+ and Mn2+-Codoped Silicate Phosphors Synthesized through Combustion Process. Solid State Commun. 2005, 136:504~507
    33 R. N. Das, A. Bandyopadhyay, S. Bose, Nanocrystalline Alpha-Al2O3 Using Sucrose. J. Am. Ceram. Soc. 2001, 84:2421~2423
    34 Y. C. Kang, H. S. Roh, E. J. Kim, H. D. Park, Synthesis of Nanosize Gd2O3: Eu Phosphor Particles with High Luminescence Efficiency under Ultraviolet Light. J. Electrochem. Soc. 2003, 150:H93~H97
    35 Y. C. Kang, H. S. Roh, S. Bin Park, K. Y. Jung, Red-Emitting Phosphor Particles with Spherical Shape, Dense Morphology, and High LuminescentEfficiency under Ultraviolet. Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 2004, 43:5302~5306
    36 Y. C. Kang, H. S. Roh, S. Bin Park, Preparation of Y2O3: Eu Phosphor Particles of Filled Morphology at High Precursor Concentrations by Spray Pyrolysis. Adv. Mater. 2000, 12:451~453
    37 Y. C. Kang, S. B. Park, I. W. Lenggoro, K. Okuyama, Preparation of Nonaggregated Y2O3: Eu Phosphor Particles by Spray Pyrolysis Method. J. Mater. Res. 1999, 14:2611~2615
    38 A. Camenzind, R. Strobel, S. E. Pratsinis, Cubic or Monoclinic Y2O3: Eu3+ Nanoparticles by One Step Flame Spray Pyrolysis. Chem. Phys. Lett. 2005, 416:193~197
    39 D. Dosev, I. M. Kennedy, M. Godlewski, I. Gryczynski, K. Tomsia, E. M. Goldys, Fluorescence Upconversion in Sm-Doped Gd2O3. Appl. Phys. Lett. 2006, 88, 011906~011908
    40 Y. Q. Lei, H. W. Song, L. M. Yang, L. X. Yu, Z. X. Liu, G. H. Pan, X. Bai, L. B. Fan, Upconversion Luminescence, Intensity Saturation Effect, and Thermal Effect in Gd2O3: Er3+,Yb3+ Nanowires. J. Chem. Phys. 2005, 123: 174710~174714
    41 Y. Cui, X. P. Fan, Z. L. Hong, M. Q. Wang, Synthesis and Luminescence Properties of Lanthanide (III)-Doped YF3 Nanoparticies. J. Nanosci. Nanotechnol. 2006, 6:830~836
    42 G. J. De, W. P. Qin, J. S. Zhang, J. S. Zhang, Y. Wang, C. Y. Cao, Y. N. Cui, Infrared-to-Ultraviolet Up-Conversion Luminescence of YF3 : Yb3+, Tm3+ Microsheets. J. Lumines. 2007, 122:128~130
    43 Y. J. Sun, Y. Chen, L. J. Tian, Y. Yu, X. G. Kong, J. W. Zhao, H. Zhang, Controlled Synthesis and Morphology Dependent Upconversion Luminescence of NaYF4: Yb, Er Nanocrystals. Nanotechnology 2007, 18:275609~275618
    44 C. X. Li, Z. W. Quan, P. P. Yang, J. Yang, H. Z. Lian, J. Lin, Shape Controllable Synthesis and Upconversion Properties of NaYbF4/NaYbF4:Er3+ and YbF3/YbF3 : Er3+ Microstructures. J. Mater. Chem. 2008, 18:1353~1361
    45 K. S. Yang, C. Y. Yu, L. P. Lu, Y. Li, C. H. Ye, X. Y. Zhang, Upconversion Luminescence Properties of Ho3+, Tm3+, Yb3+, Co-Doped Nanocrystal NaYF4Synthesized by Hydrothermal Method. J. Rare Earths 2006, 24:757~760
    46 T. G. Ireland, J. Silver, C. Gibbons, A. Vecht, Facile Self-Assembly of Yttrium Oxide Europium Phosphor from Solution Using a Sacrificial Micellar Phase. Electrochem. Solid State Lett. 1999, 2:52~54
    47 P. K. Sharma, M. H. Jilavi, V. K. Varadan, H. Schmidt, Influence of Initial pH on the Particle Size and Fluorescence Properties of the Nano Scale Eu(III) Doped Yttria. 2002, 63:171~177
    48 K. Lebbou, P. Perriat, O. Tillement, Recent Progress on Elaboration of Undoped and Doped Y2O3, Gd2O3 Rare-Earth Nano-Oxide. J. Nanosci. Nanotech. 2005, 5:1448~1454
    49固体发光编写组.固体发光.中国科技大学出版社, 1976
    50 J. S. Chivian, W. E. Case, D. D. Eden, The Photon Avalanche: A New Phenomenon in Pr3+-Based Infrared Quantum Counters. Appl. Phys. Lett. 1979, 35:124~125
    51 G. Galbacs, A Review of Applications and Experimental Improvements Related to Diode Laser Atomic Spectroscopy. 2006, Appl. Spectros. Rev. 41:259~303
    52 L. F. Johnson, H. J. Guggenheim, Infrared-Pumped Visible Laser. Appl. Phys. Lett. 1971, 19:44~47
    53 E. Heumann, S. Bar, K. Rademaker, G. Huber, S. Butterworth, A. Diening, W. Seelert, Semiconductor-Laser-Pumped High-Power Upconversion Laser. Appl. Phys. Lett. 2006, 88:061108~061110
    54 C. Zhao, Q. Y. Zhang, G. F. Yang, Z. H. Jiang, Laser-Diode-Excited Blue Upconversion in Tm3+/Yb3+-Codoped TeO2-Ga2O3-R2O (R=Li, Na, K) Glasses. J. Fluoresc. 2008, 18:87~91
    55 X. D. Zhang, T. F. Xu, S. X. Dai, Q. H. Nie, X. Shen, L. J. Lu, X. H. Zhang, Investigation of Energy Transfer and Frequency Upconversion in Er3+/Ho3+ Codoped Tellurite Glasses. J. Alloy. Compd. 2008, 450:306~309
    56 G. F. Yang, D. M. Shi, Q. Y. Zhang, Z. H. Jiang, Spectroscopic Properties of Er3+/Yb3+-Codoped PbO-Bi2O3-Ga2O3-GeO2 Glasses. J. Fluoresc. 2008, 18:131~137
    57 F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, M. Bettinelli, Effect of Yb3+ Codoping on the Upconversion Emission in Nanocrystalline Y2O3 :Er3+. J. Phys. Chem. B 2003, 107:1107~1112
    58 J. A. Capobianco, F. Vetrone, J. C. Boyer, A. Speghini, M. Bettinelli, Enhancement of Red Emission 4F9/2→4I15/2 via Upconversion in Bulk and Nanocrystalline Cubic Y2O3: Er3+. J. Phys. Chem. B 2002, 106:1181~1187
    59 J. A. Capobianco, F. Vetrone, T. D'Alesio, G. Tessari, A. Speghini, M. Bettinelli, Optical Spectroscopy of Nanocrystalline Cubic Y2O3: Er3+ Obtained by Combustion Synthesis. Phys. Chem. Chem. Phys. 2000, 2:3203~3207
    60 D. Matsuura, H. Hattori, A. Takano, Upconversion Luminescence Properties of Y2O3 Nanocrystals Doped with Trivalent Rare-Earth Ions. J. Electrochem. Soc. 2005, 152:H39~H42
    61 H. Guo, N. Dong, M. Yin, W. P. Zhang, L. R. Lou, S. D. Xia, Visible Upconversion in Rare Earth Ion-Doped Gd2O3 Nanocrystals. J. Phys. Chem. B 2004, 108:19205~19209
    62 H. Guo, Y. F. Li, D. Y. Wang, W. P. Zhang, M. Yin, L. R. Lou, S. D. Xia, Blue Upconversion of Cubic Gd2O3 : Er Produced by Green Laser. J. Alloy. Compd. 2004, 376:23~27
    63 H. Guo, W. P. Zhang, M. Yin, L. R. Lou, S. D. Xia, Structure. Property and Visible Upconversion of Er3+ Doped Gd2O3 Nanocrystals. J. Rare Earths 2004, 22:365~369
    64 G. Y. Chen, G. Somesfalean, Z. G. Zhang, Q. Sun, E. P. Wang, Ultraviolet Upconversion Fluorescence in Rare-Earth-Ion-Doped Y2O3 Induced by Infrared Diode Laser Excitation. Opt. Lett. 2007, 32:87-89
    65 H. W. Song, B. J. Sun, T. Wang, S. Z. Lu, L. M. Yang, B. J. Chen, X. J. Wang, X. G. Kong, Three-Photon Upconversion Luminescence Phenomenon for the Green Levels in Er3+/Yb3+ Codoped Cubic Nanocrystalline Yttria. Solid State Commun. 2004, 132:409~413
    66 A. Patra, Effect of Crystal Structure and Concentration on Luminescence in Er3+:ZrO2 Nanocrystals. Chem. Phys. Lett. 2004, 387:35~39
    67 A. Patra, C. S. Friend, R. Kapoor, P. N. Prasad, Effect of Crystal Nature on Upconversion Luminescence in Er3+:ZrO2 Nanocrystals. Appl. Phys. Lett. 2003, 83:284~286
    68 S. Heer, K. Kompe, H. U. Gudel, M. Haase, Highly Efficient MulticolourUpconversion Emission in Transparent Colloids of Lanthanide-Doped NaYF4 Nanocrystals. Adv. Mater. 2004, 16:2102~2105
    69 J. F. Suyver, A. Aebischer, S. Garcia-Revilla, P. Gerner, H. U. Gudel, Anomalous Power Dependence of Sensitized Upconversion Luminescence. Phys. Rev. B 2005, 71:125123~125131
    70 J. F. Suyver, J. Grimm, M. K. van Veen, D. Biner, K. W. Kramer, H. U. Gudel, Upconversion Spectroscopy and Properties of NaYF4 Doped with Er3+, Tm3+ and/or Yb3+. J. Lumines. 2006, 117:1~12
    71 L. Y. Wang, Y. D. Li, Na(Y1.5Na0.5)F6 Single-Crystal Nanorods as Multicolor Luminescent Materials. Nano Lett. 2006, 6:1645~1649
    72 L. Y. Wang, Y. D. Li, Green Upconversion Nanocrystals for DNA Detection. Chem. Commun. 2006:2557~2559
    73 L. Y. Wang, Y. D. Li, Controlled Synthesis and Luminescence of Lanthanide Doped NaYF4 Nanocrystals. Chem. Mat. 2007, 19:727~734
    74 W. G. S. Brown M R, Three- Dimensional Visual Display Systems. US Patent 1969, 3,474,248
    75 V. C. M. Lewis J D, McGhee R M., A True Three-Dimensional Display. IEEE Tran Elec. Dev. 1971, 18:724~732
    76 E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, A Three-Color, Solid-State, Three-Dimensional Display. Science 1996, 273:1185~1189
    77 A. Rapaport, J. Milliez, F. Szipocs, M. Bass, A. Cassanho, H. Jenssen, Properties of a New, Efficient, Blue-Emitting Material for Applications in Upconversion Displays: Yb, Tm : KY3F10. Appl. Optics 2004, 43:6477~6480
    78 A. Rapaport, Ferenc Szipocs, Janet Milliez, Hans Jenssen, M. A. Bass, K. J. Schafer, K. D. Belfield, Optically Written Displays Based on Up-Conversion of near-Infrared Light. 2001, Projection Displays VII: 47~55
    79 A. Rapaport, J. Milliez, M. Bass, A. Cassanho, H. Jenssen, Review of the Properties of Up-Conversion Phosphors for New Emissive Displays. J. Display Tech. 2006, 2:68~78
    80 W. Y. Tian, B. R. Reddy, Ultraviolet Upconversion in Thulium-Doped Fluorozirconate Fiber Observed under Two-Color Excitation. Opt. Lett. 2001, 26:1580~1582
    81 X. B. Chen, Z. F. Song, The Study of Two-Color Excitation Upconversion ofPr0.5Yb3: ZBLAN. 2006, Science in China G 49:169~177
    82 X. B. Chen, G. Y. Zhang, N. Sawanobori, Y. Feng, M. X. Li, S. Z. Bi, Y. X. Nie, Y. G. Sun, The Indirect Upconversion-Sensitization Luminescence Research of Tm, Yb Codoped Oxyfluoride Glasses. Acta Phys. Sin. 1999, 48:948~954
    83 F. Song, K. Zhang, J. Su, L. Han, J. Liang, X. Z. Zhang, L. H. Yan, J. G. Tian, J. J. Xu, Three-Photon Indirect Sensitization in Green Upconversion Luminescence of Er/Tm Co-doped NaY(WO4)2 Crystal. Opt. Express 2006, 14:12584~12589
    84 C. S. Su, S. M. Yeh, The Effect of LiF in Gd2O3:Eu, Y2O3:Eu, ZrO2:Zn and ZrO2:Er on UV Induced Thermoluminescence. Radiat. Prot. Dosim. 1996, 65:89~92
    85 S. M. Yeh, C. S. Su, UV Induced Thermoluminescence in Rare Earth Oxide Doped Phosphors: Possible Use for UV Dosimetry. Radiation Protection Dosimetry 1996, 65:359~362
    86 X. D. Sun, X. D. Xiang, New Phosphor (Gd2-xZnx)O3: Eu3+ with High Luminescent Efficiency and Superior Chromaticity. Appl. Phys. Lett. 1998, 72:525~527
    87 B. J. Liu, M. Gu, X. L. Liu, C. Ni, D. Wang, L. H. Xiao, R. Zhang, Effect of Zn2+ and Li+ Codoping Ions on Nanosized Gd2O3:Eu3+ Phosphor. J. Alloy. Compd. 2007, 440:341~345
    88 P. A. Tanner, Synthesis and Luminescence of Nano-Insulators Doped with Lanthanide Ions. J. Nanosci. Nanotechnol. 2005, 5:1455~1464
    89 J. Feng, G. M. Shan, A. Maquieira, M. E. Koivunen, B. Guo, B. D. Hammock, I. M. Kennedy, Functionalized Europium Oxide Nanoparticles Used as a Fluorescent Label in an Immunoassay for Atrazine. Anal. Chem. 2003, 75:5282~5286
    90 D. Dosev, M. Nichkova, R. K. Dumas, S. J. Gee, B. D. Hammock, K. Liu, I. M. Kennedy, Magnetic/Luminescent Core/Shell Particles Synthesized by Spray Pyrolysis and Their Application in Immunoassays with Internal Standard. Nanotechnology 2007, 18: 055102~055107
    91 M. Nichkova, D. Dosev, R. Perron, S. J. Gee, B. D. Hammock, I. M. Kennedy, Eu3+-Doped Gd2O3 Nanoparticles as Reporters for OpticalDetection and Visualization of Antibodies Patterned by Microcontact Printing. Anal. Bioanal. Chem. 2006, 384:631~637
    92 T. Lopez-Luke, E. De la Rosa, D. Solis, P. Salas, C. Angeles-Chavez, A. Montoya, L. A. Diaz-Torres, S. Bribiesca, Effect of the Ctab Concentration on the Upconversion Emission of ZrO2:Er3+ Nanocrystals. Opt. Mater. 2006, 29:31~37
    93 R. K. Ha, W. S. Yang, Y. B. Bai, T. J. Li, Upconversion Photoluminescence of ZrO2:Er3+ Nanocrystals Synthesized by Using Butadinol as High Boiling Point Solvent. Opt. Mater. 2006, 28:246~249
    94 E. M. Goldys, K. Drozdowicz-Tomsia, J. J. Sun, D. Dosev, I. M. Kennedy, S. Yatsunenko, M. Godlewski, Optical Characterization of Eu-Doped and Undoped Gd Y2O3 Nanoparticles Synthesized by the Hydrogen Flame Pyrolysis Method. J. Am. Chem. Soc. 2006, 128:14498~14505
    95 G. H. De, W. P. Qin, J. S. Zhang, J. H. Zhang, Y. Wang, C. Y. Cao, Y. Cui, Upconversion Luminescence Properties of Y2O3: Yb3+, Er3+ Nanostructures. J. Lumines. 2006, 119:258~263
    96 G. Y. Chen, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, F. P. Wang, Two-Color Upconversion in Rare-Earth-Ion-Doped ZrO2 Nanocrystals. Appl. Phys. Lett. 2006, 89:163105~163107
    97 M. G. Lazarraga, L. Pascual, H. Gadjov, D. Kovacheva, K. Petrov, J. M. Amarilla, R. M. Rojas, M. A. Martin-Luengo, J. M. Rojo, Nanosize LiNiyMn2- yO4 (0≤y≤0.5) Spinels Synthesized by a Sucrose-Aided Combustion Method. Characterization and Electrochemical Performance. J. Mater. Chem. 2004, 14:1640~1647
    98 http://www.aist.go.jp/RIODB/SDBS/
    99 Y. J. Wu, A. Bandyopadhyay, S. Bose, Processing of Alumina and Zirconia Nano-Powders and Compacts. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2004, 380:349~355
    100 Q. W. Chen, Y. Shi, J. Y. Chen, J. L. Shi, Photoluminescence of Lu2O3: Eu3+ Phosphors Obtained by Glycine-Nitrate Combustion Synthesis. J. Mater. Res. 2005, 20:1409~1414
    101 G. D. Xia, S. M. Zhou, J. J. Zhang, S. M. Wang, J. Xu, Direct Synthesis and Intense Luminescence of Y2O3:Eu Nanophosphors by ComplexationCombustion. Chem. Lett. 2005, 34:1166~1167
    102 Z. W. Peng, L. L. Wang, H. Q. Liu, H. J. Li, B. S. Zou, G. Yang, J. Zhang, Preparation and Luminescence Properties of Nanocrystals Gd2O3: Eu3+. Spectrosc. Spectr. Anal. 2007, 27:427~431
    103 C. X. Liu, J. Y. Liu, K. Dou, Judd-Ofelt Intensity Parameters and Spectral Properties of Gd2O3:Eu3+ Nanocrystals. J. Phys. Chem. B 2006, 110:20277~20281
    104 M. Xu, N. Dong, Q. Y. Kong, W. P. Zhang, M. Yin, S. D. Xia, Preparation, Structural Analysis and Luminescence Properties of Nanocrystalline Phosphor Gd2O3:Eu. J. Rare Earths 2004, 22:40~44
    105 L. Laversenne, Y. Guyot, C. Goutaudier, M. T. Cohen-Adad, G. Boulon, Optimization of Spectroscopic Properties of Yb3+-Doped Refractory Sesquioxides: Cubic Y2O3, Lu2O3 and Monoclinic Gd2O3. Opt. Mater. 2001, 16:475~483
    106 Z. W. Peng, L. L. Wang, H. Q. Lu, W. Q. Huang, B. S. Zou, Combustion Synthesis and Photoluminescence of Nanocrystalline Gd2O3:Eu3+. Acta Phys. Sin. 2007, 56:1162~1166
    107 L. R. P. L.A. Chick, G.D. Maupin, J.L. Bates, L.E. Thomas and G.J. Exarhos, Glycine-Nitrate Combustion Synthesis of Oxide Ceramic Powders. Mater. Lett. 1990, 10:6~12
    108 F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, M. Bettinelli, Concentration-Dependent Near-Infrared to Visible Upconversion in Nanocrystalline and Bulk Y2O3: Er3+. Chem. Mat. 2003, 15:2737~2743
    109 J. P. L. Wittke, I. P. N. Yocom, Y2O3:Yb, Er-New Red-Emitting Infrared-Excited Phosphor. J. Appl. Phys. 1972, 43:595~600
    110 X. Qin, Y. G. Ju, S. Bernhard, N. Yao, Flame Synthesis of Y2O3:Eu Nanophosphors Using Ethanol as Precursor Solvents. J. Mater. Res. 2005, 20:2960~2968
    111 M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, M. P. Hehlen, Power Dependence of Upconversion Luminescence in Lanthanide and Transition-Metal-Ion Systems. Phys. Rev. B 2000, 61:3337-3346
    112 Y. Nakanishi, H. Wada, H. Kominami, M. Kottaisamy, T. Aoki, Y. Hatanaka, Growth and Characterization of Y2O3:Tm Thin-Film Blue-Emitting Phosphor.J. Electrochem. Soc. 1999, 146:4320~4323
    113 K. Y. Jung, E. J. Kim, Y. C. Kang, Improvement in Morphology and Photoluminescence Intensity under Vacuum Ultraviolet Excitation of (Y,Gd)BO3:Eu Red Phosphor Particles Prepared by Spray Pyrolysis. J. Ind. Eng. Chem. 2005, 11:280~286
    114 H. Y. Chen, J. H. Zhang, X. J. Wang, S. Y. Gao, M. Z. Zhang, Y. M. Ma, Q. Q. Dai, D. M. Li, S. H. Kan, G. T. Zou, The Effect of the Size of Raw Gd(OH)3 Precipitation on the Crystal Structure and PL Properties of Gd2O3:Eu. J. Colloid Interface Sci. 2006, 297:130~133
    115 H. Kominami, C. Eguchi, M. Kottaisamy, Y. Nakanishi, Y. Hatanaka, Synthesis of Zn-Doped Y2O3:Eu Fine-Particle Phosphor by the Sol-Gel Method. J. Vac. Sci. Technol. B 2004, 22:1386~1389
    116 L. D. Sun, C. Qian, C. S. Liao, X. L. Wang, C. H. Yan, Luminescent Properties of Li+ Doped Nanosized Y2O3:Eu. Solid State Commun. 2001, 119:393~396
    117 S. H. Byeon, M. G. Ko, J. C. Park, D. K. Kim, Low-Temperature Crystallization and Highly Enhanced Photoluminescence of Gd2-xYxO3:Eu3+ by Li Doping. Chem. Mat. 2002, 14:603~608
    118 K. M. Lin, C. C. Lin, Y. Y. Li, Luminescent Properties and Characterization of Gd2O3: Eu3+@SiO2 and Gd2Ti2O7:Eu3+@SiO2 Core-Shell Phosphors Prepared by a Sol-Gel Process. Nanotechnology 2006, 17:1745~1751
    119 A. Brenier, G. Boulon, Laser Heated Pedestal Growth and Spectroscopic Investigations of Nd3+-Doped Gd2O3 Single Crystal Fibres. J. Lumin. 1999, 82:285~289
    120 A. Patra, C. S. Friend, R. Kapoor, P. N. Prasad, Upconversion in Er3+: ZrO2 Nanocrystals. J. Phys. Chem. B 2002, 106:1909~1912
    121 J. C. Park, H. K. Moon, D. K. Kim, S. H. Byeon, B. C. Kim, K. S. Suh, Morphology and Cathodoluminescence of Li-Doped Gd2O3: Eu3+, a Red Phosphor Operating at Low Voltages. Appl. Phys. Lett. 2000, 77:2162~2164
    122 J. Hays, K. M. Reddy, N. Y. Graces, M. H. Engelhard, V. Shutthanandan, M. Luo, C. Xu, N. C. Giles, C. Wang, S. Thevuthasan, A. Punnoose, Effect of Codoping on the Structural, Optical and Magnetic Properties of ZnO Nanoparticles. J. Phys.-Condes. Matter 2007, 19:266203
    123 X. Wang, G. Y. Shan, L. M. An, K. F. Chao, Q. H. Zeng, B. J. Chen, X. G. Kong, The Study of Anti-Stokes Photoluminescence Properties in the Y2O3: Er3+ Nanocrystals. Acta Phys. Sin. 2004, 53:1972~1976
    124 O. Ehlert, R. Thomann, M. Darbandi, T. Nann, A Four-Color Colloidal Multiplexing Nanoparticle System. ACS Nano 2008, 2:120~124
    125苏锵,张洪杰,张静筠,吕玉华,王鸿燕,利用稀土的光谱和磁性研究化合物的组成、价态与结构。无机材料学报. 1987,2: 1
    126 O. Ehlert, R. Thomann, M. Darbandi, T. Nann, A Four-Color Colloidal Multiplexing Nanoparticle System. ACS Nano 2008, 2:120~124
    127 B. Dong, H. W. Song, H. Q. Yu, H. Zhang, R. F. Qin, X. Bai, G. H. Pan, S. Z. Lu, F. Wang, L. B. Fan, Q. L. Dai, Upconversion Properties, of Ln3+ Doped NaYF4/Polymer Composite Fibers Prepared by Electrospinning. J. Phys. Chem. C 2008, 112:1435~1440
    128 J. C. Boyer, F. Vetrone, J. A. Capobianco, A. Speghini, M. Bettinelli, Yb3+ Ion as a Sensitizer for the Upconversion Luminescence in Nanocrystalline Gd3Ga5O12:Ho3+. Chem. Phys. Lett. 2004, 390:403~407
    129 X. Yang, S. Xiao, Z. Liu, X. H. Yan, Sensitizer-Dependent Up-Conversion of Ho3+ in Nanocrystalline Y2O3. 2007, 86:77~82
    130 C. S. McCamy, Correlated Color Temperature as an Explicit Function of Chromaticity Coordinates. Color Res. Appl. 1992, 17:142~144
    131 R. Lisiecki, W. Ryba-Romanowski, T. Lukasiewicz, Blue Up-Conversion with Excitation into Tm Ions at 808 nm in YVO4 Crystals Codoped with Thulium and Ytterbium. Appl. Phys. B 2005, 81:43~47
    132 Z. X. Chen, W. B. Bu, N. Zhang, J. L. Shi, Controlled Construction of Monodisperse La2(MoO4)3: Yb,Tm Microarchitectures with Upconversion Luminescent Property. J. Phys. Chem. C 2008, 112:4378~4383
    133 L. Q. An, J. Zhang, M. Liu, S. W. Wang, Upconversion Luminescence of Tm3+ and Yb3+-Codoped Lutetium Oxide Nanopowders. J. Alloy. Compd. 2008, 451:538~541
    134 L. Q. An, J. Zhang, M. Liu, S. W. Wang, Preparation and Upconversion Properties of Yb3+, Ho3+: Lu2O3 Nanocrystalline Powders. J. Am. Ceram. Soc. 2005, 88:1010~1012
    135 J. Li, J. Y. Wang, H. Tan, X. F. Cheng, F. Song, H. J. Zhang, S. R. Zhao,Growth and Optical Properties of Ho,Yb:YAl3(BO3)4 Crystal. J. Cryst. Growth 2003, 256:324~327
    136 W. Z. Wang, W. C. Qu, K. S. Yang, Y. Li, G. H. He, Up-Conversion Properties of Oxy-Fluoride Glasses Codoped with Ho3+ and Yb3+. J. Rare Earths 2006, 24:187~190
    137张向华,刘政威,肖思国,氟化物中Yb3+对Ho3+,Tm3+的直接敏化上转换用.光谱学与光谱分析2005, 5:660~664
    138 J. H. Jean, S. M. Yang, Y2O2S:Eu Red Phosphor Powders Coated with Silica. J. Am. Ceram. Soc. 2000, 83(8): 1928~1934
    139姚疆,孙聆东,稀土纳米复合氧化物RE2O3:Eu,RE=Y,Gd的制备及特性.中国稀土学报2001, 19:426~429
    140 C. Liu, J. Heo, Generation of White Light from Oxy-Fluoride Nano-Glass Doped with Ho3+, Tm3+ and Yb3+. Mater. Lett. 2007, 61:3751~3754
    141 M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, M. P. Hehlen, Power Dependence of Upconversion Luminescence in Lanthanide and Transition-Metal-Ion Systems. Phys. Rev. B 2000, 61:3337~3346
    142 L. Q. An, J. Zhang, M. Liu, S. W. Wang, Upconversion Luminescence of Tm3+ and Yb3+ Codoped Lutetium Oxide Nanopowders. J. Alloy. Compd. 2008, 451:538~541
    143 G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, F. P. Wang, Bright White Upconversion Luminescence in Rare-Earth-Ion-Doped Y2O3 Nanocrystals. Appl. Phys. Lett. 2007, 91:133103
    144 X. Chen, Y. Wang, Z. Song, N. Sawanobori, M. Ohtsuka, Multiphoton Ultraviolet and Visible Upconversion Luminescence of Tm3+Yb3+ Codoped Oxyfluoride Glass. Opt. Commun. 2007, 277:335~341
    145 F. Guell, R. Sole, J. Gavalda, M. Aguilo, M. Galan, F. Diaz, J. Massons, Upconversion Luminescence of Tm3+ Sensitized by Yb3+ Ions in Monoclinic KGd(WO4)2 Single Crystals. Opt. Mater. 2007, 30:222~226
    146 W. W. Xu, X. D. Xu, F. Wu, G. J. Zhao, Z. W. Zhao, G. Q. Zhou, J. Xu, Infrared to Visible Upconversion Fluorescence in Yb,Tm:YAG Single Crystal. Opt. Commun. 2007, 272:182~185
    147 X. L. Zou, H. Toratani, Dynamics and Mechanisms of Upconversion Processes in Yb3+ Sensitized Tm3+-Doped and Ho3+-DopedFluorozircoaluminate Glasses. J. Non-Cryst. Solids 1995, 181:87~99
    148 F. Pandozzi, F. Vetrone, J. C. Boyer, R. Naccache, J. A. Capobianco, A. Speghini, M. Bettinelli, A Spectroscopic Analysis of Blue and Ultraviolet Upconverted Emissions from Gd3Ga5O12:Tm3+, Yb3+ Nanocrystals. J. Phys. Chem. B 2005, 109:17400~17405

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700