化学方法制备的稀磁半导体的结构和磁性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于自旋相关现象的发现及其许多极具潜力的实用性,自旋电子学的研究在全世界得到了广泛开展。其中磁性半导体被认为是下一代利用电子的自旋自由度制造微电子元件的主要材料,有很好的应用前景。
     近年来很多研究小组都制备出具有室温铁磁性的稀磁半导体,但稀磁半导体的铁磁性起源尚有很大争议。磁性来源的理论也主要分为两大部分:一种是由载流子诱导的铁磁交换耦合,如RKKY交换作用。另一种认为与样品中的缺陷有关,具有代表性的是束缚极化子(BMP)模型。
     在本文中,我们系统地研究了Co-SnO_2薄膜和粉末,Tb-In_2O_3薄膜和Co-ZnO纳米棒阵列的微结构、光学性质、电性和磁性,得到的主要结果如下:
     1.溶胶-凝胶法制备的Co-SnO_2粉末和薄膜样品
     (1)在Co-SnO_2粉末和薄膜样品中,均得到了纯的金红石矿结构。并且随着Co掺杂量增加,样品的晶粒尺度减小,说明Co~(2+)的掺杂抑制了晶粒的生长。
     (2)高分辨电镜观察显示:样品的晶格规则且没有扭曲或变形,其选区电子衍射(SAED)表明样品为金红石相的SnO_2,且没有杂相。X射线光电子谱研究表明Co元素的价态为2+。由此得出Co~(2+)进入了SnO_2晶格中。
     (3)得到了具有室温铁磁性的Co-SnO_2粉末和薄膜样品,核磁共振(NMR)研究表明样品的磁性为内禀的。在不同Co掺杂量的样品中,每Co磁矩随掺杂量的增加而减小。对这种现象的解释是:随着Co掺杂量的增加,Co离子之间的距离减小,Co离子之间通过氧离子发生反铁磁超交换作用,导致了每Co磁矩的减小。
     (4)用Sn_(1-x)Co_xO_2溶胶旋涂在Si (111)和Si(非晶)衬底上制备成薄膜样品。研究表明,Si (111)衬底上的样品结晶明显好于Si(非晶)衬底上的,而磁性也明显强于Si(非晶)衬底上的,说明磁性与结晶好坏密切相关。
     (5)由于化学法镀膜样品的电阻很大,磁性起源不能用载流子诱导的交换作用模型,而需用BMP模型来解释。为了求证BMP模型是否适用于Co-SnO_2的系统,首先将样品在氧化环境下进行退火,磁性消失。随后将样品在真空环境下进行退火,磁性又重现。这个结果证明了氧空位对Co_xSn_(1-x)O_2系统的铁磁性有着重要的影响,证实了BMP模型适用于Co_xSn_(1-x)O_2薄膜系统。
     2.溶胶—凝胶法制备稀磁半导体(In_(1-x-y)Tb_xSn_y)_2O_3薄膜
     (1)不同掺杂量的(In_(0.9-x)Tb_xSn_(0.1))_2O_3和(In_(0.99-y)Tb_(0.01)Sn_y)_2O_3薄膜样品均为纯的立方结构。
     (2)磁性研究表明:对于不同Tb掺杂量的样品,随Tb掺杂量的增加,样品的每Tb磁矩先增加。当掺杂量为1%时,磁矩最大,为8.2μ_B/Tb。之后样品的磁矩随着Tb掺杂量的增加而减小。电性研究表明:随着Tb掺杂量的增加,样品的电导率先增大后减小,这个趋势和磁矩与Tb掺杂量的关系相同,说明样品的磁矩和它的电导率有关。
     (3)对于不同Sn掺杂量的样品,随Sn掺杂量的增加,样品的每Tb磁矩先增加后减小。样品的电导率与Sn掺杂量的关系和每Tb磁矩与Sn掺杂量的关系趋势一致。由于电导率正比于载流子浓度,说明样品的磁矩和载流子的浓度有关。因此,该系统中磁性的来源可用载流子诱导的交换作用(RKKY)来解释。
     3.水热法制备稀磁半导体Zn_(1-x)Co_xO纳米棒阵列
     (1)在Si衬底上成功的制备出了ZnO和Zn_(1-x)Co_xO纳米线阵列,所有的纳米线都垂直于衬底。随着反应时间和Zn~(2+)离子在溶液中浓度的增加,纳米棒的直径和长度随之增大。纳米棒的直径为50~250nm,长度为100nm~3μm。
     (2) ZnO和Zn_(1-x)Co_xO都具有纤锌矿结构,并且都有很好的优化取向。Zn_(0.8)Co_(0.2)O纳米棒阵列具有室温铁磁性。
     (3) ZnO, ZnO_(0.9)Co_(0.1)O和ZnO_(0.8)Co_(0.2)O纳米棒的发光光谱在391nm处显示出强的带隙发光,并在613nm处显示出明显的强的红色发光峰。掺杂后,Co-ZnO纳米棒的红色发光峰的强度减弱,可能由掺杂减小了间隙氧的数量所致。该峰在文献中少有报道。
Spintronics have been studied extensively all over the world because of theprogress in spin related phenomena and their potential usage in the electronic devices.Diluted magnetic semiconductors (DMSs) have been considered as the main materialsto make the electronic devices by using spin degrees of freedom and hence arepromising application.
     In recent years,DMSs with room temperature ferromagnetism (RTFM) have beenreported by many research groups.However,the origin of the RTFM has not beentotally understood and remains controversial.There are two theories to explain theorigin of the ferromagnetism:one is carrier-mediated mechanism such as RKKY(Ruderman- Kittel- Kasuya- Yosida)type exchange;another is the bound magneticpolaron (BMP) model which is related to the defects in the samples.
     In this thesis,the microstructure,electric properties,magnetic properties andoptical properties of Co-SnO_2 powders and films,Co-ZnO nanorod arrays andTb-In_2O_3 films were investigated.The main conclusions are as following:
     1.For Co_xSn_(1-x)O_2 powder and film samples made by sol-gel method:
     (1) All the CoxSn_(1-x)O_2 powder (x=0.026~0.08) and film (x=0.046~0.27)samples have pure rutile type (tetragonal) phase,and the dopant does not changethe tetragonal structure of SnO_2.As Co content increases,the decrease in thecrystallite size of the samples decrease.This result implies that cobalt dopantsuppressed the growth of the crystal.
     (2) High-resolution transmission electron microscope (HRTEM) results shows thatthere is no distortion in the lattice fringes,which indicates that Co atoms do notenter Sn interstices but substitute Sn~(4+) in SnO_2 lattice.The selected-area electrondiffraction (SAED) pattern exhibits that the samples have pure rutile phase.
     (3) The powder and film samples exhibit room temperature ferromagnetism.Otherwise,the magnetic moment drops rapidly with the increase of Co content inpowder and film samples.One possible explanation is that with the increasingdopant,some antiferromagnetic super-exchange interaction takes place within theneighbour Co~(2+) ions through O-ions(i.e.Co~(2+)-O~(2-)Co~(2+) super-exchange),which leads to the reduce of the average moment per Co~(2+) ion.
     (4) For the film samples,the crystal structure of the films on the Si (111) substrate isbetter than the films on the Si (amorphous) substrate.On the other hand,per Comoment of the films on the Si (111) substrate is stronger than that on the Si(amorphous) substrate.We can draw a conclusion that larger moment could beacquired from those samples having better crystal structure.
     (5) Because the resistivity is larger in our sample,the carrier-mediated model couldnot be used to explain the origin of the ferromagnetism.The BMP model wasused to explain the ferromagnetism.In order to test the validity of this model onour samples,annealing of the film samples were undertaken to study thedependence of ferromagnetism on oxygen vacancies.At first,the as-preparedsample was annealed in an oxidizing atmosphere,the ferromagnetism of the filmdisappeared.Following this the sample was annealed in a vacuum purging,theferromagnetism recurred.The above results confirm that the oxygen vacanciesplay a crucial role in producing ferromagnetism in Sn_(1-x)Co_xO_2 films.
     2.For (In_(1-x-y_Tb_xSn_y)_2O_3 films made by sol-gel method
     (1) Different Tb doped (In_(0.9-x)Tb_xSn_(0.1))_2O_3 (x=0.005~0.12) films and different Sndopant (In_(0.99-y)Tb_(0.01)Sn_y)_2O_3 (y=0.06~0.15) film all have pure cubic bixbyitestructure.
     (2) For the different Tb doped (In_(0.9-x)Tb_xSn_(0.1))_2O_3 films,with the increasing Tbcontent,the per Tb moment first increases.When the x=0.01,the moment islargerest (8.2μ_B/Tb).Next,the moment decreases while the Tb moment x>0.01.The relationship between the conductivity and Tb content is similar to thetendency of the magnetic moments (Ms) variation of the films.
     (3) The most interesting result here is that a trace amount of additional Sn doping canenhance Ms of the (In_(0.99-y)Tb_(0.01)Sn_y)_2O_3 film with y from 0.06 to 0.1.Then the Msdecreases as the Sn content further increase to 0.15.The magnetic behavior of thesamples closely resembles the electrical behavior.The above results confirm that the carriers play a crucial role in the ferromagnetism of Tb-doped ITO films.Thereby,the carrier-mediated model (RKKY) works in Tb-doped ITO system.
     3.For Zn_(1-x)Co_xO nanorod arrays fabricated by hydrothermal method
     (1)The pure ZnO and Zn_(1-x)Co_xO nanorod arrays were prepared successfully on the Sisubstrate.All the nanorods all the nanorods grow vertically to the substrate plane.And the pure ZnO and Zn_(1-x)Co_xO nanorod arrays have wurtzite structure.Inaddition,the Zn_(0.8)Co_(0.2)O nanorods arrays show room temperature ferromagnetism.
     (2) The room temperature photoluminescence spectra (λex=325nm) for pure ZnO,ZnO_(0.9)Co_(0.1)O and ZnO_(0.8)Co_(0.2)O nanorods exhibit strong near band edge UVemission peaks centered at 391 nm,and noticeably,broad strong red emissionscentered at about 613 nm.Compared with the spectrum of pure ZnO,the redemission peak intensities decrease in ZnO_(0.9)Co_(0.1)O and ZnO_(0.8)Co_(0.2)O nanorods,apossibility for this behavior is that the dopants reduce the quantity of interstitialoxygen defects.
引文
[1]闫发旺,梁春广,《半导体情报》,Vol.38, 6 (2001).
    [2]F.Matsukura, H.Ohno, A.Shen, Y.Sugawara, Phys.Rev.B.57, 82037 (1998).
    [3]H.Ohno, A.Shen, F.Matsukura, A.Oiwa, A.Endo, S.Katsumoto, Y.Iye,Appl.Phys.Lett.69, 363 (1996).
    [4]R.Shioda, K.Ando, T.Hayashi, M.Tanaka, Phys.Rev.B.58, 1100 (1998).
    [5]Y.Satoh, N.moue, Y.Nishikawa, J.Yoshino, in: H.Ohno, J.Yoshino, Y.Oka (Eds.), Proceedings of the Third Symposium on Physics and Applications of Spin-Related Phenomena in Semiconductors, Sendai, Japan, p.23 (1997).
    [6]T.Hayashi, M.Tanaka, T.Nishinaga, H.Shimoda, H.Tsuchiya, Y.Otsuka, J.Cryst.Growth.175, 1063 (1997).
    [7]A.Van Esch, L.Van Bockstal, J.de Boeck, G.Verbanck, A.S.vas Steenbergen,R..J.Wellman, G.Grietens, R.Bogaerts, F.Herlach, G.Borghs, Phys.Rev.B 56,13103 (1997).
    [8]B.Beschoten, P.A.Crowell, I.Malajovich, D.D.Awschalom, F.Matsukura, A.Shen, H.Ohno, Phys.Rev.Lett.83, 3073 (1999).
    [9]M.Tanaka, J.Vac.Sci.Technol.B.16, 2267 (1998).
    [10]Y.Nagai, T.Kurimoto, K.Nagasaka, H.Nojiri, M.Motokawa, F.Matsukura,T.Died, H.Ohno, Jpn.J.Appl.Phys.40, 6231 (2001).
    [11] J.H. Ohno, Jpn. J. Appl. Phys.40, 6231 (2001). Sadowski, R. Mathieu, P. Svedlindh, J.Z.Domagala, J. Bak-Misiuk, J.Sodervall, Appl. Phys. Lett.Swiatek,M. Karlsteen, J. Kanski, L. Ilver,H. Asklund, 78, 3271 (2001).
    [12] H. Munekata, H. Ohno, S. von Molnar, A. Segmuller, L.L. Chang, L. Esaki, Phys.Rev. Lett. 63, 1849 (1989).
    [13] K.J. Akai, Phys. Rev. Lett. 81, 3002 (1998).
    [14] H. Ohno, H. Munekata, T. Penney, S. von Molnar, L. L Chang, Phys. Rev. Lett. 68,2864(1992).
    [15] H. Munekata, A. Zaslevsky, P. Fumagalli, R.J. Gambino, Appl. Phys. Lett. 63, 2929(1993).
    [16) S. Koshihara, A. Oiwa, M. Hirasawa, S. Katsumoto, Y Iye, C. Urano, H. Takagi, H. Munekata, Phys. Rev. Lett. 78, 4617 (1997).
    [17] Y.L. Soo, S.W. Huang, Z.H. Ming, YH. Kao, H. Munekata, Phys. Rev. B 53, 4905(1996).
    
    [18] A. Oiwa, T. Slupinski, H. Munekata, Appl. Phys. Lett. 78, 518 (2001).
    [19] Y. Nishikawa, A. Tackeuchi, M. Yamaguchi, S. Muto, O. Wada, IEEE J. Sel.Top. Quant. Electron. 2, 661 (1996).
    [20] I. Litvinov, V K. Dugaev, Ferromagnetism in magneticly doped Ⅲ-Ⅴ semiconductors, Phys. Rev. Lett. 86, 5593-5597 (2001).
    [21] C. Zener, Interaction between the d shells in the transition metals, Phys. Rev. 81, 440-446(1951).
    [22] P W. Anderson, Generalizations of the Weiss Molecular Field Theory of Antiferromagnetism, Phys. Rev. 79, 705-710 (1950).
    [23] P. W. Anderson, Antiferromagnetism Theory of Superexchange Interaction, Phys. Rev. 79, 350-356(1950).
    [24] M. Ruderman, C. Kittel, Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons, Phys. Rev. 96, 99-102(1954).
    [25] T. Ogawa, M. Shirai, N. Suzuki, I. Kitagawa, First-principles calculations of electronic structures of diluted magnetic semiconductors (Ga,Mn)As, J. Magn. Magn. Mater. 196-197, 428-429 (1999).
    [26]A.Krol, Y L.Soo, S.Huang, Z.H.Ming, Y H.Kao, H.Munekata, L.L.Chang, Local structure about Mn atoms in Ini_xMnxAs diluted magnetic semiconductors,Phys.Rev.B.47, 7187-7197 (1993).
    [27]S.L.King, J.GE Gardeniers, I.W.Boyd, Pulsed-laser deposited ZnO for device applications, Appl.Surf.Sci.96-98, 811-818(1996).
    [28]Shapira.Y, Reed.T.B, Resistivity and Hall effect of EuO in fields up to 140kOe.Phys.Rev B.5 (12), 4877-4890 (1972).
    [29]K.Ueda, H.Tabata, and T.Kawai, Spin polarized tunneling in ferromagnet/insulator/ ferromagnet junction.Appl.Phys.Lett.79, 988 (2001)
    [30]J.M.D.Coey, M.Venkatesan and C.B.Fitzgerald, Nature Materials, 4, 173 (2005)
    [31]刘学超,陈之战,施尔畏,无机材料学报,24, 1000-324x(2009)
    [32]H.J.Meng, D.L.Hou, L.Y.Jia, J.Appl.Phys.102, 073905 (2007)
    [33]Ge Shi-Hui, Wang Xin-Wei, Kou Xiao-Ming, Chinese Phys.Lett.22, 1772(2005)
    [34]M.E.Amrani, J.P.Lascaray, J.Diouri, Fundamental absorption of Cd_(1-x)Mn_xTe crystals, Solid State Commun.45,351-353 (1983).
    [35]J.Diouri, J.P.Lascaray, M.El Amrani, Effect of the magnetic order on the optical-absorption edge in Cd,_xMnxTe, Phys.Rev.B.31, 7995-7999 (1985).
    [36]D.U.Bartholomew, J.K.Furdyna, A.K.Ramdas, Interband Faraday rotation in diluted magnetic semiconductors: Zni xMnxTe and Cdi xMnxTe.Phys.Rev.B.34, 6943-6950 (1986).
    [37]O.Eunsoon, D.U.Bartholmew, A.K.Ramdas, J.K.Furdyna, U.Debska, Interband Faraday effect in Cd,_xMnxSe.Phys.Rev.B.38, 13183-13190 (1988).
    [38]T.Wojtowicz, T.Dietl, M.Sawicki, W.Plesiewicz, J.Jaroszynski,Metal-Insulator Transition in Semimagnetic Semiconductors.Phys.Rev.Lett.56,2419-2422 (1986).
    [39]D.J.Chadi, R.S.Bauer, R.H.Williams,G, V Hansson, R.Z.Bachrach, J.C.Mikkelsen, Jr., F.Houzay, Cx M.Guichard, R.Pinchaux, Y P6troff, Atomic and electronic structure of the 7×7 reconstructed Si(111)surface, Phys.Rev.Lett.44, 799-802(1980).
    [40] Y Shapira, N. F Oliveira, Jr., D. H. Ridgley, R. Kershaw, K. Dwight, A. Wold, Magnetoresistance and Hall effect near the metal-insulator transition of Cd_(1-x) Mn_x Se. Phys. Rev. B. 34, 4187-4198 (1986).
    [41] Y Shapira, N. F. Oliveira, Jr., P. Becla, T. Q. Vu, Phys. Rev. B. 41, 5931(1990).
    [1]Geffcken W, Berger E, Dtsch Rei Chspatent.Jeanaer Galswerk Sohool and Gen.Jean.GDR.736, 411(1939)
    [2]Dilich Angew.Chem Int Ed Engl.10(6), 363 (1971)
    [3]Zar Zycki J.Journal of Crystalline Solids.48,105 (1982)
    [4]Yoldas B E.J.Mater.Sci.10, 1856~1860 (1975)
    [5]Partlow D E,Yoldas B E.J.Non-Crystalline Solids.46,153~161 (1981)
    [6]Livage J.J.Solid State Chem.64, 322~330 (1986)
    [7]Burggraaf A J.Cot L.Fundamentals of Inorganic Membrane Science and Technology.Elsevier Science B.V.1996
    [8]ASTM F316,Test method for pore size characteristics of membrane filter for use in aerospace fluids, Annual Bool of ASTM Standards, Vol.11.01
    [9]Bhave R R.Inorganic membranes, synthesis, characteristics and applications.NewYork: Van Nostrand Reinhold.
    [10]Radu R P, Cristian B, Tudor S.Synthesis of nanometric zirconia powders by hydrothermal reactions of Zr(W)peroxide precursors[J].Int .J of mat And Product Tech.15(3-5), 252-259 (2000),.
    [11]Piticescu R R, Monty C, Taloi D.Hydrothermal synthesis of zirconia nanomaterials[J].J.of the Euro.Ceram.Soc.21, 2057-2060 (2001).
    [12]张克从,张乐惠,晶体生长科学与技术,上册,北京:科学出版社.1997,253-271
    [13]Richard E.Riman, Wokciech L.Suchanek, and Malgorzata M.Lencka.Hydrothermalcrystallization of ceramics.Ann.Chim.Sci.Mat.27 (6), 15-36(2002).
    [14]施尔畏,夏长泰,王步国等,水热法的应用与发展,无机材料学报.11 (2),193-206(1996).
    [15]李汉军,施尔畏,仲维卓,殷之文.负离子配位多面体生长基元的理论模型与晶粒形貌.人工晶体学报.28(2), 117-125 (1999).
    [16]李汉军,施尔畏,田明原,王步国,仲维卓.水热法制备氧化锌纤维及纳米粉体.中国科学(E辑).28(3), 212-219 (1998).
    [17]李汉军,施而畏,殷之文.晶体的生长习性与配位多面体的形态.人工晶体学报.28(4),368-372(1999).
    [18]刘大星.国内外钻的生产消费与技术进展.有色冶炼.20 ( 5 ), 4-9 (2000).
    [19]Stephen Mann, Fiona C.Meldrum.Controlledsynthesis of inorganic materials using supramolecular assemblies.Advanced Materials.3(6), 316-318(1991).
    [20]Stephen Mann.Molecular recognition in biomineralization.Nature.332,119-124(1988).
    [21]A.H Heuer, D.J Fink, VJ Larain.Innovative materials processing strategies biomimeticapproach.Science.255(5048),1098-1102(1992).
    [22]Samuel.L, Stupp.P Braun.V Molecular Manipulation of Microstructure.Biomaterials Ceramics and Semiconductor.Science.277, 1242-1248(1997).
    [23]Ivan Sondi, Egon Matijevie.Homogeneous Precipitation of Calcium Carbonates byEnzyme Catalyzed Reaction.Journal of Colloid and Interface Science.238(1):208-214(2001).
    [24]杨林,丁唯嘉,安英格,蒋凯,张秀英.以葡聚糖为模板控制合成文石型碳 酸钙.高等学校化学学报.25(8 ),1403-1406(2004).
    [25]李树棠,晶体X射线衍射学基础,冶金工业出版社,1990。
    [26]张建中,杨传铮,晶体的射线衍射基础,南京大学出版社,1992。
    [27]赵家政,徐洮,《分析电子显微实用手册》,宁夏人民教育出版社,1996。
    [28]李培森,《物性测量原理与测试分析方法》,兰州大学出版社,1994。
    [1].T.Dietl, H.Ohno, F.Matsukura, J.Cibert, and D.Ferrand, “Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors,” science.287, 1019-1022.(2000).
    [2].Y.Matsumoto, M.Murakami, T.Shono, T.Hasegawa, T.Fukumura, M.Kawasaki, P.Ahmet,T.Chikyow, and H.Koinuma, “Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide,” science, 291, 854-856, (2001).
    [3].W.K.Park, R.J.Ortega-Hertogs, J.S.Moodera, A.Punnoose, and M.S.Seehra,“Semiconducting and ferromagnetic behavior of sputtered Co-doped TiO_2 thin films above room temperature,” J.Appl.Phys.91, 8093-8095, (2002).
    [4].Zhenjun Wang, Wendong Wang, Jinke Tang, Le Dung, Leonard Spinu, and Weilie Zhou,“Ferromagnetism and transport properties of Fe-doped reduced-rutile TiO2 thin films,” J.Appl.Phys.93, 7870-7872, (2003).
    [5].K.Ueda, H.Tabata, and T.Kawai, “Magnetic and electric properties of transition-metal-doped ZnO films,”Appl.Phys.Lett.79, 988-990, (2001).
    [6].Dana A.Schwartz, Kevin R.Kittilstved, and Daniel R.Gamelina, “Above-room-temperature ferromagnetic Ni~(2+)-doped ZnO thin films prepared from colloidal diluted magnetic semiconductor quantum dots,”Appl.Phys.Lett.85, 1395-1397, (2004).
    [7].S.B.Ogale, R.J.Choudhary, J.P.Buban, S.E.Lofland, S.R.Shinde, S.N.Kale, V.N.Kulkarni, J.Higgins, C.Lanci, J.R.Simpson, N.D.Browning, S.Das Sarma, H.D.Drew, R L.Greene, and T.Venkatesan, “High Temperature Ferromagnetism with a Giant Magnetic Moment in Transparent Co-doped SnO_2,” Phys.Rev.Lett.91, 077205, 1-4, (2003).
    [8]. J. M. D. Coey, A. P. Douvalis, C. B. Fitzgerald, and M. Venkatesan, "Ferromagnetism in Fe-doped SnO_2 thin films," Appl. Phys. Lett. 84, 1332-1334, (2004).
    [9]. D. H. Kim, J. S. Yang, K. W. Lee, S. D. Bu, T. W. Noh, S. -J. Oh, Y. -W. Kim, J. -S. Chung, H. Tanaka, H. Y. Lee, and T. Kawai, "Formation of Co nanoclusters in epitaxial Ti_(0.96)Co_(0.04)O_2 thin films and their ferromagnetism,"Appl. Phys. Lett.81, 2421-2423, (2002).
    [10]. S. A. Chambers, T. Droubay, C. M. Wang, A. S. Lea, R. F. C. Farow, L. Folks, V. Deline, and S. Anders, "Clusters and magnetism in epitaxial Co-doped TiO_2 anatase," Appl. Phys. Lett. 82, 1257-1259,(2003).
    [11]. H. Iida, N. Shiba, T. Mishuku, A. Ito, H. Karasawa, M. Yamanaka, and Y. Hayashi, "High efficiency a-Si:H p-i-n solar cell using a SnO_2/glass substrate" IEEE Electron Device Lett. 3, 114-115,(1982).
    [12]. Y. Wang, X. Jiang, Y. Xia, "A Solution-Phase, Precursor Route to Polycrystalline SnO_2 Nanowires That Can Be Used for Gas Sensing under Ambient Conditions," J. Am. Chem. Soc.125, 16176-16177, (2003).
    [13]. S. Semancik and R. E. Cavicchi, Thin Solid Films, "The growth of thin film, epitaxial SnO2 films for gas sending applications," 206, 81-87, (1991).
    [14]. (?)etin Kih(?) and Alex Zunger, "Origins of Coexistence of Conductivity and Transparency in SnO_2," Phys. Rev. Lett., vol. 88, pp, 095501-1-095501-4 (2002).
    [15]. L. Yan, J. S. Pan and C.K. Ong, "XPS studies of room temperature magnetic Co-doped SnO_2 deposited on Si," Materials Science and Engineering: B, 128, 34-36, (2006).
    [16]. A. Punnoose, J. Hays, V. Gopal and V. Shutthanandan, "Room-temperature ferromagnetism in chemically synthesized Sn_(1-x)Co_xO_2 powders," Appl. Phys. Lett, 85, 1559-1561, (2004).
    [17]. J. Hays, A. Punnoose, R. Baldner, M. H. Engelhard, J. Peloquin and K. M. Reddy, "Relationship between the structural and magnetic properties of Co-doped SnO_2 nanoparticles," Phys. Rev. B. 72. 075203, 1-7, (2005).
    [18]. J. Daniel Bryan, Steve M. Heald, Scott A. Chambers, and Daniel R. Gamelin, "Strong Room-Temperature Ferromagnetism in Co" -Doped TiO_2 Made from Colloidal Nanocrystals," J. Am. Chem. Soc. 126, 11640-11647, (2004).
    [19]. Paul I. Archer and Daniel R. Gamelin, "Controlled grain-boundary defect formation and its role in the high-7; ferromagnetism of Ni~(2+):SnO_2," J. Appl. Phys, 99, 08M107-3, (2006).
    [1].T.Dietl, H.Ohno, F.Matsukura, J.Cibert, and D.Ferrand, science.287, 1019 (2000).
    [2].Y.Matsumoto, M.Murakami, T.Shono, T.Hasegawa, T.Fukumura, M.Kawasaki,P.Ahmet, T.Chikyow, and H.Koinuma, science.291,854 (2001).
    [3].W.K.Park, R.J.Ortega-Hertogs, J.S.Moodera, A.Punnoose, and M.S.Seehra,J.Appl.Phys.91,8093 (2002).
    [4].Zhenjun Wang, Wendong Wang, Jinke Tang, Le Dung, Leonard Spinu, and Weilie Zhou, J.Appl.Phys.83, 518 (2003).
    [5].K.Ueda, H.Tabata, and T.Kawai, Appl.Phys.Lett.79, 988 (2001).
    [6].Dana A.Schwartz, Kevin R.Kittilstved, and Daniel R.Gamelina, Appl.Phys.Lett.85, 1395 (2004).
    [7].S.B.Ogale, R.J.Choudhary, J.P.Buban, S.E.Lofland, S.R.Shinde, S.N.Kale,V.N.Kulkarni, J.Higgins, C.Lanci, J.R.Simpson, N.D.Browning, S.Das Sarma, H.D.Drew, R.L.Greene, and T.Venkatesan.Phys.Rev.Lett.91,077205 (2003).
    [8].J.M.D.Coey, A.P.Douvalis, C.B.Fitzgerald, and M.Venkatesan.Appl.Phys.Lett.84, 1332 (2004).
    [9].Gerrmanas Peleckis, Xiaolin Wang, and Shi Xue Dou, Appl.Phys.Lett.89, 22501,(2006).
    [10].J.Philip, N.Theodoropoulou, G.Berera, and J.S.Moodera, Appl.Phys.Lett.85,777, (2004).
    [11].N.H.Hong, J.Sakai, N.T.Huong, and V.Briz(?), J.Magn.Magn.Mater.302,228, (2006).
    [12].Y.K.Yoo et a.,Appl.Phys.Lett.86, 042506, (2005).
    [13].J.Philip, A.Punnoose, B.I.Kim, K.M.Reddy, S.Layne, J.O.Holmes, B.Satpati, P.R.Leclair, T.S.Santos and J.S.Moodera, Nat.Mater.5, 298, (2006).
    [14]. N. H. Hong, J. Sakai, N. T. Huong, and V. Brize, Appl. Phys. Lett. 87, 102505,(2005).
    [15]. S. Dhar, O. Brandt, M. Ramsteiner, V. F. Sapega, and K. H. Ploog, Phys. Rev. Lett. 94,037205 (2005).
    
    [16]. Gustavo M. Dalpian and Su-Huai Wei, Phys. Rev. B. 72,115201, (2005).
    [17]. K. Potzger,Shengqiang Zhou, F. Eichhorn, M. Helm, W. Skorupa, A. Mücklich, and J. Fassbender, J. Appl. Phys. 99, 063906, (2006).
    [1]Ya.Alivov, C.Liu, A.Teke, et al.A comprehensive review of ZnO materials and devices [J].JAppl Phys.98, 041301(2005),.
    [2]D.P.Norton, Y.W.Heo, M.P.工vill, et al.ZnO:growth, doping&processing[J]. Mater Today. 7, 34-40 (2004).
    [3] M. H. Huang, S. Mao, H. Feick, et al. Room-temperature ultraviolet nanowire nanolasers [J]. Science. 292,1897-1899 (2001).
    [4] Y. W. Zhu, H. Z. Zhang, X. C. Sun, et al. Efficient field emission from ZnO nanoneedle arrays [J].Appl Phys Lett. 83,144-146 (2003).
    [5] Z. W. Pan, Z. R. Dai, and Z. L. Wang, Nanobelts of semiconducting oxides [J].Science. 291,1947-1949 (2001).
    [6] X. Y. Kong, Y. Ding, R. Yang, and Z. L. Wang, Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts [J]. Science. 303,1348-1351(2004).
    [7] Z. L. Wang, Nanostructures of zinc oxide [J]. Mater Today. 7, 26-33 (2004).
    [8] Ha. Yan, R. He, J. Johnson, et al. Dendritic nanowire ultraviolet laser array [J]. J Am Chem Soc. 125,4728-4729 (2003).
    [9] J. Y. Lao, J. Y. Huang, D. Z. Wang, et al. ZnO Nanobridges and Nanonails, [J]. Nano Lett. 3, 235-238 (2003).
    [10] H. T. Ng, J. Li, M. K. Smith, et al. Growth of epitaxial nano wires at thejunctions of nanowalls, [J]. Science. 300,1249 (2003).
    [11] Q Ahsanulhaq, A Umar and Y B Hahn,Nanotechnology. 18,115603 (2007).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700