泡沫SiC_p/ZL104复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于陶瓷颗粒具备改善泡沫金属性能的内在潜力而使陶瓷颗粒增强泡沫铝基复合材料的研究倍受关注。因此,针对SiC颗粒增强泡沫铝基复合材料的制备工艺及性能开展深入、系统的研究,对丰富泡沫材料制备工艺、推动泡沫材料的快速发展与广泛应用具有重要的理论与实际意义。
     本文采用熔体发泡法成功地制备出孔隙率、孔径和SiC颗粒体积分数可调的闭孔SiC颗粒增强泡沫ZL104复合材料(泡沫SiC_p/ZL104复合材料),分析了发泡温度、发泡剂加入量、搅拌参数、保温时间和冷却方式对泡沫成品的影响,确定了较佳的工艺参数。对泡沫SiC_p/ZL104复合材料的准静态压缩性能进行了深入、系统的探讨,并首次对该材料的动态压缩性能进行了测试和分析,得出了相对密度、孔径、SiC颗粒体积分数、SiC颗粒大小对泡沫SiC_p/ZL104复合材料准静态和动态压缩性能及吸能性的影响规律,首次研究了泡沫SiC_p/ZL104复合材料的应变率敏感性,建立了准静态载荷下泡沫SiC_p/ZL104复合材料的屈服强度、相对密度和SiC颗粒体积分数的关系式。首次对以泡沫SiC_p/ZL104复合材料为芯材的复合板的弯曲性能进行了研究,探讨了相对密度、孔径、SiC颗粒体积分数、SiC颗粒大小和表层面板厚度对复合板弯曲刚度的影响规律和复合板的破坏方式。首次研究了相对密度、孔径、SiC颗粒体积分数、SiC颗粒大小和泡沫体厚度对泡沫SiC_p/ZL104复合材料的阻尼性能的影响规律,发现泡沫SiC_p/ZL104复合材料内部的泡孔以及高密度位错的存在是导致其阻尼性能优于泡沫铝、ZL104合金和SiC_p/ZL104复合材料的主要原因。
The metal foams is a kind of structural and functional material. Recently, the researches about metal foams are very active. It is not only a part of porous material, but also a hot point in the field of the development of new material. Ceramic particle reinforced aluminum matrix composite foams is a kind of new metal foams. Some investigators paid attention to the aluminum matrix composite foams reinforced by ceramic particles due to the intrinsic potential of particles to improve the comprehensive property of foams. Throughout the research and development of metal foams in the whole world, most works aimed at the aluminum foams and the aluminum alloy foams, and the researches about SiC particles reinforced aluminum matrix composite foams were extremely limited. Only few investigations on quasi-static compressive property, damping and sound absorption property of aluminum matrix composite foams were carried out, and there were hardly the researches on the dynamic compressive property of aluminum matrix composite foams and the bending property of the sandwiches with aluminum matrix composite foams core. However, the researches on the damping property were limited to the influence of pores, and the effects of the volume fraction and diameter of reinforced particles on the damping property were not studied. Up till now, the reports about the component optimization to improve the comprehensive property of SiC particle reinforced aluminum matrix composite foams and control the shape, size and uniformity of pores were still less. In China, the researches about SiC particle reinforced aluminum matrix composite foams were started relatively late, and they are only in initial stage now. Therefore, it has theoretical and practical significance that deep and systemic researches on this kind of foams are carried on in order to enrich the fabrication process of foams and promote the development and extensive application of metal foams.
     Based on the insufficiencies of the researches on SiC particle reinforced aluminum matrix composite foams, the following researches were carried out in this dissertation:
     Firstly, SiC particle reinforced ZL104 composite foams (SiC_p/ZL104 composite foams) were successfully fabricated by the direct foaming of the melt. The porosity, the average diameter of pores, and the volume fraction of SiC particle in this composite foams can be controlled. The effects of the foaming temperature, content of the foaming agent added, stirring parameters, holding time, and cooling ways on the fabrication of foams were systemically analyzed. The optimized technological parameters were obtained.
     Secondly, the quasi-static compressive properties of SiC_p/ZL104 composite foams were tested. The systemic researches on the effects of SiC particle, the average diameter of pores, and the relative density on the quasi-static compressive properties and energy absorption ability of SiC_p/ZL104 composite foams were firstly performed. The experimental results and the deformation mechanism of the composite foams were explained in theory. A theoritical analysis was carried out to show the relationship between the yield strength of SiC_p/ZL104 composite foams, the relative density of SiC_p/ZL104 composite foams, and the volume fraction of SiC particles. And the efficient paths to improve the energy absorption ability were suggested. The results are as follows:
     1. The deformation mechanism of SiC_p/ZL104 composite foams is layer by layer under the quasi-static loading, which leads to the long collapse plateau region in stress-strain curves. The collapse plateau region of SiC_p/ZL104 composite foams exhibits serrate undulation, which differs from that of ZL104 foams. SiC_p/ZL104 composite foams are of well compressive property. The compressive deformation course of SiC_p/ZL104 composite foams involves three stages: the linearly elastic deformation region, the collapse plateau region, and the densification region.
     2. The yield strength of SiC_p/ZL104 composite foams with different sizes of SiC particles increases with the increase of the volume fraction of SiC particles when the relative density and pore diameter are identical. But the yield strength of SiC_p/ZL104 composite foams with the identical volume fraction of SiC particles increases with the decrease of the size of SiC particles.
     3. The yield strength of SiC_p/ZL104 composite foams increases with the decrease of pore diameter when the relative density, the size and the volume fraction of SiC particles are identical.
     4. The yield strength and flow stress of SiC_p/ZL104 composite foams also increases with the increase of the relative density when the pore diameter, the size and the volume fraction of SiC particles are identical.
     5. The equation between the yield strength, the relative density, and the volume fraction of SiC particles in SiC_p/ZL104 composite foams under the quasi-static loading was established.
     6. The energy absorption ability and energy absorption plots of SiC_p/ZL104 composite foams with different relative densities, pore diameters, and the volume fraction and size of SiC particles were investigated. The results show that the energy absorption ability of foams mainly lies on the height and length of the collapse plateau region. Therefore, the factors, which affect the height and length of the collapse plateau region, will have effect on the energy absorption ability of foams. Choosing small size of SiC particles as reinforced material, thinning pore diameter, and increasing the relative density of SiC_p/ZL104 composite foams with the same volume fraction of SiC particles can improve the energy absorption ability under the quasi-static loading. Or when other characteristic parameters are identical, increasing the volume fraction of SiC particles can also improve the energy absorption ability under the quasi-static loading.
     Thirdly, Split Hopkinson Pressure Bar (SHPB) system was used to test the dynamic compressive property of SiC_p/ZL104 composite foams. The systemic researches on the effects of the strain rate, the average diameter of pores, the relative density and SiC particle on the dynamic compressive properties and energy absorption ability of SiC_p/ZL104 composite foams were firstly performed. The influencing rules of the composite foams were explained in theory with corresponding structure models. Moreover, the strain rate sensitivity of SiC_p/ZL104 composite foams was analyzed. The results are as follows:
     1. The stress-strain curves of SiC_p/ZL104 composite foams under dynamic loading are similar to that of SiC_p/ZL104 composite foams under quasi-static loading. But the yield strength exhibits remarkable variety. Moreover, with the increase of the strain rate, the strain hardening occurs. The main reason is the intrinsic strain rate sensitivity of SiC_p/ZL104 composite and the effect of micro-inertia on the strain rate sensitivity. SiC_p/ZL104 composite foams is a kind of strain sensitive material, and its strain sensitivity parameter is higher than those of aluminum foams and pure aluminum. The yield strength of SiC_p/ZL104 composite foams with identical characteristic parameters increases with the increase of the strain rate. Further more, the increase speed of the yield strength of SiC_p/ZL104 composite foams under high strain rate is higher that under low strain rate.
     2. The effects of pore diameter (1-2.5mm) and sizes of SiC particles (5-28μm) on the dynamic compressive property of SiC_p/ZL104 composite foams with the same relative density were not obvious. With the increase of the relative density and the volume fraction of SiC particles, the dynamic yield strength and flow stress of SiC_p/ZL104 composite foams increase markedly as compared with those under the quasi-static loading.
     3. The energy absorption ability and energy absorption plots of SiC_p/ZL104 composite foams with different strain rate, relative density, pore diameter, and size and volume fraction of SiC particles were investigated. The results show that the energy absorptivity of SiC_p/ZL104 composite foams increase in different extent with the increase of the strain rate, the relative density, and the volume fraction of SiC particles, and the decrease of the size of SiC particles. The change of the energy absorptivity of SiC_p/ZL104 composite foams is unobvious with pore diameter between 1mm and 2.5mm.
     Fourthly, sandwiches with SiC_p/ZL104 composite foams core in three layers, five layers and seven layers were made for the first time. Three-point bending tests of the sandwiches with SiC_p/ZL104 composite foams and ZL104 foams core were performed. The results are as follows:
     1. P-δcurves of the sandwiches involve three stages: the linear region, the elastic-plastic region and the unsteady region. Three failure modes of the sandwiches under three-point bending are panel-yield, core-yield and bonding-damage. The theoretical value of the bending stiffness of the sandwiches is slightly greater than the experimental value. The experimental results coincide with the results calculated with limit load formulas.
     2. The bending stiffness of the sandwiches with SiC_p/ZL104 composite foams core increases in different extent with the increase of the relative density, thickness of surface panel, thickness of core material, and the volume fraction of SiC particles, and the decrease of the size of SiC particles. The bending stiffness of the sandwiches with SiC_p/ZL104 composite foams core is greater than that of the sandwiches with ZL104 foams core in the same relative density.
     3. The failure modes of the multilayer sandwiches are the combination of local indentation, core-shearing yield and bonding-damage.
     Finally, the damping properties of SiC_p/ZL104 composite foams at room temperature were tested. The damping mechanism of SiC_p/ZL104 composite foams was analyzed. The effects of the pores and SiC particles on the damping property of SiC_p/ZL104 composite foams were investigated. The results are as follows:
     1. The damping property of SiC_p/ZL104 composite foams in a given pore diameter at room temperature shows that the loss factor nonlinearly increases with the increase of the porosity, but the increment extent becomes more and more little. The loss factor of SiC_p/ZL104 composite foams increases gradually with increasing volume fraction of SiC particles and decreasing size of SiC particles.
     2. When other characteristic parameters are identical, the damping property of SiC_p/ZL104 composite foams at room temperature increases with the decrease of the pore diameter. Trend of decrease weakens gradually.
     3. When other characteristic parameters are identical, the damping property of SiC_p/ZL104 composite foams increases gradually with increasing thickness of the foams.
     4. The damping mechanism of SiC_p/ZL104 composite foams was investigated. When other characteristic parameters are identical, the damping property of SiC_p/ZL104 composite foams at room temperature is better than those of Al foams, SiC_p/ZL104 composites and ZL104 alloy due to the existence of pores in SiC_p/ZL104 composite foams and high density dislocation.
引文
[1] I. Nettleship. Applications of porous ceramics. Key Engineering Materials, 1996, 122-124: 305-324.
    [2] P.S. Liu, B. Yu, A.M. Hu, et al.. Techniques for the preparation of porous metals. Journal of mater science technology, 2002, 18(4): 299-305.
    [3] D.Q. Wang, Z.Y. Shi. Effect of ceramic particles on cell size and wall thickness of aluminum foam. Materials Science and Engineering A, 2003, 361: 45-49.
    [4] N. Babcsán, J. Banhart, D. Leitlmeier. Metal foams-manufacture and physics of foaming. International Conference “Advanced Metallic Materials”. Smolenice, Slovakia, 2003, November, 5-7.
    [5] F. Antonio, L. Lorenzo, G.H. Arve, et al.. Aluminium foam for automotive applications. Advanced Engineering Materials, 2000, 2(4): 200-204.
    [6] Ito, H. Kobayashi. Production and fabrication technology development of aluminum useful for automobile light weighting. Advanced Engineering Materials, 2006, 8: 828-835.
    [7] K.S. Asavavisithchai, A.R. Kennedy. The effect of compaction method on the expansion and stability of aluminium foams. Advanced Engineering Materials, 2006, 8: 810-815.
    [8] Tetsuji, Miyoshi, M. Itoh, et al.. ALPORAS aluminum foam: production process, properties, and applications. Advanced Engineering Materials, 2000, 2(4): 179-183.
    [9] L.J. Gibson. Mechanical behavior of metallic foams. Annual Review of Materials Science, 2000, 30: 191-227.
    [10] G.J. Davies, Z. Shu. Metallic foams: their production, properties and applications. Journal of Materials Science, 1983, 18: 1899-1911.
    [11] I. Jin, L. D. Kenny, H. Sang. Method of producing lightweight foamed metal. US Patent, 4973358, 1990.
    [12] H.B. Smith, A.F. Bastawros, D.R. Mumm, et al.. Compressive deformation and yielding mechanisms in cellular Al alloys determined using X-Ray tomography and surface strain mapping. Acta Materialia, 1998, 46: 3583-3592.
    [13] O.B. Olurin, N.A. Fleck, M.F. Ashby. Deformation and fracture of aluminum foams. Materials Science and Engineering A, 2000, 291: 136-146.
    [14] A.E. Simone, L.J. Gibson. Efficient structural components using porous metals. Material Science and Engineering A, 1997, 229: 55-62.
    [15] J. Banhart, W. Brinkrs. Fatigue behavior of aluminum foams. Journal of Materials Science Letters, 1999, 18: 617-619.
    [16] Y. Yamada, C. Wen, K. Shimojima, et al.. Effects of cell geometry on the compressive properties of Nickel foams. Materials Transaction, 2000, 41: 1136-1138.
    [17] H. Kanahashi, T. Mukai, Y. Yamada, et al.. Dynamic compression of an ultra -low density aluminum foam. Materials Science and Engineering A, 2000, 280: 349-353.
    [18] D.A. Crowson. Materials issues in impact engineering. 3rd International Symposium on Impact Engineering. Singapore, 1998, pp15-25.
    [19] 王祝堂。泡沫铝材:生产工艺、组织性能及应用市场(1)。轻合金加工技术,1999,10:5-8。
    [20] J. Baumelster. Aluminum foams for transport industry. Materials & Design, 1997, pp217-220.
    [21] J. Banhart, M.F. Ashby, N.A. Fleck. Metal foams and porous metal structure. Verlag MIT Bremen, 1999, pp5.
    [22] 张勇等。充满生机的新型功能材料—泡沫铝。山东工程学院报,1994,3:1-6。
    [23] 杨守春。孔向一致的莲藕型通多孔质金属(一)。现代材料动态,2000,10:5。
    [24] 宋振伦,何德坪。铝熔体泡沫形成过程中粘度对孔结构的影响。材料研究学报,1997,11:275-279。
    [25] 谢梁德。熔融法泡沫铝制备工艺的初步研究:硕士学位论文。北京科技大学,1995。
    [26] 吴照金,何德坪。泡沫 Al 孔结构的影响因素。材料研究学报,2000,14(3):277-282。
    [27] 何德坪,余兴泉。孔结构对通孔泡沫铝非线性阻尼性能的影响。材料研究学报,1997,11:101-103。
    [28] 刘培生,吕明,李铁潘等。发泡镍电阻率的孔率计算法。材料科学与工艺,1999,7(3):77-79。
    [29] J. Banhart. Aluminium foams for lighter vehicles. Inernational Journal of Vehicle Design, 2005, 37(2/3): 114-125.
    [30] J. Banhart. Manufacture, characterization and application of cellular metals and metal foams. Progress in Materials Science, 2001, 46: 559-632.
    [31] J. Yanmaguchi. Compound alloy piston improves diesel performance durability. Automotive Engineering, 1986, 94(9): 81-82.
    [32] T.D. Claar, C.J. Yu, I. Hall, et al.. Ultra-light-weight aluminum foam materials for automotive applications. International Journal of Powder Metallurgy, 2000, 36(6): 61-66.
    [33] H.W. Seeliger. Metal foams and porous metal structures. Internal Conference on Metal Foams and Porous Metal Structures, MIT Press-Verlag, 1999, pp29.
    [34] H.D. Kunze, J. Baumeister, J. Banhart, et al.. P/M technology for the production of metal foams. Project Management Institute, 1993, 25(4): 182-185.
    [35] 王松林,凤仪,徐屹等。碳化硅增强泡沫铝层合圆管的制备及力学性能研究。中国机械工程,2006,17(18):1959-1963。
    [36] 左孝青,周芸,译。多孔泡沫金属。化学工业出版社,2005。
    [37] H. G.Hanusa. Reticular Structures and methods of producing same. US Patent, 3549505, 1970.
    [38] L.A. Arbuzova, Y.V. Shmakov, M.V. Zenina, et al.. Foamed aluminium as the new prospective material for air-planes, automobiles and ship. Tsveth Met, 1997, 2: 62-65.
    [39] P.S. Liu, B. Yu, A.M. Hu, et al.. Development in applications of porous metals. Trans Nanferrous Met Soc China, 2001, 11(5): 629-638.
    [40] 余根新。电池纤维基板的发展与应用。电池,1996,26(2):86-90。
    [41] M. Naoe. Vibration damping composite aluminum alloy shape and foamed damping material. Sumitomo Light Metal Technical Reports, 1994, 35(3/4): 105-111.
    [42] 宝鸡有色金属研究所。粉末冶金多孔材料(下册)。冶金工业出版社,1978,pp81-195.
    [43] A.G. Evans, J.M. Hutchinsom, M.F. Ashby. Multifunctionality of cellular metal systems. Progress in Materials Science, 1999, 43: 171-221.
    [44] S. Akiyama, K. Imagawa, Kitahara A, et al. Foamed metal and method for producing the same. US Patent, 4712277, 1987.
    [45] C.C. Yang, H. Nakae. Foaming characteristics control during production of aluminum alloy foam. Jounal of Alloy and Compounds, 2000, 313: 188-191.
    [46] D. Leitlemeier, H.P. Degischer. The role of oxidation in blowing particle-stabilised aluminium. Advanced Engineering Materials, 2004, 6(6): 421-428.
    [47] Oxberry Eve. Foam home. Engineering, 2003, 244(9): 59-60.
    [48] 余东梅。泡沫铝的制备与应用。铝加工,2004,2(155):24-26。
    [49] 张勇。泡沫铝的低压渗流工艺及常见缺陷分析。铸造技术,2004,25(8):596-599。
    [50] L.Q. Ma, Z.L. Song, D.P. He. Cellular structure controllable aluminium foams produced by high pressure infiltration process.Scripta Material, 1999, 41(7): 785-789.
    [51] 王月,付自来。真空渗流法制备的通孔泡沫铝的吸声性能。材料开发与应用,2000,15(3):12-15。
    [52] G.J. Davies, Z. Shu. Metallic foams: their production, properties and applications. Journal of materials science, 1983, 18: 1899-1911.
    [53] 赵万祥,赵乃勤,郭新权。新型功能材料泡沫铝的研究进展。金属热处理,2004,29(6):7-11。
    [54] 王芳,王录才。粉体发泡法泡沫铝制备工艺及性能的研究。铸造设备研究,2002,1:16。
    [55] V. Shapovalov. Method for producing shaped slabs of particle stabilized foam metals. US Patent, 5181549, 1993.
    [56] 武小娟,孙伟成,随至成。泡沫铝的制备技术。沈阳工业学院院报,2001,20(1):67-69。
    [57] J.R. Brannan, A.S. Bean, A.J. Vaccaro, et al.. Continuous electroplating of conductive foams. US Patent, 5098544, 1992.
    [58] L. Bonaccorsi, E. Proverbio. Powder compaction effect on foaming behavior of uni-axial pressed PM precursors. Advanced Engineering Materials, 2006, 8(9): 864-889.
    [59] J. Baumeister, J. Schrader. Methods for manufacturing foamable metal bodies. German Patent, DE 4101630, 1991.
    [60] J. Banhart, J. Baumeister, M. Weber. Metal foams near commercialization. Metal Powder Report, 1997, 52(4): 38-41.
    [61] P.S. Liu, K.M. Liang. Functional materials of porous metals made by P/M, electroplating and some other techniques. Journal of materials science, 2001, 36: 5059-5072.
    [62] K.Kitazono, E.Sato, K.Kuribayashi. Novel manufacturing process of closed-cell aluminum foam by accumulative roll-bonding. Scripta Materialia, 2004, 50:495-498.
    [63] S. Esmaeelzadeh, A.Simchi, D.Lehmhus. Effect of ceramic particle addition on the foaming behavior, cell structure and mechanical properties of P/M AlSi7 foam. Materials Science and Engineering A 2006, 424: 290-299.
    [64] S.Asavavisithchai, A.R.Kennedy. The effect of Mg addition on the stability of Al–Al2O3 foams made by a powder metallurgy route. Scripta Materialia, 2006, 54: 1331-1334.
    [65] M. Haesche, J. Weise, F. Garcia-Moreno, et.al.. Influence of particle additions on the foaming behaviour of AlSi11/TiH2 composites made by semi-solid processing. Materials Science and Engineering A, In Press.
    [66] M.C. Gui, D.B. Wang, J.J. Wu. Deformation and damping behaviors of foamed Al–Si–SiCp composite. Materials Science and Engineering A, 2000, 286: 282-288.
    [67] 罗洪杰,姚广春,刘宜汉等。粉煤灰增黏制备泡沫铝材料的研究。东北大学学报,2005,26(3):274-277。
    [68] 赵乃勤,赵万祥,姜斌等。冷压-溶解-真空烧结法制备泡沫铝的阻尼性能研究。粉末冶金技术,2006,24(2):127-130。
    [69] 王松林,凤仪,徐屹等。碳化硅增强泡沫铝层合圆管的制备及力学性能研究。中国机械工程,2006,17(18):1959-1963。
    [70] H.W. Seeliger. Aluminium foam sandwich (AFS) ready for market introduction. Advanced Engineering Materials, 2004, 6(6): 448-451.
    [71] U. Ramamurty, M.C. Kumaran. Mechanical property extraction through conical indentation of a closed-cell aluminum. Acta Materialia, 2004, 52(1): 181-189.
    [72] D. Leitlmeier, H.P. Degischer, H.J. Flankl. Development of a foaming process forparticulate reinforced aluminum melts. Advanced Engineering Materials, 2002, 4(10):735-740.
    [73] 左孝青,周芸,赵国宾等。CaCO3 发泡剂制备泡沫铝工艺研究。稀有金属,2004,28(1):195-198。
    [74] F. Jeanette, G. Vlado, M. Andreas, et al.. The effect of prior deformation on the foaming behavior of FORMGRIP precursor material. Advanced Engineering Materials, 2002, 4(10): 749-752.
    [75] K. Makoto, K. Naoyuki. Processing of intermetallic foam by combustion reaction. Advanced Engineering Materials, 2002, 4(10): 745-747.
    [76] K.B. Kann. Sound waves in foams. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2005, 263: 315-319.
    [77] 杨留栓,沙全友,刘亚民等。ZA27 泡沫金属基高阻尼复合材料。特种铸造及有色合金,1999,1(S):53-54。
    [78] 程和法。泡沫铝合金阻尼性能的研究。材料科学与工程学报,2003,21(4):521-523。
    [79] I.S. Golovin, H.R. Sinning, I.K. Arhipov, et al.. Damping in some cellular metalic materials due to microplasticity. Materials Science and Engineering A, 2004, 370: 531-536.
    [80] J.J. Wu, C.G. Li, D.B. Wang, et al.. Damping and sound absorption properties of particle reinforced Al matrix composite foams. Composites Science and Technology, 2003, 63: 569-574.
    [81] T.J. Lu, C. Chen. Metal foams and porous metal structures. MIT Verlag, 1999, pp391.
    [82] 吕艳凤,程和法,王强等。开孔泡沫铝导电性的研究。金属功能材料,2006,13(3):4-8。
    [83] A. Kim, M.A. Hasan, S.H. Nahm, et al.. Evaluation of compressive mechanical properties of Al-foams using electrical conductivity. Composite Structures, 2005, 71: 191-198.
    [84] J. Kovacik, F. Simancik. Aluminum foam modulus of elasticity and electrical conductivity according to percolation theory. Scripta Materialia, 1998, 39: 239-246.
    [85] Y. Feng, H.W. Zheng, Z.G. Zhu. The microstructure and electrical conductivity of aluminum alloy foams. Materials Chemistry and Physics, 2002, 78: 196-201.
    [86] 黄福祥,金吉琰,范嗣元等。电磁屏蔽材料。材料导报,1997,11(3):18-21。
    [87] S. Landgilois. F. Coeuert. Flow-through and flow-by porous electrodes of Nickel foam. Journal of Applied Electrochemistry, 1989, 19: 43-50.
    [88] 凤仪,朱震刚,陶宁等。闭孔泡沫铝的导热性能。金属学报,2003,39(8):817-820。
    [89] D. Leitlmeier, H.P. Degischer, H. Flankl. Metallurgical prerequisites for the production of cellular aluminium castings direct from the melt. Casting Plant and Technology International, 2003, 19(1): 20-30.
    [90] 桂满昌,吴洁君,袁广江等。泡沫 SiC 颗粒增强铝基复合材料的制备工艺和拉伸强度。材料工程,2001,1:26-27。
    [91] A.R. Kennedy, S. Asavavisitchai. Effects of TiB2 particle addition on the expansion, structure and mechanical properties of PM Al foams. Scripta Materialia, 2004, 50: 115-119.
    [92] S. Elbir, Syilmaz, A.K Tolosoy, et al.. SiC-particulate aluminum composite foams produced by powder compacts: foaming and compression behavior. Journal of Materials Science, 2003, 38: 4745-4755.
    [93] 罗守靖。复合材料液态挤压。冶金工业出版社,2002,pp210-212。
    [94] 张先棹。冶金传输原理,北京:冶金工业出版社,1988,pp165。
    [95] S.A. Mohamed. Behavior of closed cell aluminium foams upon compressive testing at elevated temperatures: experimental results. Materials Letters, 2007, 61(14/15): 3138-3141.
    [96] D.P. Papadopoulos, I.C. Konstantinidis, N. Papanastasiou, et al.. Mechanical properties of Al metal foams. Materials Letter, 2004, 58(21): 2574-2578.
    [97] L.J. Gibson, M.F. Ashby. Cellular solids, structure and properties. Cambridge University Press, Cambridge, UK, 1997, 2nded, pp169, 180, 205.
    [98] C.J. Yu, H.H. Eifert, J. Banhart, et al.. Metal foams. Advanced Materials & Processes. 1998, 11: 45-47.
    [99] 赵品,谢辅洲。材料科学基础。哈尔滨工业大学出版社,2000,pp138。
    [100] E. Orowan. Internal stress in metals and alloys. The Institute of Metals, 1948, pp451.
    [101] D.J. Green. Technique for introducing surface compression into Zirconia ceramics. Journal of the American Ceramic Society, 1983, C: 178-179.
    [102] 魏建锋,宋余九。颗粒增强纯铝基复合材料的增强机制。稀有金属材料与工程,1994,23(3):17-22。
    [103] Z.Y. Ma, Y.L. Li, Y. Liang, et al.. Nanometric Si3N4 particulate-reinforced aluminum composite. Materials Science and Engineering A, 1996, 219(1/2): 229-231.
    [104] Z. Zhang, D.L. Chen. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength. Scripta Materialia, 2006, 54(7): 1321-1326.
    [105] Q. Zhang, D.L. Chen. A model for predicting the particle size dependence of the low cycle fatigue life in discontinuously reinforced MMCs. Scripta Materialia, 2004, 51(9): 863-867.
    [106] C.W. Nan, D.R. Clarke. The influence of particle size and particle fracture on the elastic/plastic deformation of metal matrix composites. Acta materialia, 1996, 44(9): 3801-3811.
    [107] 邓楚平。挤压态 Cu-Al2O3 弥散强化铜合金组织结构与强化机制的定量探讨。湖南大学学报,2006,33(1):94-97。
    [108] B.H. Tian, P. Liu, K.X. Song, et.al.. Microstructure and properties at elevated temperature of a nano-Al2O3 particles dispersion-strengthened copper base composite. Materials Science and Engineering A, 2006, 435-436(5): 705-710.
    [109] J.J. Lewandowski, D.S. Liu, C. Liu. Observations on the effects of particulate size and superposed pressure on deformation of metal matrix composites. Scripta Metallurgica et Materialia, 1991, 25(1): 21-26.
    [110] S. Stefano, C. Marcello, E. Enrico, et al.. Creep properties of an Al-2024 composite reinforced with SiC particulates. Materials Science and Engineering A, 2002, 328: 39-47.
    [111] 陈剑锋,武高辉,孙东立等。金属基复合材料的强化机制。航空材料学报,2002,22(2):49-53。
    [112] W.S. Miller, F.J. Humphreys. Strengthening mechanism in particulate metal matrix composites. Scripta Metal et Mater, 1991, 25:33-38.
    [113] B. Benoit, C. Thierry, R. Tanguy, et al.. SiC particle reinforced oxynitride glass: processing and mechanical properties. Journal of the European Ceramic Society, 1997, 17: 773-780.
    [114] R.L. Fullman. Measurement of particle sizes in opaque bodies. Trans. AIME, 1953, 197: 447-452.
    [115] H.W. Song, Z.J. Fan, G. Yu, et al.. Partition energy absorption of axially crushed aluminum foam-filled hat sections. International Journal of Solid Structures, 2005, 42(10): 2575-2600.
    [116] 郑明军,何德坪,陈锋。多孔铝合金的压缩应力-应变特征及能量吸收性能。中国有色金属学报,2001,11(2):81-85。
    [117] J. Miltz, G. Gruenbaum. Evaluation of cushion properties of plastic foams compressive measurements. Ploymer Engineering and Science. 1981, 21: 1010-1014.
    [118] 曾斐,潘艺,胡时胜。泡沫铝缓冲吸能评估及其特性。爆炸与冲击,2002,22(4):358-362。
    [119] J.W. Tedesco, C.A. Ross, S.T. Kuftnnen. Strain rate effect on the compressive foam. Materials Science and Engineering A, 2000, 281(1/2): 1-7.
    [120] R. Othman, G. Gary. Testing aluminum alloy from quasi-static to dynamic strain-rates with a modified Split Hopkinson Bar method. Experimental Mechanics, 2007, 47(2): 295-299.
    [121] T. Beals, M.S. Thompson. Density gradient on aluminum foam compression behavior. Journal of Materials Science, 1997, 32: 3595-3600.
    [122] A.E. Simone, L.J. Gibson. Effects of solid distribution on the stiffness and strength of metallic foams. Acta Materialia, 1998, 46(6): 2139-2150.
    [123] V.S. Deshpande, N.A. Fleck. High strain rate compressive behavior of aluminum foam alloy foams. International Journal of Impact Engineering, 2000, 24(3): 277-298.
    [124] K.A. Dannemann, J.L. James. High strain rate compression of closed-cell aluminum foams. Mater Science and Engineering A. 2000, 293(1/2): 157-164.
    [125] T. Mukai, H. Kanahashi, T. Miyoshi, et al.. Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading. Scripta Materialia, 1999, 40(8): 921-927.
    [126] F. Yi, Z.G. Zhu, F.Q. Zu. Strain rate effects on the compressive property and the energy-absorbing capacity of aluminum alloy foams. Materials Characterization, 2001, 47(5): 417-422.
    [127] Z.Y. Dou, L.T. Jiang, G.H. Wu, et al.. High strain rate compression of cenosphere-pure aluminum syntactic foams. Scripta Materialia, 2007, 57(10): 945-948.
    [128] U.S. Lindholm. High strain rate test-measurement of mechanical properties.Techniques of Metals Research. New York: Interscience, 1969, pp197-271.
    [129] Kolsky H. An Investigation of the mechanical properties of materials at very high rates of loading. Proceedings of the Physical Society of London, 1949, B62: 676-700.
    [130] 王礼立,余同希,李永池。冲击动力学进展。中国科技大学出版社,1992,pp379-409。
    [131] R.M. Davies, S.C. Hunter. The dynamic compression test of solid by the method of the split Hopkinson pressure bar. Journal of the Mechanics and Physics of Solids, 1963, 11: 155.
    [132] J. Klepaczko, Z.E. Malinowski, K. Kawata, et al.. High Velocity Deformation of Solids. Springer-Verlag Berlin, 1978, pp403-416.
    [133] T. Mukai, T. Miyoshi, S. Nakano, et al.. Compressive response of a closed-cell aluminum foam at high strain rate. Scripta Materialia, 2006, 54(4): 533-537.
    [134] M.F. Ashby, R.F. Medalist. The mechanical properties of cellular solids. Metallurgical Transactions A, 1983, 14: 1755-1769.
    [135] J.W. Klintworth, W.J. Stronge. Elasto-plastic yield limits and deformation laws for transversely crushed honey combs. International Journal of Mechanical Science, 1988, 30: 273-292.
    [136] A. Paul, U. Ramamurty. Strain rate sensitivity of a closed-cell aluminum foam. Materials Science and Engineering A, 2000, 281: 1-7.
    [137] L. Blaz, E. Evangelista, Strain rate sensitivity of hot deformed Al and AlMgSi alloy. Material Science and Engineering A, 1996, 207(2): 195-201.
    [138] A.H. Cottrell, R.J. Stokes. Effects of temperature on the plastic properties of aluminum crystals. Proceedings of the Royal Society of London, 1955, A233: 17-34.
    [139] R.C. Picu, G. Vincze, F. Ozturk, et al.. Strain rate sensitivity of the commercial aluminum alloy AA5182-O. Materials Science and Engineering A, 2005, 390(1/2): 334-343.
    [140] H.P. Stüwe, P. Les. Strain rate sensitivity of flow stress at large strains. Acta Materialia. 1998, 46(18):6375-6380.
    [141] 金属机械性能编写组。金属机械性能。机械工程出版社,1983,pp45。
    [142] A.N. Gent, A.G. Thomas. Mechanics of foamed elastic materials. Rubber Chemistry and Technology, 1963, 36:597-610.
    [143] L.D. Oosterkamp, A. Ivankovic, G. Verizelos. High strain rate properties of selected aluminum alloys. Materials Science and Engineering A, 2000, 278: 225-235.
    [144] M.C. San, A. Moretensen. Deformation of open-cell aluminum foam. Acta Mater, 2001, 49: 3959-3969.
    [145] 于春田。金属基复合材料。冶金工业出版社,1995,pp96。
    [146] A.S. Craig, A.F. Norman. Material selection in sandwich beam construction. Scripta Materialia, 2004, 50(10): 1335-1339.
    [147] H.G. Allen. Analysis and design of structural sandwich panels. Pergamon Press, Oxford, 1969, pp280.
    [148] M. Xie, J.C. Chapman. Developments in sandwich construction. Journal of Constructional Steel Research, 2006, 62: 1123-1133.
    [149] M.F. Ashby, A.G. Evans, N.A. Fleck, et al.. Metal foams: a design guide. Butterworth-Heinemann, Oxford, 2000, pp60.
    [150] J. Banhart, N. Fleck, A. Mortensen. Cellular metals manufacture, properties, applications. International Conference on Cellular Metals and Metal Foaming Technology, 2003, 6: 23-25.
    [151] C. Chen, A.M. Harte, N. Fleck. The plastic collapse of sandwich beams with a metallic foam core. International Journal of Mechanical Sciences, 2001, 43(6): 1483-1506.
    [152] M.J. Yang, P.Z. Qiao. Impact and Damage prediction of sandwich beams with flexible core considering arbitrary boundary effects. Journal of Sandwich Structures and Materials, 2007, 9(5): 411-444.
    [153] R. Laag, F. Simancik, W. Rajner et al.. Aluminiumschaum-legierungen als neuartige Werkstoffe für den Leichtbau, Ranshofener Leichtmetalltage, Vom Werkstoff zum Bauteilsystem, 2000, pp169-184.
    [154] J.L. Yu, X. Wang, Z.G. Wei et al.. Deformation and failure mechanism ofdynamically loaded sandwich beams with aluminium-foam core. International Journal of Impact Engineering, 2003, 283: 331-347.
    [155] J. Banhart, M.F. Ashby, N.A. Fleck. Cellular metals and metal foaming technology. International Conference on Cellular Metals and Metal Foaming Technology, 2001, pp18-20.
    [156] J. Banhart, M.F. Ashby, N.A. Fleck. Metal foams and porous metal structures. International Conference on Metal Foams and Porous Metal Structures, 1999, pp5.
    [157] V.L. Tagarielli, V.S. Deshpande, N.A. Fleck. The dynamic response of composite sandwich beams to transverse impact. International Journal of Solids and Structures, 2007, 44(7/8): 2442-2457.
    [158] Y. Conde, A. Pollien, A. Mortensen. Functional grading of metal foam cores for yield-limited lightweight sandwich beams. Scripta Materialia, 2006, 54(4): 539-543.
    [159] 张林,何德。球形孔泡沫铝合金三明治梁的三点弯曲变形。材料研究学报,2005,19:361-368。
    [160] T.M. McCormack, T.M. Miller, O. Kesler et al.. The fatigue strength of sandwich beams with an aluminium alloy foam core. International Journal of Solids and Structures, 2001, 38(28/29): 4901-4920.
    [161] J. Romanoff, H. Remes, G. Socha, et al.. The stiffness of laser stake welded T-joints in web-core sandwich structures. Thin-Walled Structures, 2007, 45(4): 453-462.
    [162] 戴德沛。阻尼技术的工程应用。清华大学出版社,1991,pp4,18-19,40-48。
    [163] Z?aklina Gnjidic′, Dus?an Boz?ic′, Mirjana Mitkov. The influence of SiC particles on the compressive properties of metal matrix composites. Materials Characterization, 2001, 47: 129-138.
    [164] J. Wang, Z. Zhang, G. Yang. The dependence of damping capacity of PMMCs on strain amplitude. Computational Materials Science, 2000, 18: 205-211.
    [165] J. Zhang, R.J. Perez, E.J. Lavernia. Dislocation-induced damping in metal matrix composites. Journal of Materials Science, 1993, 28(3): 835-846.
    [166] R. Bauri, M.K. Surappa. Damping behavior of Al-Li-SiCp composites processed by stir casting technique. Metallurgical and Materials Transactions A, 2005, 36: 667-681.
    [167] P.K. Rohatgi, D. Nath, S.S. Singh, et al.. Factors affecting the damping capacity of cast aluminium-matrix composites. Journal of Materials Science, 1994, 29(22): 5975-5984.
    [168] 张小农,吴人洁,张荻等。高阻尼金属基复合材料的发展途径。1997,9:34-37。
    [169] 王月。舰船舱室减震降噪用泡沫金属铝的室温内耗性能研究。船舶力学,2005,9(1):111-114。
    [170] 薛诗桂。衰减介质中纵波与转换波的分辨率研究。勘探地球物理进展,2004,7(5):327-332。
    [171] H.J. Pain. The Physics of Vibrations and Waves. John Wiley—Sons Ltd., 1976, pp37-39.
    [172] 余兴泉,何德坪。泡沫金属机械阻尼性能研究。机械工程材料,1994,18(2):26-32。
    [173] F.S. Han, Z.G. Zhu, C.S. Liu. Nonlinear internal friction character of foamed aluminum. Chinese Physics Letter, 1998, 15(1): 52-53.
    [174] J.H. Gu, X.N. Zhang, M.Y. Gu et.al.. Damping behavior of aluminium matrix composites. Materials Science and Technology, 2004, 20(9): 1211-1214.
    [175] J.N. Wei, H.F. Cheng, Y.F. Zhang, et al.. Effects of macroscopic graphite particulates on the damping behavior of commercially pure aluminum. Materials Science and Engineering A, 2002, 325: 444-453.
    [176] C. Wang, Z.G. Zhu. Internal friction at medium temperature in an Al matrix composite reinforced by SiC particles. Scripta Materialia, 1998, 38(12): 1739-1745.
    [177] 樊建中,姚忠凯,杜善义。SiC 颗粒增强金属基复合材料弹性模量与界面结合状况关系研究。复合材料学报,1998,15(2):1-5。
    [178] 崔岩,耿林,姚忠凯。轻微界面反应对 SiCP6061Al 复合材料弹性模量的影响。复合材料学报,1998,15(1):74-77。
    [179] W.A. Lederman, P.D. Dissertation. The damping properties of composite materials. The University of Wisconsin, 1991, pp17.
    [180] J.H. Gu, X.N. Zhang, Y.F. Qiu, et al.. Damping behaviors of magnesium matrix composites reinforced with Cu-coated and uncoated SiC particulates. Composites Science and Technology, 2005, 65: 1736-1742.
    [181] J. Zhang, R.J. Perez, E.J. Lavernis. Effect of SiC and graphite particulates on the damping behavior of metal matrix composites. Acta Metallurgica et Materialia, 1994, 42(2): 395-409.
    [182] R.J. Arsenault, N. Shi. Dislocation generation due to differences between the coefficients of thermal expansion. Materials Science and Engineering, 1986, 81: 175-187.
    [183] 葛庭燧。固体内耗理论基础。科学出版社,2000,pp627。
    [184] www.pcauto.com.cn/qcyp/flsq/part705/0708/470174.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700