华南二叠—三叠之交的长英质火山作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
详细了解地球历史上的生物绝灭事件的过程、原因与机制对人类现在与未来的生存发展具有重要的意义。二叠纪末期的全球生物大绝灭是显生宙以来地球上最为严重的生物集群绝灭事件,大约有90%的海洋生物和70%的无脊椎动物在该次事件中消失。目前虽然已经有大量相关成果发表,但对这次绝灭的幕次、等时性、机制等还存在很大的争议,而这些争议的根本在于对绝灭产生的原因还不太清楚。越来越多的证据显示火山作用是引起这次生物集群绝灭最可能的原因,虽然其他的因素,如海平面变化,海洋缺氧,地外行星撞击,甲烷及其水合物释放等,还没有排除。同时,对引起绝灭的火山作用的性质也存在很大的争议。同位素定年和数值模拟显示西伯利亚大火成岩省的喷发可能是引起绝灭的主要原因,然而当时汇聚大陆边缘的火山作用也非常强烈。
     二叠纪末期,华南沉积了一套海相到海陆交互相地层,连续的二叠-三叠系地层剖面广泛出露。在这些地层剖面上,发育有多层蚀变为粘土岩的火山灰层和凝灰岩层。这些火山灰-凝灰岩层虽然不能与二叠-三叠之交生物大绝灭的层位一一对应,但有些火山灰层恰好与生物绝灭层位吻合。因此,深入了解这些火山灰层和凝灰岩的性质和来源对恢复当时的火山过程和探索火山作用与生物绝灭的关系具有重要的意义。
     早在20世纪80年代,地质学家们就意识到了华南二叠-三叠界线附近火山灰层和凝灰岩的重要性,并开始对其进行研究,目前已有大量成果发表。但研究目标多集中在粘土层的火山成因和火山作用的岩石学性质上,研究方法也多以传统的矿物种类分析和全岩地球化学研究为主。近几年来,虽然有关于火山作用形成的构造环境的讨论,但存在两类完全不同的观点,一种观点基于全岩微量元素的研究,认为火山作用形成于板内环境,另一种基于锆石微量元素的研究,认为火山作用形成于与造山相关的弧环境。目前还没有关于这些火山作用物质来源的报道。
     为了清楚地认识这些火山作用,本文选择了形成于扬子北缘深水盆地的大峡口剖面、扬子南缘南盘江盆地的新民剖面和扬子中间台地(浅水)的遵义剖面进行对比研究,进一步研究相关火山灰层和凝灰岩的岩石学性质,更重要的是对火山作用形成的构造环境与物质来源进行探讨,并对关键层位蚀变凝灰岩进行对比追踪,以判断相关火山作用在二叠-三叠之交生物大绝灭中的作用。
     鉴于样品蚀变严重,本研究侧重于对蚀变凝灰岩中的稳定矿物——锆石进行U-Pb年代学、微量元素和Lu-Hf同位素研究,利用锆石微量元素来探讨火山作用的岩石学性质和形成的构造环境问题,利用锆石Hf同位素特征来讨论岩浆的物质来源问题,并结合已发表的全岩地球化学数据,综合对这些火山作用的相关问题进行解释。由于目前还没有系统的利用锆石微量元素探讨岩石学问题的方法,因此,在进行研究之前,首先要建立锆石微量元素探讨岩石学问题的方法。本文收集了约2420个来自不同构造环境、不同岩石学性质的锆石微量元素数据,结合已经发表的相关判别图解,组织了一套利用锆石微量元素判别火山岩性质的图解,如:Y-Nb/Ta图解、U-Th图解、Hf-Y图解和Y2O3-HfO2图解。同时,对判别物质来源和构造背景的锆石U/Yb-Hf、U/Yb-Y、Nb/Hf-Th/U、Hf/Th-Th/Nb图解进行了修正和多构造环境的判别,并建立了Yb/Y-Yb/Nb和Yb/Y-Hf/Yb图解。联立六个图解,综合进行岩石形成构造环境的判别,可以较好地区分形成于陆内裂谷、离散大陆边缘、岛弧环境、大陆弧环境和后碰撞环境的岩浆作用。
     大峡口剖面位于湖北省宜昌市兴山县峡口镇附近,上二叠统上部为大隆组,下三叠统为大冶组。二叠-三叠界线位于263层的底部。从C.meishanensis带至I.isarcica带共发育了10层蚀变火山灰,自下而上依次为:249、252、255、258、259-b、260、264、266、271和277层。激光拉曼分析显示:260层中含有66.7%的斜长石、7.2%的碱性长石和26.1%的石英,为英安质凝灰岩,来自钙碱性火山作用。10层火山灰中的锆石大部分具有柱状,特别是长柱状的晶形和震荡环带或均一的内部结构,指示了它们的岩浆和火山成因。岩浆锆石年龄为227-279Ma,继承或捕掳锆石年龄为673-2424Ma。为计算每层的加权平均年龄,根据206Pb/23sU年龄的分布特征,将每层的岩浆锆石分为三组:A组颗粒(≤243Ma)可能存在铅丢失过程,B组(244-259Ma)为主要年龄峰,用于加权平均年龄计算,C组(≥259Ma)为结晶较早的岩浆继承锆石。10层火山灰的加权平均年龄为249.4±1.8Ma到252.2±2.2Ma,这些值在误差范围内一致,并且与发表的煤山剖面25层的年龄在误差范围内一致。所有岩浆锆石具有类似的微量元素组成,其Y.Th.U.Hf含量和Nb/Ta比值显示这些凝灰岩具有钙碱性英安质或流纹英安质火山作用的亲属性,与260层岩石学结果一致。同时,U/Yb比值和Hf、Y含量显示大部分颗粒来源于大陆地壳物质,仅258-260层位的少量颗粒显示大洋地壳的亲属性;构造环境判别图解显示这些火山作用具有后碰撞环境的亲属性。同喷发岩浆锆石(A组和B组)的ξHf(t)值在-11.0-+5.2范围内变化,计算的二阶段模式年龄(Tcrust)为0.95-1.97Ga。岩浆继承锆石的ξHf(t)值为-8.7-+2.4,Terust为1.13-1.84Ga。岩浆锆石大的Hf同位素变化范围暗示火山作用来源于混合的物质源区。252-259-b层具有较大的ξHf(t)变化范围(-10.9-+5.2)和相对较高的平均ξHf(t)值(-5.4--2.9),暗示当时更为强烈的火山喷发和更多新生地壳物质的加入。258层具有最大的ξHf(t)值变化范围(-9.3-+5.2)、最多正的ξHf(t)值(26%)和最高的ξHf(t)平均值(-2.9),暗示了当时最为强烈的火山喷发和岩浆中最多新生地壳物质的贡献,同时也暗示了最多热量的加入。
     新民剖面位于贵州省安顺市普定县猫洞乡轿子山西南的新民村,剖面下部为大隆组,上部为罗楼组。二叠-三叠界线位于XM5-3-3层的底部。晚二叠C.zhangi-C.yini带至三叠早期,剖面上发育多达15层蚀变凝灰岩,其中11层较厚,自下而上依次为:XM1-9,XM2-4, XM2-8,XM3-1-1,XM4-1,XM4-10-1,XM5-1-1,XM5-2,XM5-4,XM5-6和XM8-11:其中下面四层位于C.zhangi-C.yini带,是大峡口剖面和遵义剖面没有的。本文对除XM1-9外的10层蚀变凝灰岩进行了研究。岩石学研究显示这些凝灰岩主要为晶屑或玻屑凝灰岩,晶屑多为浅色矿物,长石和石英,暗色矿物较少。已发表的全岩地球化学数据显示这些凝灰岩来自流纹/英安质火山岩,Rb、Nb和Y含量显示岩石来源于岛弧与板内的过渡环境,具有后碰撞环境的亲属性。锆石多为柱状晶形和震荡环带的内部结构,除两颗较老年龄(497Ma和1007Ma)外,其他谐和年龄都处于238-274Ma范围内,为岩浆锆石。与大峡口剖面类似,为计算每层的加权平均年龄,岩浆锆石分为三组,A组、B组和C组。10层凝灰岩的加权平均年龄为250.5±1.2Ma到252.9±2.1Ma,在误差范围内一致。所有岩浆锆石具有类似的Y含量、Nb/Ta、Th/Nb和Hf/Yb比值,但具有变化的Hf, Th, U等元素含量和Th/U、U/Yb等比值。与二叠-三叠界线附近(C. meishanensis带至三叠早期)的凝灰岩相比,C. zhangi-C. yini带的三层凝灰岩(XM2-4、XM2-8和XM3-1-1)中的同喷发岩浆锆石具有相对较高的Hf、Th、U含量和U/Yb、Nb/Hf比值,相对较低的Zr/Hf平均值、Th/U、Hf/Th比值;岩浆继承锆石则具有二者之间过渡的微量元素组成。Y、Th、U、Hf含量和Nb/Ta比值显示除XM4-1可能稍偏中性外,其他九层凝灰岩很可能来源于英安质/流纹质火山作用,C. zhangi-C. yini带的三层凝灰岩具有铝质/过铝质岩石的亲属性,界线附近的七层凝灰岩则倾向于钙碱性系列。U/Yb比值和Hf,Y含量显示C. zhangi-C. yini带的三层火山作用来源于大陆地壳物质,XM4-1、XM5-1-1、XM5-2和XM8-11中的部分颗粒则显示大洋地壳物质的亲属性;构造环境判别图解显示C. zhangi-C. yini带的三层火山作用具有后碰撞环境的亲属性,其他层位则处于后碰撞环境向岛弧环境的过渡处。同喷发岩浆锆石的ξHf(t)值在-12.8-+4.6范围内变化,计算的二阶段模式年龄(Tcrust)为0.98-2.08Ga。岩浆继承锆石的ξHf(t)值为-8.9-+2.1,Tcrust为1.15-1.85Ga,与大峡口剖面岩浆锆石的Hf同位素组成类似。C. zhangi-C. yini带的三层火山作用具有相对较亏损的Hf同位素组成,平均ξHf(t)值为-1.3--2.1,界线附近的七层凝灰岩则具有相对富集的Hf同位素组成,平均ξHf(t)值为-4.6--8.3。
     遵义剖面位于贵州省遵义市贵川大道西侧,主要出露上二叠统长兴组和下三叠统飞仙关组地层。二叠-三叠之间的界线暂定于ZY5-2层中部。界线附近发育有三层蚀变火山灰层,自下而上依次为:ZY4、ZY6和ZY13。三层火山灰层中的锆石多为柱状晶形和震荡环带或均一的内部结构。U-Pb定年显示,除两个颗粒为939Ma和2325Ma外,其余颗粒的年龄为241-279Ma。采用与大峡口剖面类似的策略计算每层的加权平均年龄,结果为250.2±2.4Ma到251.5±1.9Ma,在误差范围内一致。岩浆锆石具有与大峡口剖面类似的微量元素组成,显示钙碱性英安/流纹质火山作用的亲属性;U/Yb比值和Hf、Y含量显示岩浆主要来自大陆地壳物质,构造环境判别图解显示后碰撞环境的亲属性。同喷发岩浆锆石的ξHf(t)值为-11.3--1.0,岩浆继承锆石的ξHf(t)值为-8.1-+0.2。ZY4、ZY6和ZY13的平均ξHf(t)值分别为:-5.1、-6.9和-8.8,自下而上,显示越来越富集的Hf同位素组成。
     综合三个剖面的岩石学特征和锆石微量元素组成,凝灰岩和火山灰层来源于流纹/英安质火山作用,晚二叠C. zhangi-C. yini带的火山作用具有铝质/过铝质亲属性,二叠-三叠界线附近的火山作用则倾向于钙碱性系列。
     锆石和全岩的微量元素判别图解都显示这些长英质火山作用具有后碰撞环境的亲属性。然而,不同构造环境的全岩微量元素数据对比显示:这些蚀变凝灰岩具有与西伯利亚大火成岩省来源的长英质火山岩一致的微量元素特征,由于西伯利亚大火成岩省中长英质火山作用很少,加上当时距离华南很远,很容易排除华南火山灰和凝灰岩来自西伯利亚的可能性,因此,一致的微量元素特征反映了它们类似的构造环境和物质来源(西伯利亚大火成岩省的形成与弧的再活化相关,其岩浆物质为弧相关物质与地幔柱物质的混合)。同时,蚀变凝灰岩具有金沙江-哀牢山和Song Ma构造带内弧环境/后碰撞环境相关的长英质岩浆作用向地幔柱来源的峨眉山大火成岩省长英质火山岩过渡的全岩微量元素特征,暗示岩浆物质中可能有地幔柱物质的加入。考虑到蚀变凝灰岩的锆石和全岩微量元素具有与地幔柱来源的大火成岩省长英质火山作用明显不同的组成特征,结合当时华南克拉通周边的地质背景,作者解释这些长英质火山作用形成于汇聚大陆边缘岩浆弧向陆陆碰撞转换的环境或局部的后碰撞环境,与Pangea超大陆的汇聚有关;其岩浆物质中有少量地幔柱物质的加入。
     三个剖面的蚀变凝灰岩具有相似的岩浆锆石Hf同位素组成,暗示这些火山作用的岩浆来自相似的物质源区;同时,岩浆锆石大的ξHf(t)值变化范围暗示火山作用具有混合的物质来源。已发表的继承/捕掳锆石的年龄谱特征和凝灰岩的全岩微量元素特征显示这些火山作用的岩浆物质具有华南克拉通的亲属性,暗示其岩浆物质可能来自华南克拉通,为地壳物质的再循环。结合华南克拉通的地壳生长历史,以及部分凝灰岩层中岩浆锆石微量元素具有大洋地壳的亲属性,作者认为华南长英质火山作用的物质来源较为复杂,可能主要为新元古代地壳物质和太古代地壳物质的混合,同时有峨眉山地幔柱物质的加入,部分层位有少量大洋地壳物质的加入。C. zhangi-C. yini带的三层火山作用具有较亏损的Hf同位素组成,暗示岩浆中有较多新生地壳物质(新元古代和/或峨眉山新生地壳物质)的加入,它们铝质/过铝质的亲属性和锆石较高的微量元素含量可能暗示其岩浆来自中酸性地壳物质的混合,演化程度较高。二叠末期(C. meishanensis带至H. parvus带底界)具有频繁的火山活动,这些火山作用具有变化较大的锆石平均ζHf(t)值,暗示它们的岩浆来自于不同比例的新生地壳物质和古老地壳物质的混合,并且部分层位中有少量大洋地壳物质的加入。三叠早期的火山作用具有较富集的Hf同位素组成,暗示这些火山作用的岩浆主要来自古老地壳物质。
     华南二叠-三叠长英质火山作用形成的构造环境和其岩浆物质来源暗示这些火山作用的喷发地点很可能位于当时华南克拉通的东南缘至西南缘,也就是现在的金沙江-哀牢山和Song Ma造山带一线。每个剖面不同层位中的锆石颗粒大小的明显差异则暗示它们可能来自不同地点的火山喷发,因此,华南二叠-三叠之交的凝灰岩可能来自金沙江-哀牢山和SongMa造山带地区多地点、多频次的火山喷发。本文从地球化学和同位素方面为火山喷发地点的推测提供了佐证。
     生物地层和岩石地层对比显示在主绝灭层位(煤山25-26层,C. meishanensis带至界线泥灰岩层底部)内具有频繁的火山喷发(至少7次火山喷发记录)。与三叠早期火山喷发相比,这些及其下部邻近层位(煤山24层,C. zhangi-C. yini带)的火山活动具有较亏损的锆石Hf同位素组成和较大的ξHf(t)差值,暗示这些火山喷发更为强烈,释放能量也更大。这些短时间内多频次、强烈的火山爆发导致了生态环境的剧烈恶化,对海洋生物的生存造成了强烈威胁。目前还不确定它们是不是引起生物大绝灭事件的主要原因,但至少加重了生物绝灭的程度。
It has an important significance for the living of human now and in future to understand the processes, causes and mechanisms of mass extinction events in the history detailledly. The end-Permian mass extinction (EPME) is the severest mass extinction event since the Phanerozoic, about90%of marine biota and70%of invertebrate disappeared. Although there have been a lot of relative productions published, the episodes, isochronism and mechanism of this event are still in dispute. The fundamental issue of these controversies is the unclearity to the cause of the event. More and more evidences show that the volcanism might be the most likely cause of this event, although others triggers, such as sea level change, oceanic anoxia, bolide impact, methane gas hydrates, have not been excluded. At the same time, it still disputes about the charater of the volcanism. Radiometric dating and numerical modeling suggest that the eruption of the Siberian large igneous province (SLIP) might have been responsible for the EPME. However, volcanism along the convergent continental margins of the Pangea supercontinent was also very active during the EPME.
     At the end of the Permian, it deposited a suite of marine-facies to marine-terrigenous-facies stratigraphy in South China, and continuous Permian-Triassic stratigraphy sections emerge widely. On these sections, abundant volcanic ash beds which have altered to claystones and tuffs are developed. Although these ash beds and tuffs can not correspond one-to-one with the horizons of the EPME, some ash beds just coincide with the horizons of the EPME. It has an important significance for recovering the volcanic process and exploring the relationship with the EPME to deeply understand the characteristics and origins of the ash beds and tuffs.
     As far back as1980s, geologists have realized the importance of the ash beds and tuffs near the Permian-Triassic boundary (PTB), and began to research them. Now there are large quantities of productions published. However, their aims mostly focus on volcanic origin of claystones and their petrological characteristics, and researching methods are mainly traditional mineral type analyses and whole-rock geochemistry. There are some discussions about the tectonic setting of the volcanism in recent years, however, there are two totally different standpoints, one suggests the volcanism derived from intra-plate setting based on whole-rock trace elements, and the other suggests the volcanism came from arc-related setting based on zircon trace elements. There is still not the publishment about magmatic material origin of the volcanism.
     To understand the volcanism clearly, this study chose Daxiakou section in the deep-water basin at the northern margin, Xinmin section in the Nanpanjiang Basin at the southern margin and Zunyi section in the central platform of the Yangtze Block to study contrastively. The aims are to further undersdand the petrological characteristics of the volcanism, more importantly, to discuss tectonic setting and magmatic material origin of the volcanism and trace tuffs at the crucial horizon, and then infer the effect of these volcanisms in the EPME.
     Due to strong alteration of samples, the emphasis of this study was placed on the stable mineral in the altered tuffs--zircon, and zircon U-Pb chronology, trace elements and Hf-isotope compositions were analyzed. Zircon trace elements were used to discuss the petrological characteristics and tectonic settings, and Hf isotopes were used to discuss material origins of the volcanism. Because there is still not the systemic method to discuss petrological problems using zircon trace elements, it's needed to establish the method before the discussion. About2420zircon trace element data from different tectonic settings and different rock types were collected in this study. Combined with published diagrams, a suit of diagrams distinguishing volcanic rock types were collected, including Y-Nb/Ta diagram, U-Th diagram, Hf-Y diagram and Y2O3-HfO2diagram. At the same time, U/Yb-Hf, U/Yb-Y, Nb/Hf-Th/U and Hf/Th-Th/Nb diagrams, which were used to distinguish material origins and tectonic settings, were modified and used to distinguish various tectonic settings. And Yb/Y-Yb/Nb and Yb/Y-Hf/Yb diagrams were established. Combining these six diagrams, they can distinguish the volcanism deriving from intra-plate rift, divergent continental margin, island arc setting, continental arc setting and post-collision setting.
     Daxiakou section is located at Xiakou Town, Xingshan County, Yichang City, Hubei Province. Upper part of the Upper Permian stratigraphy is Tulong Formation, and Lower Triassic is Daye Formation. The PTB is at the bottom of Bed263. It develops ten altered ash beds from C. meishanensis to i. isarcica Zones. They are Beds249,252,255,258,259-b,260,264,266,271and277in an ascending order. Laser Raman analyses show that there are66.7%of plagioclase,7.2%of alkali feldspar and26.1%of quartz in Bed260, suggesting Bed260is a dacitic tuff, deriving from calc-alkaline volcanism. Most zircons from ten ash beds have prismatic, especially long prismatic outlines and oscillatory zoned or homogenous internal structures, indicating their magmatic and volcanic origin. Magmatic zircon ages are227-279Ma, and inherited/xenocrystic zircon ages are673-2424Ma. To calculate the weighted mean age of each bed, magmatic zircons were divided into three groups according to their206Pb/238U age distributions. Group A (≤243Ma) might go through lead-loss after their crystallizations, Group B (244-259Ma) are dominating age peak and used for weighted mean age calculation, and Group C (≥259Ma) are magmatic inherited zircons crystallizing before volcanic eruption. Weithted mean ages of ten ash beds vary from249.4±1.8Ma to252.2±2.2Ma, which are identical with each other in the error, and also identical with published data of Bed25on Meishan section in the error. All the magmatic zircons have similar trace-element compositions. Their Y, Th, U, Hf contents and Nb/Ta ratio show these ash beds have the affinity of calc-alkaline dacitic or rhyolitic-dacitic volcanism, consist with the petrological result of Bed260. Their U/Yb ratio and Hf, Y contents show that most grains derive from continental crust material, just few grains in Beds258-260showing the affinity of oceanic crust material. Diagrams distinguishing tectonic settings show the affinity of post-collision setting. The ζHf(t) values of syn-erupting magmatic zircons (Groups A and B) vary in the range of-11.0-+5.2with calculated two-stage model ages (Tcrust) of0.95-1.97Ga. Magmatic inherited zircons (Group C) have the ζHf(t) values of-8.7-+2.4and Tcrustages of1.13-1.84Ga. Large Hf-isotope variation of magmatic zircons suggests that the volcanism have a mixed material origin. Beds252-259-b have relatively larger variation of ζHf(t) values (-10.9-+5.2) and relatively higher mean ζHf(t) values (-5.4--2.9), suggesting then more active volcanic eruptions and more addition of juvenile crust material in the magma. Bed258has the largest variation of ζHf(t) values (-9.3-+5.2), the most positive ζHf(t) values (26%) and the highest mean ζHf(t) value (-2.9), suggesting the most active eruption and the most contribution of juvenile crust material in the magma, and also the most input of heat.
     Xinmin section is located in the Xinmin village, Maodong Town, Puding County, Anshun City, Guizhou Province. The lower part of the section is Tulong Formation, and the upper part is Luolou Formation. The PTB is designed at the bottom of Bed XM5-3-3. It develops up to fifteen beds of altered tuffs from the Late Permian C. zhangi-C. yini Zone to the earliest Triassic. Thereof, eleven beds are rather thick, which are XM1-9, XM2-4, XM2-8, XM3-1-1, XM4-1, XM4-10-1, XM5-1-1, XM5-2, XM5-4, XM5-6and XM8-11, respectively, in an ascending order. The lower four beds are in the C. zhangi-C. yini Zone and are absent on the Daxiakou and Zunyi sections. Ten tuffs except XM1-9were studied. Petrological studies indicate that these tuffs are mainly crystal or vitric tuffs, and crystal fragments are mostly light minerals, feldspar and quartz, dark minerals rather little. Published whole-rock geochemical data show that these tuffs are from rhyolitic-dacitic volcanism, and Rb, Nb and Y contents show that the volcanism derived from transitional setting from island arc to intra-plate, with the affinity of post-collision setting. Zircons are mostly prismatic and oscillatory zoned, and their concordant ages are238-274Ma except two older ages (497Ma and1007Ma), indicating they are magmatic zircons. Similar to Daxiakou section, for calculating the weighted mean ages, magmatic zircons were divided into three groups, Groups A, B and C. The weighted mean ages of ten tuffs are250.5±1.2Ma to252.9±2.1Ma, identical with each other in the error. All the magmatic zircons have similar Y content, Nb/Ta, Th/Nb, and Hf/Yb ratios, but different Hf, Th, U, et al. element contents and Th/U, U/Yb, et al. ratios. Comparing with tuffs near the PTB (C. meishanensis Zone to the earliest Triassic), the syn-erupting magmatic zircons from three tuffs (XM2-4, XM2-8and XM3-1-1) in the C. zhangi-C. yini Zone have higher Hf, Th, U contents and U/Yb and Nb/Hf ratios, and lower mean Zr/Hf, Th/U and Hf/Th ratios. Magmatic inherited zircons have transitional trace-element compositions between them. Y, Th, U, Hf contents and Nb/Ta ratio suggest that except that XM4-1might tend to intermediate volcanic rocks, other nine tuffs mostly come from dacitic or rhyolitic-dacitic volcanism. Three tuffs in the C. zhangi-C. yini Zone show the affinity of aluminous or peraluminous rocks, and seven tuffs near the PTB tend to be calc-alkaline series. The U/Yb ratio and Hf、Y contents suggest that three tuffs in the C. zhangi-C. yini Zone derive from continental crust material, and part grains from XM4-1, XM5-1-1, XM5-2and XM8-11show the affinity of oceanic crust material. Diagrams distinguishing tectonic settings show three volcanisms in the C. zhangi-C. yini Zone have the affinity of post-collision setting, and other beds show the transitional characteristic from post-collision setting to island arc setting. The ζHf(t) values of syn-erupting magmatic zircons vary in the range of-12.8-+4.6with calculated two-stage model ages (Tcrust) of0.98-2.08Ga. Magmatic inherited zircons have ζHf(t) values of-8.9-+2.1and Tcrust ages of1.15-1.85Ga, similar to Hf-isotope composition of magmatic zircons from Daxiakou section. Three volcanisms in the C. zhangi-C. yini Zone have rather depleted Hf-isotope composition with mean ζHf(t) values of-1.3--2.1, and seven volcanisms near the PTB have rather enriched Hf-isotope composition with mean ζHf(t) values of-4.6-8.3.
     Zunyi section is located in the Zunyi City, Guizhou Province. The section is composed of the Upper Permian Changxing Formation and the Lower Triassic Feixianguan Formation. The PTB is designed in the middle of Bed ZY5-2temporarily. It develops three altered ash beds near the PTB, which are ZY4, ZY6and ZY13in an ascending order. Zircons from three ash beds moslty show prismatic outlines and oscillatory zoned or homogenous internal structures. The dating results show most grains are241-279Ma except two older grains (939Ma and2325Ma). Similar strategy was used to calculate weighted mean ages, and the results are250.2±2.4Ma to251.5±1.9Ma, identical with each other in the error. Trace-element compositions of magmatic zircons are similar to those from Daxiakou section, showing the affinity of calc-alkaline dactic or rhyolitic-dacitic volcanism. U/Yb ratio and Hf、Y contents suggest that magmatic materials mainly derive from continental crust material, and diagrams distinguishing tectonic settings show the affinity of post-collision setting. The ζHf(t) values of syn-erupting magmatic zircons are-11.3--1.0, and the ζHf(t) values of magmatic inherited zircons are-8.1-+0.2. Mean ζHf(t) values of ZY4, ZY6and ZY13are-5.1,-6.9and-8.8, respectively, showing more and more enriched Hf-isotope composition from bottom to up.
     Synthesizing petrological characteristics and zircon trace-element compositions of three sections, tuffs and ash beds derive from rhyolitic-dacitic volcanism. The volcanism in the C. zhangi-C. yini Zone show aluminous or peraluminous affinity; and the volcanism near the PTB tend to be calc-alkaline series.
     Zircon and whole-rock trace-element diagrams distinguishing tectonic settings both show that these felsic volcanisms have post-collision affinity. However, whole-rock trace-element data comparison shows that the volcanism have identical trace-element characteristic with felsic volcanism from the SLIP. Because the felsic volcanism in the SLIP are very few and the Siberian Craton was very far from South China then, it's easy to exclude the possibility that the ash and tuffs in South China are from the SLIP. Thus identical trace-element characteristic suggests their similar tectonic setting and magmatic material origin (The SLIP is related with the reactivation of arc, and its magmatic material is the mixture of arc-related material and mantle-plume material). At the same time, ashes and tuffs have transitional whole-rock trace-element composition from felsic magmatism deriving from arc or post-collision setting in the Jinshajiang-Ailaoshan and Song Ma suture belts to felsic volcanism from the mantle-plume-origin Emeishan large igneous province, suggesting there are additions of mantle-plume material in the magmatic materials. Considering that ashes and tuffs have different zircon and whole-rock trace-element characters from felsic volcanism deriving from mantle-plume-origin large igneous province and Combining the geologic background around South China then, it's explained that these felsic volcanism in South China formed in the transitional setting from volcanic arc to continent-continent collision or local post-collision setting in the convergent continental margins related with the assembly of the Pangea supercontinent. There are additions of mantle-plume material in their magmas.
     Magmatic zircons of ashes and tuffs from three sections have similar Hf-isotope compositions, suggesting that the magmas of these volcanisms have similar material origins. At the same time, large variation ranges of magmatic zirconδHf(t) values suggest magmas have mixed material origins. Published age spectrum of inherited/xenocrystic zircons and whole-rock trace-element characteristics show that magma materials of these volcanisms have the affinity of South China, suggesting that their magma materials might come from the South China Craton and they are recycling of crust materials. Combining with the crust evolution history of the South China Craton and the oceanic crust-material affinity of magmatic zircon trace elements in several tuffs, it's explained that material origins of felsic volcanism in South China are complicated, might mainly mixed of Neoproterozoic and Archean crust materials with the addition of Emeishan mantle-plume material, and there are small quantities of additions of oceanic crust materials in several beds. Three volcanisms in the C. zhangi-C. yini Zone have rather depleted Hf-isotope compositions, suggesting that there are more addition of Neoproterozoic and/or Emeishan juvenile crust materials in the magmas. And their aluminous or peraluminous affinities and higher trace element contents in the magmatic zircons suggest that their magmas might be mixed of intermediate-felsic crust materials and have higher evolution degree. There were frequent volcanisms at the end of the Permian (C.meishanensis Zone to the bottom of H, parvus Zone), and these volcanisms have large variation range of mean ζHf(t) values, suggesting that their magmas come from the mixtures of juvenile and ancient crust materials with different proportions, and there are small quantities of additions of oceanic crust materials in several beds. The volcanisms in the earliest Triassic show rather enriched Hf-isotope compositions, suggesting their magmas mainly come from ancient crust materials.
     Tectonic setting of felsic volcanism near the PTB in South China and their material origins suggest the eruption sites of the volcanism were most likely located in the southeastern to southwestern margins of South China then, which is now Jinshajiang-Ailaoshan and Song Ma suture belts. Evident differences of zircon sizes from different beds in the same section suggest that they might come from volcanisms erupted in different sites. Thus, tuffs near the PTB in South China might come from multi-site and frequent volcanic eruptions along the Jinshajiang-Ailaoshan and Song Ma suture belts. This study provides geochemical and isotopic evidence for the inference of volcanic eruption sites.
     There are frequent volcanic eruptions (at least seven times) in the main extinction horizon (Beds25-26in Meishan) by biostratigraphy and lithostratigraohy comparisons. And comparing with upper beds in the earliest Triassic, these volcanisms and the volcanisms in the C. zhangi-C. yini Zone show more depleted Hf-isotope compositions and larger ζHf(t) difference-values, suggesting they are more active and intense, and might have released more energy. These frequent and intense volcanic eruptions in short time have resulted in sharp deterioration of ecological environment, and have threatened the living of biota strongly. Although it is not sure yet if these volcanisms are the main cause of the EPME, at least, they have aggravated the degree of mass extinction.
引文
[1]Raup DM, Sepkoski JJ. Mass extinction in the marine fossil record. Science.1982,215(4539): 1501-1503.
    [2]Rohde RA, Muller RA. Cycles in fossil diversity. Nature.2005,434(7030):208-210.
    [3]Raup DM. Size of the Permo-Triassic bottleneck and its evolutionary implications. Science. 1979,206(4415):217-218.
    [4]Erwin DH. The Permo-Triassic Extinction. Nature.1994,367(6460):231-236.
    [5]Erwin DH. Extinction:How life on Earth nearly ended 250 Million years ago. Place: Princeton University Press,2006.
    [6]Retallack GJ. Permian-Triassic life crisis on land. Science.1995,267(5194):77-80.
    [7]Chen ZQ, Benton MJ. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nature Geoscience.2012,5:375-383.
    [8]Sepkoski JJ. A kinetic model of Phanerozoic taxonomic diversity, III:Post-Paleozoic families and mass extinctions. Paleobiology.1984,10(2):246-267.
    [9]Van Valen LM. A resetting of Phanerozoic community evolution. Nature.1984,307:50-52.
    [10]Benton MJ. The origins of modern biodiversity on land. Philosophical Transactions of the Royal Society B-Biological Sciences.2010,365(1558):3667-3679.
    [11]殷鸿福,黄思骥,张克信等.华南二叠纪--三叠纪之交的火山活动及其对生物绝灭的影响.地质学报.1989,62(2):169-181.
    [12]Yin HF, Huang SJ, Zhang KX, et al. The effects of volcanism on the Permo-Triassic mass extingction in South China. Place:Cambridge University Press,1992.146-157.
    [13]Yin HF, Feng QL, Baud A, et al. The prelude of the end-Permian mass extinction predates a postulated bolide impact. International Journal of Earth Sciences.2007a,96(5): 903-909.
    [14]Yin HF, Feng QL, Lai XL, et al. The protracted Permo-Triassic crisis and multi-episode extinction around the Permian-Triassic boundary. Global and Planetary Change.2007b, 55(1-3):1-20.
    [15]杨遵义,吴顺宝,殷鸿福等.华南二叠-三叠纪过渡期地质事件.北京:地质出版社,1991.
    [16]Renne PR, Zhang ZC, Richards MA, et al. Synchrony and causal relations between Permian-Triassic Boundary crises and Siberian flood volcanism. Science.1995, 269(5229):1413-1416.
    [17]Kamo SL, Czamanske GK, Amelin Y, et al. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma. Earth and Planetary Science Letters.2003,214(1-2):75-91.
    [18]Mundil R, Ludwig KR, Metcalfe I, et al. Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons. Science.2004,305(5691):1760-1763.
    [19]Isozaki Y. Plume winter scenario for biospheric catastrophe:the Permo-Triassic boundary case, in:eds Yuen DA, Maruyama, S., Karato, S.I., Windley, B.F. Superplumes:Beyond Plate Tectonics Vol.409-440 Springer,2007.
    [20]Isozaki Y. Integrated "plume winter" scenario for the double-phased extinction during the Paleozoic-Mesozoic transition:The G-LB and P-TB events from a Panthalassan perspective. Journal of Asian Earth Sciences.2009,36(6):459-480.
    [21]Isozaki Y, Shimizu N, Yao J, et al. End-Permian extinction and volcanism-induced environmental stress:The Permian-Triassic boundary interval of lower-slope facies at Chaotian, South China. Palaeogeography Palaeoclimatology Palaeoecology.2007, 252(1-2):218-238.
    [22]Payne JL, Kump LR. Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations. Earth and Planetary Science Letters.2007,256(1-2):264-277.
    [23]Xie SC, Pancost RD, Huang JH, et al. Changes in the global carbon cycle occurred as two episodes during the Permian-Triassic crisis. Geology.2007,35(12):1083-1086.
    [24]Xie SC, Pancost RD, Wang YB, et al. Cyanobacterial blooms tied to volcanism during the 5 m.y. Permo-Triassic biotic crisis. Geology.2010,38(5):447-450.
    [25]Reichow MK, Pringle MS, Al'Mukhamedov Al, et al. The timing and extent of the eruption of the Siberian Traps large igneous province:Implications for the end-Permian environmental crisis. Earth and Planetary Science Letters.2009,277(1-2):9-20.
    [26]Luo GM, Wang YB, Yang H, et al. Stepwise and large-magnitude negative shift in delta C-13(carb) preceded the main marine mass extinction of the Permian-Triassic crisis interval. Palaeogeography Palaeoclimatology Palaeoecology.2011,299(1-2):70-82.
    [27]Shen SZ, Crowley JL, Wang Y, et al. Calibrating the End-Permian Mass Extinction. Science. 2011,334(6061):1367-1372.
    [28]Shen J, Algeo TJ, Hu Q, et al. Negative C-isotope excursions at the Permian-Triassic boundary linked to volcanism. Geology.2012,40(11):963-966.
    [29]Shen J, Algeo TJ, Zhou L, et al. Volcanic perturbations of the marine environment in South China preceding the latest Permian mass extinction and their biotic effects. Geobiology. 2012,10(1):82-103.
    [30]Shen J, Algeo TJ, Hu Q, et al. Volcanism in South China during the Late Permian and its relationship to marine ecosystem and environmental changes. Global and Planetary Change.2012, (in press).
    [31]Campbell IH, Czamanske GK, Fedorenko VA, et al. Synchronism of the Siberian traps and the Permian-Triassic Boundary. Science.1992,258(5089):1760-1763.
    [32]Sobolev SV, Sobolev AV, Kuzmin DV, et al. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature.2011,477(7364):312-U380.
    [33]Veevers JJ, Tewari RC. Permian-Carboniserous and Permian-Triassic magmatism in the rift-zone bordering the Tethyan margin of Southern Pangea. Geology.1995,23(5): 467-470.
    [34]Henry LC, Limarino CO, Fraiser ML, et al. Potential environmental consequences of Panthalassan margin volcanism in the Late Paleozoic (abstract).2009 Portland GSA Annual Meeting.2009, (133):14.
    [35]Jin YG, Wang Y, Wang W, et al. Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science.2000,289(5478):432-436.
    [36]Angiolini L, Checconi A, Gaetani M, et al. The latest Permian mass extinction in the Alborz Mountains (North Iran). Geological Journal.2010,45(2-3):216-229.
    [37]Ward PD, Botha J, Buick R, et al. Abrupt and gradual extinction among Late Permian land vertebrates in the Karoo Basin, South Africa. Science.2005,307(5710):709-714.
    [38]Xie SC, Pancost RD, Yin HF, et al. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature.2005,434(7032):494-497.
    [39]Chen ZQ, Kaiho K, George AD, et al. Survival brachiopod faunas of the end-Permian mass extinction from the southern Alps (Italy) and South China. Geological Magazine.2006, 143(3):301-327.
    [40]Chen Z-Q, Tong J, Liao Z-T, et al. Structural changes of marine communities over the Permian-Triassic transition:Ecologically assessing the end-Permian mass extinctiion and its aftermath. Global and Planetary Change.2010,73(1-2):123-140.
    [41]Chen ZQ, Tong J, Zhang K, et al. Environmental and biotic turnover across the Permian-Triassic boundary on a shallow carbonate platform in western Zhejiang, South China. Australian Journal of Earth Sciences.2009,56(6):775-797.
    [42]Song H, Tong J, Chen ZQ. Two episodes of foraminiferal extinction near the Permian-Triassic boundary at the Meishan section, South China. Australian Journal of Earth Sciences.2009,56(6):765-773.
    [43]Yin HF. The Palaeozoic-Mesozoic Boundary:Candidates of the global stratotype section and point (GSSP) of the Permian-Triassic boundary. Place:China University of Geosciences Press,1996.
    [44]殷鸿福,童金南,张克信.全球二叠系—三叠系界线层型剖面和点的研究综述.地质学报.2005,84(06):736.
    [45]Song HJ, Wignall PB, Tong JN, et al. Two pulses of extinction during the Permian-Triassic crisis. Nature Geoscience.2013,6:52-56.
    [46]Xie SC, Pancost RD, Huang XY, et al. Molecular and isotopic evidence for episodic environmental change across the Permo/Triassic boundary at Meishan in South China. Global and Planetary Change.2007,55(1-3):56-65.
    [47]黄咸雨,焦丹,鲁立强等.二叠纪-三叠纪之交环境的不稳定性和生物危机的多阶段性:浙江长兴微生物分子化石记录.中国科学(D辑:地球科学).2007,(05):629-635.
    [48]谢树成,殷鸿福,曹长群等.二叠纪-三叠纪之交地球表层系统的多幕式变化:分子地球生物学记录.古生物学报.2009,48(03):487-496.
    [49]Yin H, Xie S, Luo G, et al. Two episodes of environmental change at the Permian-Triassic boundary of the GSSP section Meishan. Earth-Science Reviews.2012,115(3):163-172.
    [50]Wignall PB, Newton R. Contrasting deep-water records from the Upper Permian and Lower Triassic of South Tibet and British Columbia:Evidence for a diachronous mass extinction. Palaios.2003,18(2):153-167.
    [51]Shen SZ, Cao CQ, Henderson CM, et al. End-Permian mass extinction pattern in the northern peri-Gondwanan region. Palaeoworld.2006,15(1):3-30.
    [52]Lucas SG Timing and magnitude of tetrapod extinctions across the Permo-Triassic boundary. Journal of Asian Earth Sciences.2009,36(6):491-502.
    [53]Kozur HW, Weems RE. Detailed correlation and age of continental late Changhsingian and earliest Triassic beds:Implications for the role of the Siberian Trap in the Permian-Triassic biotic crisis. Palaeogeography Palaeoclimatology Palaeoecology.2011, 308(1-2):22-40.
    [54]Algeo T, Henderson CM, Ellwood B, et al. Evidence for diachronous Late Permian marine crisis from the Canadian Arctic region. Geological Society of America Bulletin.2012.
    [55]Becker L, Poreda RJ, Hunt AG, et al. Impact event at the Permian-Triassic boundary: Evidence from extraterrestrial noble gases in fullerenes. Science.2001,291(5508): 1530-1533.
    [56]Farley KA, Mukhopadhyay S. An extraterrestrial impact at the Permian-Triassic boundary? Science.2001,293(5539):2343-+.
    [57]Isozaki Y. An extraterrestrial impact at the Permian-Triassic boundary? Science.2001, 293(5539):2343-2343.
    [58]Basu AR, Petaev MI, Poreda RJ, et al. Chondritic meteorite fragments associated with the Permian-Triassic boundary in Antarctica. Science.2003,302(5649):1388-1392.
    [59]Petaev MI, Jacobsen SB, Becker L. Search for extraterrestrial and impact materials in the P-T boundary samples from Graphite Peak, Antarctica (abstract). Lunar and Planetary Science.2006,37:#2309.
    [60]Shukolyukov A, Lugmair G, Becker L, et al. Extraterrestrial chromium in the Permian-Triassic boundary at Graphite Peak, Antarctica (abstract). Lunar and Planetary Science.2004,35:#1875.
    [61]Becker L, Shukolyukov A, Macassic C, et al. Extraterrestrial chromium at the Graphite Peak P/Tr boundary and in the Bedout Impact Melt Breccia (abstract). Lunar and Planetary Science.2006,37:#2321.
    [62]Becker L, Poreda RJ, Basu AR, et al. Bedout:A possible end-Permian impact crater offshore of Northwestern Australia. Science.2004,304(5676):1469-1476.
    [63]Wignall P, Thomas B, Willink R, et al. Is Bedout an impact crater? Take 1. Science.2004, 306(5696):609-609.
    [64]Renne PR, Melosh HJ, Farley KA, et al. Is Bedout an impact crater? Take 2. Science.2004, 306(5696):610-611.
    [65]Glikson A. Comment on "Bedout:A possible end-Permian impact crater offshore of northwestern Australia". Science.2004,306(5696).
    [66]Clark DL, Wang CY, Orth CJ, et al. Conodont survival and low Iridium abundances across the Permian-Triassic boundary in South-China Science.1986,233(4767):984-986.
    [67]Zhou L, Kyte FT. The Permian-Triassic Boundary event-A geochemical study of 3 Chinese sections. Earth and Planetary Science Letters.1988,90(4):411-421.
    [68]Boclet D, Baud A, Bonte P, et al. Search for Iridium at the Permian-Triassic boundary at the Meishan section, Changxing (China). Comptes Rendus De L Academie Des Sciences Serie Ii.1988,307(3):261-266.
    [69]Koeberl C, Farley KA, Peucker-Ehrenbrink B, et al. Geochemistry of the end-Permian extinction event in Austria and Italy:No evidence for an extraterrestrial component. Geology.2004,32(12):1053-1056.
    [70]Xu L, Lin Y, Shen W, et al. Platinum-group elements of the Meishan Permian-Triassic boundary section:Evidence for flood basaltic volcanism. Chemical Geology.2007, 246(1-2):55-64.
    [71]Case AM, Lopez-Escobar L, Danieli JC, et al. Butalon igneous rocks, Neuquen, Argentina: Age, stratigraphic relationships and geochemical features. Journal of South American Earth Sciences.2008,26(2):188-203.
    [72]Kleiman LE, Japas MS. The Choiyoi volcanic province at 34 degrees S-36 degrees S (San Rafael, Mendoza, Argentina):Implications for the Late Palaeozoic evolution of the southwestern margin of Gondwana. Tectonophysics.2009,473(3-4):283-299.
    [73]Rocha-Campos AC, Basei MA, Nutman AP, et al.30 million years of Permian volcanism recorded in the Choiyoi igneous province (W Argentina) and their source for younger ash fall deposits in the Parana Basin:SHRIMP U-Pb zircon geochronology evidence. Gondwana Research.2011,19(2):509-523.
    [74]Michaelsen P, Henderson RA, Crosdale PJ, et al. Age and significance of the Platypus Tuff Bed, a regional reference horizon in the Upper Permian Moranbah Coal Measures, north Bowen Basin. Australian Journal of Earth Sciences.2001,48(2):183-192.
    [75]Kramer W, Weatherall G, Offler R. Origin and correlation of tuffs in the Permian Newcastle and Wollombi Coal Measures, NSW, Australia, using chemical fingerprinting. International Journal of Coal Geology.2001,47(2):115-135.
    [76]Grevenitz P, Carr P, Hutton A. Origin, alteration and geochemical correlation of Late Permian airfall tuffs in coal measures, Sydney Basin, Australia. International Journal of Coal Geology.2003,55(1):27-46.
    [77]吴顺宝,任迎新,毕先梅.湖北黄石、浙江长兴煤山二叠-三叠系界线处火山物质及粘土岩成因探讨.地球科学-中国地质大学学报.1990,15(06):589-596.
    [78]Wu YS, Jiang HX, Fan JS. Evidence for sea-level falls in the Permian-Triassic transition in the Ziyun area, South China. Geological Journal.2010,45(2-3):170-185.
    [79]王海峰,刘建波,江崎洋一.贵州罗甸大文二叠三叠系界线剖面海平面变化及其全球对比.北京大学学报(自然科学版).2012,48(04):589-602.
    [80]Krassilov V, Karasev E. Paleofloristic evidence of climate change near and beyond the Permian-Triassic boundary. Palaeogeography Palaeoclimatology Palaeoecology.2009, 284(3-4):326-336.
    [81]Wignall PB, Hallam A. Aoxia as a cause of the Permian Triassic mass extinction-Facies evidence from northern Italy and the western United-States. Palaeogeography Palaeoclimatology Palaeoecology.1992,93(1-2):21-46.
    [82]Wignall PB, Hallam A. Facies change and the end-Permian mass extinction in SE Sichuan, China. Palaios.1996,11(6):587-596.
    [83]Wignall PB, Twitchett RJ. Oceanic anoxia and the end Permian mass extinction. Science. 1996,272(5265):1155-1158.
    [84]Isozaki Y. Permo-triassic boundary superanoxia and stratified superocean:Records from lost deep sea. Science.1997,276(5310):235-238.
    [85]李玉成,周忠泽.华南二叠纪末缺氧海水中的有毒气体与生物集群绝灭.地质地球化学.2002,(01):57-63.
    [86]Kato Y, Nakao K, Isozaki Y. Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan:implications for an oceanic redox change. Chemical Geology. 2002,182(1):15-34.
    [87]Meyer KM, Kump LR. Oceanic euxinia in Earth history:Causes and consequences. Annual Review of Earth and Planetary Sciences.2008,36:251-288.
    [88]Cao CQ, Love GD, Hays LE, et al. Biogeochemical evidence for euxinic oceans and ecological disturbance' presaging the end-Permian mass extinction event. Earth and Planetary Science Letters.2009,281(3-4):188-201.
    [89]Grasby SE, Beauchamp B. Latest Permian to Early Triassic basin-to-shelf anoxia in the Sverdrup Basin, Arctic Canada. Chemical Geology.2009,264(1-4):232-246.
    [90]Bond DPG, Wignall PB. Pyrite framboid study of marine Permian-Triassic boundary sections:A complex anoxic event and its relationship to contemporaneous mass extinction. Geological Society of America Bulletin.2010,122(7-8):1265-1279.
    [91]Brennecka GA, Herrmann AD, Algeo TJ, et al. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proceedings of the National Academy of Sciences of the United States of America.2011,108(43):17631-17634.
    [92]Song HJ, Wignall PB, Tong JN, et al. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian-Triassic transition and the link with end-Permian extinction and recovery. Earth and Planetary Science Letters.2012,353:12-21.
    [93]Sengor AMC, Atayman S. The Permian Extinction and the Tethys:An Exercise in Global Geology Geological Society of America Special Papers.2009,448:1-85.
    [94]Mette W. Upper Permian and lowermost Triassic stratigraphy, facies and ostracods in NW Iran-implications for the P/T extinction event. Stratigraphy.2008,5(2):205-219.
    [95]Forel MB, Crasquin S, Kershaw S, et al. Ostracods (Crustacea) and water oxygenation in the earliest Triassic of South China:implications for oceanic events at the end-Permian mass extinction. Australian Journal of Earth Sciences.2009,56(6):815-823.
    [96]Krull ES, Retallack GJ. delta C-13 depth profiles from paleosols across the Permian-Triassic boundary:Evidence for methane release. Geological Society of America Bulletin.2000,112(9):1459-1472.
    [97]Krull ES, Retallack GJ, Campbell HJ, et al. delta C-13(org) chemostratigraphy of the Permian-Triassic boundary in the Maitai Group, New Zealand:evidence for high-latitudinal methane release. New Zealand Journal of Geology and Geophysics. 2000,43(1):21-32.
    [98]Retallack GJ, Jahren AH. Methane release from igneous intrusion of coal during late permian extinction events. Journal of Geology.2008,116(1):1-20.
    [99]Shen SZ, Cao CQ, Zhang YC, et al. End-Permian mass extinction and palaeoenvironmental changes in Neotethys:Evidence from an oceanic carbonate section in southwestern Tibet. Global and Planetary Change.2010,73(1-2):3-14.
    [100]Kidder DL, Worsley TR. Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery. Palaeogeography Palaeoclimatology Palaeoecology.2004,203(3-4):207-237.
    [101]Brand U, Posenato R, Came R, et al. The end-Permian mass extinction:A rapid volcanic CO2 and CH4-climatic catastrophe. Chemical Geology.2012,322:121-144.
    [102]Roscher M, Stordal F, Svensen H. The effect of global warming and global cooling on the distribution of the latest Permian climate zones. Palaeogeography Palaeoclimatology Palaeoecology.2011,309(3-4):186-200.
    [103]梁汉东.二叠纪末期海洋硫酸化环境灾变事件:煤山剖面岩石矿物证据.科学通报.2002,47(10):784-788.
    [104]梁汉东,梁言慈.中国煤山剖面二叠系/三叠系界线附近白粘土中残余酸的发现与意义.科学技术与工程.2004,4(01):7-11.
    [105]Payne JL, Turchyn AV, Paytan A, et al. Calcium isotope constraints on the end-Permian mass extinction. Proceedings of the National Academy of Sciences of the United States of America.2010,107(19):8543-8548.
    [106]杨万容,江纳言.浙江长兴长兴组火山岩和放射虫的发现.地层学杂志.1980,4(01): 67-69.
    [107]何锦文.长兴阶层型剖面及殷坑组底部的粘土矿物——兼论二迭、三迭系的分界.地层学杂志.1981,5(03):197-207+244.
    [108]何锦文,芮琳,柴之芳等.浙江长兴煤山地区晚二叠世末、早三叠世初的火山活动.地层学杂志.1987,11(03):194-200.
    [109]何锦文,柴之芳,马淑兰.浙江长兴煤山二叠、三叠系界线层型剖面中高温石英副象的发现及其意义.科学通报.1988,(14):1088-1091.
    [110]He JW, Chai ZF, Ma SL. Discovery of paramorph of high-quartz in the stratotype section of the Permian-Triassic boundary at Meishan of Changxing, Zhejiang, and its significance. Chinese Science Bulletin.1989,34(6):474-477.
    [111]黄思静.重庆中梁山和广元上寺P-T界线粘土层中粘土矿物的类型及成因.成都理工大学学报(自然科学版).1992,19(03):66-73.
    [112]黄思静.四川重庆中梁山P/T界线粘土层中非粘土组分的研究.沉积学报.1993,11(03):105-113.
    [113]王尚彦,殷鸿福.滇东黔西地区陆相二叠—三叠系界线粘土岩特征.中国地质.2002,29(02):155-160.
    [114]张素新,彭元桥,喻建新等.黔西威宁岔河陆相二叠系—三叠系界线粘土岩研究——基于X射线衍射、扫描电镜分析.地质科技情报.2004,23(01):21-26.
    [115]张素新,于吉顺,喻建新等.贵州哲觉陆相二叠系—三叠系界线粘土岩的研究.电子显微学报.2004,23(04):478-479.
    [116]张素新,喻建新,杨逢清等.黔西滇东地区浅海、滨海及海陆交互相二叠系—三叠系界线附近粘土岩研究.矿物岩石.2004,24(04):81-86.
    [117]张素新,冯庆来,顾松竹等.黔桂地区深水相二叠系—三叠系界线附近黏土岩研究.地质科技情报.2006,25(01):9-13,26.
    [118]张素新,赵来时,童金南等.湖北兴山大峡口浅海相二叠系—三叠系界线附近粘土岩研究.矿物岩石.2007,27(03):94-100.
    [119]Zhang SX, Yuan P, Zhao LS, et al. Clay Rocks around Permian-Triassic Boundary at Daxiakou Section in Hubei Province,China. Journal of Earth Science.2009,20(06): 909-920.
    [120]Hong HL, Zhang N, Li ZH, et al. Clay mineralogy across the P-T boundary of the Xiakou section, China:Evidence of clay provenance and environment. Clays and Clay Minerals. 2008,56(2):131-143.
    [121]周瑶琪,柴之芳,毛雪瑛等.中国南方二叠-三叠系界线及其附近粘土层稀土元素地球化学研究.大地构造与成矿学.1989,13(02):188-196.
    [122]甘媛,于林松,何明友等.川北江油—广元一带二叠系—三叠系界线粘土岩稀土元素地球化学特征及其地质意义.地质通报.2008,27(03):380-387.
    [123]周秋娥.广西扶绥县东攀剖面上二叠统粘土岩岩石学及地球化学特征.硕士论文.北京:中国地质大学,2009.
    [124]杨颖.华南古—中生代关键地层界线附近斑脱岩锆石U-Pb年代学及成因.硕士论文.武汉:中国地质大学,2011.
    [125]Yang JH, Cawood PA, Du YS, et al. Large Igneous Province and magmatic arc sourced Permian-Triassic volcanogenic sediments in China, Sedimentary Geology.2012,261: 120-131.
    [126]Zhao GC, Wilde SA, Cawood PA, et al. Archean blocks and their boundaries in the North China Craton:lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research.2001,107(1-2):45-73.
    [127]舒良树.华南构造演化的基本特征.地质通报.2012,31(07):1035-1053.
    [128]任纪舜.中国大地构造及其演化.北京:科学出版社,1980.
    [129]杨森楠,杨巍然.中国区域大地构造学.武汉:武汉地质学院出版社,1982.
    [130]舒良树,周新民.中国东南部晚中生代构造作用.地质论评.2002,48(03):249-260.
    [131]Zhang S-B, Zheng Y-F, Wu Y-B, et al. Zircon U-Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South China. Earth and Planetary Science Letters.2006,252(1-2):56-71.
    [132]Gao S, Yang J, Zhou L, et al. Age and growth of the Archean Kongling Terrain, South China, with emphasis on 3.3 Ga granitoid gneisses. American Journal of Science.2011, 311(2):153-182.
    [133]Qiu YMM, Gao S. First evidence of> 3.2 Ga continental crust in the Yangtze craton of South China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology.2000,28(1):11-14.
    [134]Zheng JP, Griffin WL, O'Reilly SY, et al. Widespread Archean basement beneath the Yangtze craton. Geology.2006,34(6):417-420.
    [135]Xiong Q, Zheng J, Yu C, et al. Zircon U-Pb age and Hf isotope of Quanyishang A-type granite in Yichang:signification for the Yangtze continental cratonization in Paleoproterozoic. Chinese Science Bulletin.2009,54(3):436-446.
    [136]Zhang S-B, Zheng Y-F, Wu Y-B, et al. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambrian Research.2006, 151(3-4):265-288.
    [137]万天丰.中国大地构造学纲要.北京:地质出版社,2004.
    [138]Xu X, O'Reilly SY, Griffin WL, et al. The crust of Cathaysia:Age, assembly and reworking of two terranes. Precambrian Research.2007,158(1-2):51-78.
    [139]Yu J, O'Reilly YS, Wang L, et al. Finding of ancient materials in Cathaysia and implication for the formation of Precambrian crust. Chinese Science Bulletin.2007,52(1):13-22.
    [140]Yu J-H, O'Reilly SY, Wang L, et al. Components and episodic growth of Precambrian crust in the Cathaysia Block, South China:Evidence from U-Pb ages and Hf isotopes of zircons in Neoproterozoic sediments. Precambrian Research.2010,181(1-4):97-114.
    [141]Zheng JP, Griffin WL, Li LS, et al. Highly evolved Archean basement beneath the western Cathaysia Block, South China. Geochimica Et Cosmochimica Acta.2011,75(1): 242-255.
    [142]罗志立.从华南板块构造演化探讨中国南方碳酸盐岩含油气远景.海相油气地质.2000,5(3-4):1-19+127.
    [143]熊舜华,李建林.峨眉山区晚二叠世大陆裂谷边缘玄武岩系的特征.成都地质学院学报.1984,(03):43-59+123-124+134-135.
    [144]Scotese CR. PALEOMAP Project.2002.
    [145]冯增昭,杨玉卿,金振奎.中国南方二叠纪岩相古地理.北京:石油大学出版社,1997.p82.
    [146]Wang Y, Jin YG Permian palaeogeographic evolution of the Jiangnan Basin, South China. Palaeogeography Palaeoclimatology Palaeoecology.2000,160(1-2):35-44.
    [147]Lehrmann DJ, Payne JL, Pei D, et al. Record of the end-Permian extinction and Triassic biotic recovery in the Chongzuo-Pingguo platform, southern Nanpanjiang basin, Guangxi, south China. Palaeogeography Palaeoclimatology Palaeoecology.2007, 252(1-2):200-217.
    [148]《中国地层典》编委会.中国地层典——二叠系.北京:地质出版社,2000.
    [149]《中国地层典》编委会.中国地层典——三叠系.北京:地质出版社,2000.
    [150]张克信,赖旭龙,童金南等.全球界线层型华南浙江长兴煤山剖面牙形石序列研究进展.古生物学报.2009,48(03):474-486.
    [151]韩吟文,马振东.地球化学.北京:地质出版社,2003.p218-221,231-233.
    [152]Bowring SA, Erwin DH, Jin YG, et al. U/Pb zircon geochronology and tempo of the end-Permian mass extinction. Science.1998,280(5366):1039-1045.
    [153]Mundil R, Metcalfe I, Ludwig KR, et al. Timing of the Permian-Triassic biotic crisis: implications from new zircon U/Pb age data (and their limitations). Earth and Planetary Science Letters.2001,187(1-2):131-145.
    [154]Gehrels GE, Valencia VA, Ruiz J. Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry. Geochemistry Geophysics Geosystems.2008,9.
    [155]吴福元,李献华,郑永飞等.Lu-Hf同位素体系及其岩石学应用.岩石学报.2007,23(02):185-220.
    [156]DeBievre P, Taylor PDP. Table of the isotopic composition of the elements. International Journal of Mass Spectrometry Ion Processes.1993,123:149.
    [157]Kinny PD, Maas R. Lu-Hf and Sm-Nd isotope systems in zircon, in:ed^eds Hanchar JM, Hoskin PWO. Zircon Vol.53 Place:2003.327-341.
    [158]Soderlund U, Patchett JP, Vervoort JD, et al. The Lu-176 decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters.2004,219(3-4):311-324.
    [159]Blichert-Toft J, Albarede F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters.1997, 148(1-2):243-258.
    [160]Griffin WL, Pearson NJ, Belousova E, et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica Et Cosmochimica Acta.2000,64(1):133-147.
    [161]Amelin Y, Lee DC, Halliday AN, et al. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons. Nature.1999,399(6733):252-255.
    [162]Rudnick RL, Gao S. Composition of the continental crust, in:ed^eds Holland HD, Turekian KK. Treatise on Geochemistry Vol.3 Place:2003.1-64.
    [163]Griffin WL, Wang X, Jackson SE, et al. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos.2002, 61(3-4):237-269.
    [164]Pupin JP. Zircon and Granite Petrology. Contribtions to Mineralogy and Petrology.1980, 73:207-220.
    [165]Heaman LM, Bowins R, Crocket J. The chemical-compositon of igneous zircon suites: Implications for geochemical tracer studies. Geochimica Et Cosmochimica Acta.1990, 54(6):1597-1607.
    [166]Pupin JP. Granite genesis related to geodynamics from Hf-Y in zircon. Transactions of the Royal Society of Edinburgh-Earth Sciences.2000,91:245-256.
    [167]Hoskin PWO, Ireland TR. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology.2000,28(7):627-630.
    [168]Hoskin PWO, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis. in:edAeds Hanchar JM, Hoskin PWO. Zircon Vol.53 Place:2003.27-62.
    [169]Corfu F, Hanchar JM, Hoskin PWO, et al. Atlas of zircon textures, in:ed^eds Hanchar JM, Hoskin PWO. Zircon Vol.53 Place:2003.469-500.
    [170]Belousova EA, Griffin WL, O'Reilly SY, et al. Igneous zircon:trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology.2002, 143(5):602-622.
    [171]Shnukov SE, Andreev AV, Savenok SP. Admixture elements in zircons and apatites:a tool for provenances studies of terrigenous sedimentary rocks. European Union of Geosciences (EUG 9).1997:23-24 March 1997, Strasbourg, Abstract 1965/1994P1916:1597.
    [172]Wang X, Griffin WL, Chen J. Hf contents and Zr/Hf ratios in granitic zircons. Geochemical Journal.2010,44(1):65-72.
    [173]Grimes CB, John BE, Kelermen PB, et al. Trace element chemistry of zircons from oceanic crust:A method for distinguishing detrital zircon provenance. Geology.2007, 35(7):643-646.
    [174]Grimes CB, John BE, Cheadle MJ, et al. On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contributions to Mineralogy and Petrology.2009,158(6):757-783.
    [175]Gagnevin D, Daly JS, Kronz A. Zircon texture and chemical composition as a guide to magmatic processes and mixing in a granitic environment and coeval volcanic system. Contributions to Mineralogy and Petrology.2010,159(4):579-596.
    [176]Fujimaki H. Partition-Coefficients of Hf, Zr, and REE between zircon, apatite, and liquid. Contributions to Mineralogy and Petrology.1986,94(1):42-45.
    [177]Sano Y, Terada K, Fukuoka T. High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon:lack of matrix dependency. Chemical Geology.2002,184(3-4):217-230.
    [178]Thomas JB, Bodnar RJ, Shimizu N, et al. Determination of zircon/melt trace element partition coefficients from SIMS analysis of melt inclusions in zircon. Geochimica Et Cosmochimica Acta.2002,66(16):2887-2901.
    [179]Hanchar JM, van Westrenen W. Rare earth element behavior in zircon-melt systems. Elements.2007,3(1):37-42.
    [180]Pearce JA, Harris NBW, Tindle AG Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology.1984,25(4):956-983.
    [181]Pearce JA. Trace element characteristics of lavas from destructive plate boundaries. Place: John Wiley and Sons,1982.528-548.
    [182]Kaczmarek MA, Muntener O, Rubatto D. Trace element chemistry and U-Pb dating of zircons from oceanic gabbros and their relationship with whole rock composition (Lanzo, Italian Alps). Contributions to Mineralogy and Petrology.2008,155(3): 295-312.
    [183]Skublov SG, Lobach-Zhuchenko SB, Guseva NS, et al. Rare Earth and Trace Element Distribution in Zircons from Miaskite Lamproites of the Panozero Complex, Central Karelia. Geochemistry International.2009,47(9):901-913.
    [184]Qiu ZL, Yang JH, Yang YH, et al. Trace element and Hafnium isotopes of Cenozoic basalt-related zircon megacrysts at Muling, Heilongjiang province, northeast China. Acta Petrologica Sinica.2007,23(2):481-492.
    [185]高秋灵,郑建平,张志海等.信阳周庄变辉长岩LA-ICPMS U-Pb定年与华北南缘复杂演化过程.岩石学报.2009,25(12):3275-3286.
    [186]de Barros CE, Nardi LVS, Dillenburg SR, et al. Detrital Minerals of Modern Beach Sediments in Southern Brazil:A Provenance Study Based on the Chemistry of Zircon. Journal of Coastal Research.2010,26(1):80-93.
    [187]Sawka WN, Chappell BW. Fractionation of Uranium, Thorium and Rare-Earth Elements in a vertically zoned grandiorite:Implications for heat-production distributions in the Sierra-Nevada Batholith, California, USA. Geochimica Et Cosmochimica Acta.1988, 52(5):1131-1143.
    [188]Schoene B, Latkoczy C, Schaltegger U, et al. A new method integrating high-precision U-Pb geochronology with zircon trace element analysis (U-Pb TIMS-TEA). Geochimica Et Cosmochimica Acta.2010,74(24):7144-7159.
    [189]Zheng JP, Zhang RS, Yu CM, et al. In situ zircon Hf isotopic, U-Pb age and trace element study of monzonite xenoliths from Pingquan and Fuxin basalts:Tracking the thermal events of 169 Ma and 107 Ma in Yanliao area. Science in China Series D-Earth Sciences. 2004,47:39-52.
    [190]de Liz JD, Nardi LVS, de Lima EF, et al. The trace-element record in zircon from the Lavras do Sul Shoshonitic Association, Southernmost Brazil. Canadian Mineralogist. 2009,47(4):833-846.
    [191]Claiborne LL, Miller CF, Wooden JL. Trace element composition of igneous zircon:a thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada. Contributions to Mineralogy and Petrology.2010, 160(4):511-531.
    [192]Claiborne LL, Miller CF, Walker BA, et al. Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons:An example from the Spirit Mountain batholith, Nevada. Mineralogical Magazine.2006,70(5):517-543.
    [193]Parthasarathy R, Murali AV, Das MS, et al. Trace-element studies of the zircon separates and the related host rock sediment assemblage along Manimala River, Kerala. Journal of the Geological Society of India.1985,26(6):390-401.
    [194]Belousova EA, Griffin WL, O'Reilly SY. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling:Examples from Eastern Australian granitoids. Journal of Petrology.2006,47(2):329-353.
    [195]Castineiras P, Garcia FD, Barreiro JG. REE-assisted U-Pb zircon age (SHRIMP) of an anatectic granodiorite:Constraints on the evolution of the A Silva granodiorite, Iberian allochthonous complexes. Lithos.2010,116(1-2):153-166.
    [196]Ballard JR, Palin JM, Campbell IH. Relative oxidation states of magmas inferred from Ce(Ⅳ)/Ce(Ⅲ) in zircon:application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology.2002,144(3):347-364.
    [197]du Bray EA, Bacon CR, John DA, et al. Episodic intrusion, internal differentiation, and hydrothermal alteration of the Miocene Tatoosh intrusive suite south of Mount Rainier, Washington. Geological Society of America Bulletin.2011,123(3-4):534-561.
    [198]Tani K, Dunkley DJ, Kimura JI, et al. Syncollisional rapid granitic magma formation in an arc-arc collision zone:Evidence from the Tanzawa plutonic complex, Japan. Geology. 2010,38(3):215-218.
    [199]Li H, Zhang H, Ling MX, et al. Geochemical and zircon U-Pb study of the Huangmeijian A-type granite:implications for geological evolution of the Lower Yangtze River belt. International Geology Review.2011,53(5-6):499-525.
    [200]Su YP, Zheng JP, Griffin WL, et al. Zircon U-Pb and Hf isotopes of volcanic rocks from the Batamayineishan Formation in the eastern Junggar Basin. Chinese Science Bulletin. 2010,55(36):4150-4161.
    [201]邓晋福,肖庆辉,苏尚国等.火成岩组合与构造环境:讨论.高校地质学报.2007,49(03):392-402.
    [202]Liegeois JP, Navez J, Hertogen J, et al. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos.1998,45(1-4):1-28.
    [203]Su Y, Zheng J, Griffin WL, et al. Geochemistry and geochronology of Carboniferous volcanic rocks in the eastern Junggar terrane, NW China:Implication for a tectonic transition. Gondwana Research.2012,22(3-4):1009-1029.
    [204]Luo B, Zhang H, Lu X. U-Pb zircon dating, geochemical and Sr-Nd-Hf isotopic compositions of Early Indosinian intrusive rocks in West Qinling, central China: petrogenesis and tectonic implications. Contributions to Mineralogy and Petrology.2012, 164(4):551-569.
    [205]Chatterjee N, Bhattacharji S. A preliminary geochemical study of zircons and monazites from Deccan felsic dikes, Rajula, Gujarat, India:Implications for crustal melting. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences.2004, 113(4):533-542.
    [206]Xiong Q, Zheng JP, Griffin WL, et al. Zircons in the Shenglikou ultrahigh-pressure garnet peridotite massif and its country rocks from the North Qaidam terrane (western China): Meso-Neoproterozoic crust-mantle coupling and early Paleozoic convergent plate-margin processes. Precambrian Research.2011,187:33-57.
    [207]Hu ZC, Gao S, Liu YS, et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. Journal of Analytical Atomic Spectrometry.2008, 23(8):1093-1101.
    [208]Liu YS, Hu ZC, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology. 2008,257(1-2):34-43.
    [209]Liu YS, Gao S, Hu ZC, et al. Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology.2010, 51(1-2):537-571.
    [210]Liu YS, Hu ZC, Zong KQ, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin.2010,55(15): 1535-1546.
    [211]Wiedenbeck M, Alle P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace-element and REE analyses. Geostandards Newsletter.1995,19(1):1-23.
    [212]Jackson SE, Pearson NJ, Griffin WL, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology.2004,211(1-2):47-69.
    [213]Griffin WL, Powell WJ, Pearson NJ, et al. GLITTER:data reduction software for laser ablation ICP-MS.2008.
    [214]Elhlou S, Belousova E, Griffin WL, et al. Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochimica Et Cosmochimica Acta.2006, 70(18):A158-A158.
    [215]Andersen T. Correction of common lead in U-Pb analyses that do not report Pb-204. Chemical Geology.2002,192(1-2):59-79.
    [216]Ludwig KR. ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel. Place: Berkeley Geochronology Center, California,2003.
    [217]Hu ZC, Liu YS, Gao S, et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. Journal of Analytical Atomic Spectrometry.2012,27(9):1391-1399.
    [218]Segal I, Halicz L, Platzner IT. Accurate isotope ratio measurements of ytterbium by multiple collection inductively coupled plasma mass spectrometry applying erbium and hafnium in an improved double external normalization procedure. Journal of Analytical Atomic Spectrometry.2003,18(10):1217-1223.
    [219]Blichert-Toft J, Chauvel C, Albarede F. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector multiple collector ICP-MS. Contributions to Mineralogy and Petrology.1997,127(3):248-260.
    [220]Woodhead J, Hergt J, Shelley M, et al. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chemical Geology.2004,209(1-2):121-135.
    [221]Woodhead JD, Hergt JM. A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostandards and Geoanalytical Research. 2005,29(2):183-195.
    [222]Griffin WL, Pearson NJ, Belousova EA, et al. Comment:Hf-isotope heterogeneity in zircon 91500. Chemical Geology.2006,233(3-4):358-363.
    [223]Wang GQ, Xia WC. Conodont zonation across the Permian-Triassic boundary at the Xiakou section, Yichang city, Hubei Province and its correlation with the Global Stratotype Section and Point of the PTB. Canadian Journal of Earth Sciences.2004, 41(3):323-330.
    [224]Zhao LS, Xiong XQ, Yang FQ, et al. Conodonts from the lower Triassic in the Nantuowan section of Daxiakou, Xingshan County, Hubei Province. Albertiana.2005,33:113-115.
    [225]Jiang HS, Lai XL, Luo GM, et al. Restudy of conodont zonation and evolution across the P/T boundary at Meishan section, Changxing, Zhejiang, China. Global and Planetary Change.2007,55(1-3):39-55.
    [226]Mernagh TP. Use of the Laser Raman microprobe for discrimination amongst feldspar minerals. Journal of Raman Spectroscopy.1991,22(8):453-457.
    [227]McDonough WF, Sun SS. The composition of the earth. Chemical Geology.1995, 120(3-4):223-253.
    [228]Miller JS, Wooden JL. Residence, resorption and recycling of zircons in Devils Kitchen rhyolite, Coso Volcanic field, California. Journal of Petrology.2004,45(11):2155-2170.
    [229]Winchestera JA, Floyda PA. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology.1977,20: 325-343.
    [230]Pearce J. Sources and settings of granitic rocks. Episodes.1996,19(4):120-125.
    [231]钟文力.贵州中北部P-T界线之交的牙形石及其分带意义硕士论文.武汉:中国地质大学,2012.
    [232]胡庆.贵州安顺新民剖面晚二叠世碳同位素研究硕士论文.武汉:中国地质大学,2011.
    [233]沈俊.华南二叠纪—三叠纪之交深水相古生产力的演化硕士论文.武汉:中国地质大学,2011.
    [234]胡庆,曹珺,黄俊华等.贵州新民二叠系—三叠系界线剖面有机碳同位素变化特征及生物地球化学意义.地质论评.2011,57(03):305-315.
    [235]张鹏.二叠-三叠纪之交斑脱岩地层特征及物质来源研究硕士论文.武汉:中国地质大学,2012.
    [236]Le Bas MJ, Le Maitre RW, Streckeisen A, et al. A chemical classification of volcanic-rocks based on the total alkali silica diagram. Journal of Petrology.1986,27(3):745-750.
    [237]Kay SM, Ramos VA, Mpodozis C, et al. Late Paleozoic to Jurassic silicic magmatism at the Gondwana margin-Analogy to the Middle Proterozoic in North-America. Geology. 1989,17(4):324-328.
    [238]Fildani A, Drinkwater NJ, Weislogel A, et al. Age controls on the Tanqua and Laingsburg deep-water systems:New insights on the evolution and sedimentary fill of the Karoo basin, South Africa. Journal of Sedimentary Research.2007,77(11-12):901-908.
    [239]Fildani A, Weislogel A, Drinkwater NJ, et al. U-Pb zircon ages from the southwestern Karoo Basin, South Africa-Implications for the Permian-Triassic boundary. Geology. 2009,37(8):719-722.
    [240]Lepvrier C, Maluski H, Van Tich V, et al. The Early Triassic Indosinian orogeny in Vietnam (Truong Son Belt and Kontum Massif); implications for the geodynamic evolution of Indochina. Tectonophysics.2004,393(1-4):87-118.
    [241]Owada M, Osanai Y, Nakano N, et al. Crustal anatexis and formation of two types of granitic magmas in the Kontum massif, central Vietnam:Implications for magma processes in collision zones. Gondwana Research.2007,12(4):428-437.
    [242]Cai JX, Zhang KJ. A new model for the Indochina and South China collision during the Late Permian to the Middle Triassic. Tectonophysics.2009,467(1-4):35-43.
    [243]Hung KT. Overview of magmatism in northwestern Vienam. Annales Societatis Geologorum Poloniae.2010,80(2):185-226.
    [244]Trung NM, Nuong ND, Itaya T. Rb-Sr isochron and K-Ar ages of igneous rocks from the Samnua Depression Zone in Northern Vietnam. Journal of Mineralogical and Petrological Sciences.2007,102(2):86-92.
    [245]Hoa TT, Anh TT, Phuong NT, et al. Permo-Triassic intermediate-felsic magmatism of the Truong Son belt, eastern margin of Indochina. Comptes Rendus Geoscience.2008, 340(2-3):112-126.
    [246]刘翠,邓晋福,刘俊来等.哀牢山构造岩浆带晚二叠世-早三叠世火山岩特征及其构造环境.岩石学报.2011,27(12):3590-3602.
    [247]Zhang W, Wang L, Wang B, et al. Chronology, geochemistry and petrogenesis of Deqin granodiorite body in the middle section of Jiangda-Weixi arc. Acta Petrologica Sinica. 2011,27(9):2577-2590.
    [248]Hou ZQ, Wang LQ, Zaw K, et al. Post-collisional crustal extension setting and VHMS mineralization in the Jinshajiang orogenic belt, southwestern China. Ore Geology Reviews.2003,22(3-4):177-199.
    [249]倪晋宇.东昆仑造山带二叠纪—三叠纪火山岩锆石U-Pb年龄与构造环境.硕士论文.北京:中国地质科学院,2010.
    [250]He B, Xu YG, Huang XL, et al. Age and duration of the Emeishan flood volcanism, SW China:Geochemistry and SHRIMP zircon U-Pb dating of silicic ignimbrites, post-volcanic Xuanwei Formation and clay tuff at the Chaotian section. Earth and Planetary Science Letters.2007,255(3-4):306-323.
    [251]Ali JR, Thompson GM, Zhou MF, et al. Emeishan large igneous province, SW china. Lithos.2005,79(3-4):475-489.
    [252]Ali JR, Fitton JG, Herzberg C. Emeishan large igneous province (SW China) and the mantle-plume up-doming hypothesis. Journal of the Geological Society.2010,167(5): 953-959.
    [253]Zolotukhin VV, Al'Mukhamedov Al. Traps of the Siberian Platform, in:ed^eds Macdougall JD. Continental flood basalts Place:Kluwer Academic Publishers,1988. 273-310.
    [254]Arndt N, Chauvel C, Czamanske G, et al. Two mantle sources, two plumbing systems: tholeiitic and alkaline magmatism of the Maymecha River basin, Siberian flood volcanic province. Contributions to Mineralogy and Petrology.1998,133(3):297-313.
    [255]Xiao L, Xu YG, Mei HJ, et al. Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province, SW China:implications for plume-lithosphere interaction. Earth and Planetary Science Letters.2004,228(3-4): 525-546.
    [256]Xu YG, He B, Chung SL, et al. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province. Geology.2004,32(10): 917-920.
    [257]Puffer JH. Contrasting high field strength element contents of continental flood basalts from plume versus reactivated-arc sources. Geology.2001,29(8):675-678.
    [258]Xu YG, Chung SL, Shao H, et al. Silicic magmas from the Emeishan large igneous province, Southwest China:Petrogenesis and their link with the end-Guadalupian biological crisis. Lithos.2010,119(1-2):47-60.
    [259]Saraev SV, Baturina TP, Travin AV. Petrology, sedimentology, geochemistry, and absolute age of Triassic volcanosedimentary rocks from the southwest of the West Siberian geosyneclise (Kurgan Region). Russian Geology and Geophysics.2011,52(8):871-887.
    [260]Haraguchi S, Ishii T, Kimura JI, et al. Formation of tonalite from basaltic magma at the Komahashi-Daini Seamount, northern Kyushu-Palau Ridge in the Philippine Sea, and growth of Izu-Ogasawara (Bonin)-Mariana arc crust. Contributions to Mineralogy and Petrology.2003,145(2):151-168.
    [261]Ishizuka O, Yuasa M, Uto K. Evidence of porphyry copper-type hydrothermal activity from a submerged remnant back-arc volcano of the Izu-Bonin arc-Implications for the volcanotectonic history of back-arc seamounts. Earth and Planetary Science Letters. 2002,198(3-4):381-399.
    [262]吴根耀,王晓鹏,钟大赉等.川滇藏交界区二叠纪—早三叠世的两套弧火山岩.地质科学.2000,(03):350-362.
    [263]Zi JW, Cawood PA, Fan WM, et al. Triassic collision in the Paleo-Tethys Ocean constrained by volcanic activity in SW China. Lithos.2012,144:145-160.
    [264]Zi J-W, Cawood PA, Fan W-M, et al. Generation of Early Indosinian enriched mantle-derived granitoid pluton in the Sanjiang Orogen (SW China) in response to closure of the Paleo-Tethys. Lithos.2012,140:166-182.
    [265]Liu JL, Tran MD, Tang Y, et al. Permo-Triassic granitoids in the northern part of the Truong Son belt, NW Vietnam:Geochronology, geochemistry and tectonic implications. Gondwana Research.2012,22(2):628-644.
    [266]Li XH, Li ZX, Ge WC, et al. Neoproterozoic granitoids in South China:crustal melting above a mantle plume at ca.825 Ma? Precambrian Research.2003,122(1-4):45-83.
    [267]Zhao JH, Zhou MF, Yan DP, et al. Reappraisal of the ages of Neoproterozoic strata in South China:No connection with the Grenvillian orogeny. Geology.2011,39(4): 299-302.
    [268]Liu XM, Gao S, Diwu CR, et al. Precambrian crustal growth of Yangtze craton as revealed by detrital zircon studies. American Journal of Science.2008,308(4):421-468.
    [269]Wang LJ, Griffin WL, Yu JH, et al. Precambrian crustal evolution of the Yangtze Block tracked by detrital zircons from Neoproterozoic sedimentary rocks. Precambrian Research.2010,177(1-2):131-144.
    [270]Wignall PB. Large igneous provinces and mass extinctions. Earth-Science Reviews.2001, 53(1-2):1-33.
    [271]Wignall P. The link between large igneous province eruptions and mass extinctions. Elements.2005,1(5):293-297.
    [272]Morgan JP, Reston TJ, Ranero CR. Contemporaneous mass extinctions, continental flood basalts, and 'impact signals':are mantle plume-induced lithospheric gas explosions the causal link? Earth and Planetary Science Letters.2004,217(3-4):263-284.
    [273]Robock A. Volcanic eruptions and climate. Reviews of Geophysics.2000,38(2):191-219.
    [274]Robock A, Ammann CM, Oman L, et al. Did the Toba volcanic eruption of similar to 74 ka BP produce widespread glaciation? Journal of Geophysical Research-Atmospheres. 2009,114.
    [275]Swindles GT, Lawson IT, Savov IP, et al. A 7000 yr perspective on volcanic ash clouds affecting northern Europe. Geology.2011,39(9):887-890.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700