盐胁迫下小麦诱变系M3代幼苗生长及比较蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以小麦(Triticum aestivum L.)GA0602经化学诱变获得的小麦诱变系M3代为材料,研究了盐胁迫条件下诱变前后小麦发芽及幼苗生长的变化,进而鉴定出具有优良抗盐性的诱变系;同时利用双向电泳和质谱技术,并结合生物信息学研究方法,从蛋白质水平研究了盐胁迫下诱变前后小麦蛋白质表达丰度的变化,解析优良诱变系的盐胁迫应答蛋白的功能,为揭示诱变系耐盐机制提供实验依据。本研究获得了以下实验结果:
     通过高原602及化学诱变M3代种子在盐胁迫条件下的发芽和生理指标(SOD、POD、CAT、MDA、可溶性蛋白质)的变化,并利用模糊数学隶属函数分析进行综合评价,确定了400mmol·L-1NaCl为本实验小麦材料发芽能力的临界盐浓度,化学诱变后代CA08113K的耐盐能力优于其它诱变系。
     通过3种方法(TCA/丙酮法、尿素法、酚法)制备小麦幼苗总蛋白样品,利用SDS-PAGE和2-DE图谱分析确定了酚法为适合本实验材料的蛋白制备方法;对优良诱变系(GAO8113K)和对照(GAO811CK)在400mmol·L-1NaCl盐胁迫下的差异蛋白质组进行研究,以蛋白表达丰度变化上调2倍、下调1.5倍为标准,共检测到23个差异蛋白点,对其进行MALDI-TOF/TOF质谱鉴定分析,共有21个蛋白点获得了阳性鉴定,主要包括二磷酸核酮糖羧化加氧酶、果糖二磷酸醛缩酶、ATP酶合成亚基、热休克蛋白、V型氢离子ATP酶p亚基、S-腺苷甲硫氨酸合酶2等,这些蛋白在光合作用、能量代谢、物质代谢、分子伴侣和离子转运等方面发挥着重要作用。
     总之,化学诱变提高了高原小麦602的抗盐性,盐胁迫条件下诱变M3代种子发芽率和抗氧化酶活性增强,并在蛋白质水平上阐明了化学诱变导致小麦抗哉机制的变化,为深入研究化学诱变系的抗盐机制奠定了基础。
This research used the chemical mutagenic wheat GAO602(Triticum aestivum L.) as the experimental materials to study the effects on seed germination and seedling growth under the condition of the salt stresses,and then identified the one which have the excellent salt resistance. we measured changes in the proteome of the mutagenic wheat using two-dimensional gel electrophoresis(2-DE)via liquid chromatography-tandem mass spectrometry,illustrating the function of salt stress response proteins in the fine mutagenesis,This result provided the evidences to reveal the salt tolerance mechanisms.The experiment results showed as follows:
     As the test duration prolonged, there was a gradual increase in the content of soluble protein and MDA of the four varieties under the400mmol·L-1NaCl content stress, so was the antioxidase activity (SOD, POD, CAT). Five physical signs were selected including soluble protein, MDA, SOD, POD and CAT to evaluate the capacity of salt-tolerance by empirical distribution function and fuzzy membership function comprehensively. As a result,the mutagenic wheat GAO8113K reveals a better capacity of salt-tolerance than others,and that400mmol·L-1NaCl concentration should be the critical salt concentration to illustrate the germination of wheat seeds.
     We have established a suitable and effective protocol of protein extraction for two-dimensional gel electrophoresis(2-DE) analysis in the wheat leaf tissues by three extraction methods(Trichloroacetic acid/acetone method,Urea/thiourea method,Phenol extraction method).Then the results were compared in regard to protein extraction efficiency, sodiumdodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)and2-DE gels.Only protein identifications with score greater than P<0.05were considered to be positive.Statistical analysis of the density of differential spots in the2-DE gels.Twenty-three protein spots were significantly altered by exposure to the salinity environment.These proteins including ribulose-1,5-bisphosphate carboxylase activase,fructose-bisphosphate aldolase,ATP synthase subunit beta,heat shock protein,S-adenosylmethionine synthase2,oxygen evolving enhancer protein and so on. These proteins were associated with a variety of functions,including energy and material metabolism, protein metabolism,photosynthesis.
     Above all,the chemical mutagenesis improved the salt resistance of GAO602wheat variety and the seed germination and antioxidant enzyme activity of the M3generation wheat increased in the salt conditions,laying a foundation to the in-depth study about the mutagenic wheat salt tolerance mechanisms in the protein level.
引文
1. 陈沁,刘友良.谷肤甘肤对盐胁迫大麦叶片活性氧清除系统的保护作用[J].作物学报,2000,26(3):365-371.
    2. 戴松香,陈少良,Fritz E, Olbrich A, Kettner C, Polle A, Huttermann A2006.盐胁迫下胡杨
    和毛白杨叶细胞中的离子区隔化.北京林业大学学报,28(增刊2):1-5.
    3. 邓贵明,曾继吾,姜波等.柑橘叶片和果皮总蛋白质提取及双向电泳体系的建立[J].热带亚热带植物学报,2012,20(1):19-25.
    4. 董晓丽,周集体,杜翠红,等Rubisco的分子生物学研究.高技术通讯,2001,12:95-97.
    5. 杜世章,代其林,奉斌,等.不同浓度NaCl胁迫处理下豇豆幼苗抗氧化酶活性的变化[J].基因组学与应用生物学,2011,30(3):351-356.
    6. 费伟,陈火英,曹忠,等.盐胁迫对番茄幼苗生理特性的影响[J].上海交通大学学报:农业科学版,2005,23(1):5-9,30.
    7. 郭艳茹,詹亚光.植物耐盐性生理生化指标的综合评价[J].黑龙江农业科学,2006,15(1):66-70.
    8. 郭晓丽,时丽冉,白丽荣,等.不同小麦品种的耐盐性研究[J].江苏农业科学,2008,5(4):43-45.
    9. 郭伟,于立河.腐植酸浸种对盐胁迫下小麦萌发种子及幼苗生理特性的影响[J].麦类作物学报,2012,32(1):90-96.
    10.霍晨敏,赵宝存,葛荣朝,沈银柱,黄占景.小麦耐盐突变体盐胁迫下的蛋白质组分析.遗传学报,2004,31(12):1408-1414.
    11.刘国花.植物抗盐机理研究进展.安徽农业科学,2006,34:6111-6112.
    12.刘振林,戴思兰.2004.植物甜菜碱醛脱氢酶基因研究进展.西北农林科技大学学报,32:104-112
    13.刘训财,陈华锋,井立文,等.盐胁迫对中国春-百萨燕麦草双二倍体SOD、CAT活性和MDA含量的影响[J].安徽农学通报,2009,15(8):43-46.
    14.李景,刘群录,唐东芹,等.盐胁迫和洗盐处理对贴梗海棠生理特性的影响[J].北京林业大学学报,2011,36(6):40-46.
    15.李士磊,霍鹏,高欢欢,等.复合盐胁迫对小麦萌发的影响及耐盐阈值的筛选[J].麦类作物学报,2012,32(2):260-264.
    16.刘艳萌,张学英,葛会波,等.EMS处理对草莓离体叶片再生植株耐盐性的影响[J].河北农业大学学报,2006,29(6):25-28,18.
    17.李常健,林清华,张楚富,李泽松,彭进,朱英国,Peng Shao-bing, Bennett John.NaCl对水稻谷氨酰胺合成酶活性及同工酶的影响.武汉大学学报:自然科学版,1999,4(4):497-50.
    18.路洁,彭励,倪细炉,等.景大属5种景观地被植物抗旱能力的综合评价[J].中国农学通报,2011,27(4):108-114.
    19.马文月.2004.植物抗盐性研究进展.农业与技术.24:95-99.
    20.马丽清,韩振海,周二峰,许雪峰.2006.盐胁迫下珠眉海棠与山定子叶片Na区域化的研究.西北植物学报,26:1378-1383.
    21.任丽萍,范海延,王珊珊等.黄瓜叶片蛋白质双向电泳样品分级优化[J].西北植物学报,2011,31(3):632-638.
    22.魏秀君,殷云龙,芦治国,等NaCl胁迫对5种绿化植物幼苗生长和生理指标的影响及耐盐性
    综合评价[J].植物资源与环境学报,2011,20(2):35-42.
    23.于庆斌,王方正,薛庆中等.APX基因转化水稻及其功能的研究[J].中国植物生理学会全国学术年会暨成立40周年庆祝大会学术论文摘要汇编,杭州,2003,318.
    24.许祥明,叶和春,李国凤.植物抗盐机理的研究进展田.应用与环境生物学报,2000,6(4):379-387.
    25.杨少辉,季静,王罡,宋英今.2006.盐胁迫对植物影响的研究进展.分子植物育种,4:139-142.
    26.杨晓英,刘友良,罗庆云等.盐胁迫下野生大豆叶片中Na~+、CI~-积累导致活性氧伤害[J].大豆科学,2003,22(2):83-87.
    27.王萍,焦阵,杨春桥,等NaCl胁迫对玉米种子萌发和幼苗生长的影响[J].安徽农业科学,2010,38(4):1767-1768,1868.
    28.王萍,杨春桥,焦阵NaCl胁迫对小麦种子萌发与幼苗生长的影响[J].中国农学通报,
    2010,26(2):127-131.
    29.徐子剑,舒骁,杨亦玮,刘进元.棉花纤维蛋白质3种提取及二维电泳方法的比较,中国生物化学与分子生物学报,2006,22(1):77-80
    30.张兆英,于秀俊.植物抗盐性评价生理指标的分析.沧州师范专科学校学报,2006,22:51-5.
    31.赵可大,李法曾.1999.中国盐生植物.植物学通报16:201-207.
    32. Abeles FB, Morgan PW, Saltveit ME Regulation of ethylene production by internal, environmental,and stress factors.In FBAbeles,PW Morgan,ME Salveit,eds,Ethylene in Plant Biology,1992.
    33. Aghaei,K.;Ehsanpour,A.A.;Komatsu,S.Proteome analysis of potato under salt stress.Proteome Res.2008,7,4858-4868.
    34. AmtmannA,Sanders D.1999.Mechanisms of Na+ uptake by plant cells.Advances in Botanical Research,29:75-112.
    35. Arafet Manaa.Salt and genotype impact on plant physiology and root proteome variations in tomato.Journal of Experimental Botany, Vol.62, No.8, pp.2797-2813,2011.
    36. Aragao MEF, Jolivet Y.Silva Lima MG,Fernandes de Melo D, Dizengramel P(1997)NaCl-induced changes of NAD(P) malic enzyme activities in Eucalyptus citriodora leaves.Trees-Structure and Function,12,66-72.
    37. Arkadiusz Kosmala,Identification of leaf proteins differentially accumulated during cold acclimation between Festuca pratensis plants with distinct levels of frost tolerance. Journal of Experimental Botany, Vol.60, No.12, pp.3595-3609,2009
    38. Asada K.The water cycle in chloroplasts scavenging of active oxygen and dissipation of excess photons.Annu Rev Plant Physiol Plant Mol Biol,1999,50:601-639.
    39. Ashraf M,Foolad MR.2007. Roles of glycine betaine and Proline improving plant abiotic stress resistance.Environrnental&Experimental Botany,59(2):206-216.
    40. Ashraf M, Akram NA, Arteca RN, Foolad MR.2010. The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Critical Reviews in Plant Sciences 29,162-190.
    41. Audrius A Z,Andrew P B.Extraction methods for analysis of citrus leaf proteins by two-dimensional gel electrophresis[J]J Chromatogr,2005,1078(1/2):201-205.
    42. Bailly C,Audigier C,Ladonne F,Wagner MH,Coste F,Corbineau F,Come D.Changes in oligosaccharide content and antioxidant enzyme activities in developing bean seeds as related to acquisition of drying tolerance and seed quality[J].J ExpBot,2001,52(357):701-708.
    43. Bamidele JF,Malloch AJC.2006. Morphological and utrastructural studies of the salt gland of tree malow,Lavatera arborea L.(Malvaeeae).International Journal of Botany 2(3):313-318.
    44. Bhandal I S, Malic C P. Potassium estimation, uptake, and its role in the physiology and metabolism of flowering plants[J]. Int Rev Cytol,1988,110:205-254.
    45. Bhushan,D.;Pandey,A.;Choudhary,M.K.;Datta,A.;Chakraborty,S.Comparative proteomic analysis of differentially expressed proteins in chickpea extracellular matrix during dehydration stress.Mol.Cell.Proteomics 2007,6,1868-1884.
    46. Bowler C,Slooten L,Vandenbranden S et al.Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants[J].The EMBO Journal,1991,10(7):1723-1732.
    47. Carcia A B, Engler J A, Lyer S, et al. Effects of osmoprotectants upon NaCl stress in rice[J]. Plant Physiology,1997,115(1):159-169
    48. Chartzoulakis K,KlaPaki G.2000.Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Seientia Horticulturae,86:247-260).
    49. Chang-Xia Du,Huai-Fu Fan,Shi-Rong Guo,Takafumi Tezuka,Juan Li.Proteomic analysis of cucumber seedling roots subjected to salt stress.Phytochernistry 71(2010)1450-1459.
    50. Chitteti B R,Peng Z H,Proteome and phosphoproteome differential expression under salinity stress in rice(Oryza sativa)roots,Journal of Proteome Research,2007,6(5):1718-1727.
    51. Chotika Yokthongwattana,Proteomic analysis of salinity-stressed Chlamydomonas reinhardtii revealed differential suppression and induction of a large number of important housekeeping proteins.Planta (2012) 235:649-659。
    52. Choi KM, Lee MY. Effect of freezing stress on the proteome expression of Antarctic green microalga[J]. Molecular & Cellular Toxicology,2012, June; 8(2):163-169
    53. Cremer F, Van De Walle C. Method for extraction of proteins from green plant tissues for two-dimensional polyacrylamide gelelectrophoresis[J]. Analytical Biochemistry,1985,147: 22-26.
    54. Dat J,Vandenbeele S,Vranova E,Van Montagu M,Inze D,Van Breusegm F.Dual action of the active oxygen species during plant stress responses[J].Cell Mol Life Sci,2000,57:779-795.
    55. Donnell, PJ., Calvert, C., Atzorn,R., Wsternack, Leyser, H.M.O and Bowles, D.J Ethylene as a signal mediating the wound response of tomato plants.Science,1996,274:914-1917.
    56. Elstner EF 1987.Metabolism of activated oxygens species.In DD Davies,eds, The Biochemistry of plants,Vol 11:Biochemistry of Metabolism.Academic Press,San Diego,CA,pp253-315.
    57. Esechieih A. Partitioning of chloride ion in the germina-ting seed of two forage legumes under varied salinity and tem-perature regimes[J]. Communications in Soil Science and Plant Analysis, 1995,26(19):3357-3370.
    58. Espartero,J.,Pintor Toro,J.A.,Pardo,J.M.,Plant Mol.Biol.1994,25,217-227.
    59. Espartero J,Pintor-Toro JA.Pardo JM Differential accumulation of S-adenosylmethionine synthetase transcripts in response to salt stress.Plant MolBiol.1994,25:217-227.
    60. Faurobert M, Spelpoir E, Chaib J. Phenol extraction of proteins for proteomic studies of recalcitrant plant tissues[M]. Methods in Molecular Biology,2007, vol.335:9-15.
    61. Flores P, Botella MA, Martinez V, Cerda A.2000.Ionic and osmotic effeets on nitrate reductase activity In tomato seedlings.Journal of Plant Physiology,156:552-557.
    62. Fulda,S.;Mikkat,S.;Huang,F.;Huckauf,J.;et al.Proteome analysis of salt stress response in the cyanobacterium Synechocystis sp.strain PCC 6803.Proteomics 2006,6,2733-2745.
    63. Gallardo K,Job C,Groot S,Puype M,Demol H,Vandekerckhove J,Job D.2001.Proteomic analysis of Arabidopsis seed germination and priming.Plant Physiology 126,835-848.
    64. Ghoulam C, Foursy A, Fares K 2002. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany,47:39-50.
    65. Giavalisco P, Nordhoff E, Lehrachh, e t al.Extract ion of proteins from plant tissues for two-dimensional electrophoresis analysis[J].Electrophoresis,2003,24(1-2):207-216.
    66. Gray GR, Heath D. A global reorganization of the metabolome in Arabidopsis during cold acclimation is revealed by metabolic fingerprinting [J]. Physiol Plant,2005,124:236-248
    67. Griffith M, Lumb C, Wiseman SB, et al. Antifreeze proteins modify the freezing process in planta [J]. Plant Physiol,2005,138:330-340
    68. Gygi SP,Ri st B,Gerber SA,Turecek F,Gelb MH,Aebersold R.Ouantitative analysis of complex protein mixtures using isotope coded affinity tags.Nat.Biotechnol.1999b.17:94-999.
    69. Hanson A D,May A M.Betaine synthesis in chenopods::Localization in chlorplasts [J]. Pro.Natl.Acad.Sci.,USA,1985,82(1):3678.
    70. Hasegawa P M, Bressan R A, Zhu J K, et al. Plant cellular and molecular responses to high salinity[J]. Annu Rev Plant Physiol Plant Mol Biol,2000,51:463-499.
    71. Herman E M, Helm R M, Jung R, Kinney A J. Genetic modification removes an immunodominant allergen from soybean[J]. Plant Physiology,2003,132:36-43.
    72. Hernandez JA,Olmos E,Corpas FJ,Sevilla F,Rio LA Smalle.Salt-induced oxidative stress in chloroplasts of pea plants [J]. Plant Sci,1995,105:151-167.
    73. Hoekstra FA, Golovina, E.A.and Buitink, J.(2001) Mechanisms of Plant desiccation tolerance.Trends in Plant Science,6,431-38.
    74. Hong Yu,Xi Chen,Yuan-Yuan Hong et al.Activated Expression of an Arabidopsis HD-START Protein Confers Drought Tolerance with Improved Root System and Reduced Stomatal Density[J].The Plant Cell,2008,20(1):1134-1151.
    75. Hoshi H, Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Talabe T, Takabe T. Enhanced tolerance to salt stress in transgenic rice that overexpress cholorplast glutamine sythetase. Plant Molecular Biology,2000,43:103-111.
    76. In-Hwa, Oxidative stress in greater duckweed (Spirodela polyrhiza) caused by long-term NaCl exposure. Acta Physiol Plant (2012) 34:1165-1176.
    77. Iyengar E R,Reddy M P.Photosynthesis in highly salt tolerant plants[J].1996:897-909.
    78. Jiang M,Zhang J.Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize teaves[J].J Exp Bot,2002b,53(379):2401-2410.
    79. Jiang Y Q, Yang B, Harris N S. Deyholos M K. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. Journal of Experimental Botany,2007,58(13):3591-3607.
    80. Jiang Y-Q,Deyholos MK.2006.Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes.BMC Plant Biology 6,25.
    81. Jimnez-Bremont JF, Becerra-Flora A, Hernandez-Lucero E, Rodriguez-Kessler M,Acosta-Gallegos JA, Ramirez-Pimentel JG 2006. Proline accumulation in two bean cultivars under salt stress and the effect of polyamines and ornithine.Biologia Plantarum,50:763-766.
    82. Jones AM, Dangl JL Logjam at the styx:programmed cell death in plants.Trends Plant Sci,1996, 1:114-119.
    83. Kahl, J, Siemens, D.H., Aerts, R.J., Preston, C.A.and Baldwin, Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore.Planta,2000,210:336-342.
    84. Kawamura Y, Uemura M. Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation [J]. Plant J,2003,36: 141-154
    85. Kavikishor P B.Salt stress in cultured rice cells:effects of praline and abscisic acid [J].Plant Cell Envi.,1989(12);629.
    86. Kawalleck P, Plesch G,Halhbrock K, Somssich IE Induction of S-adenosyl-1-methionine synthetase and S-adenosyl-lhomocysteine hydrolase mRNAs in cultured cells and leaves of Petroselium crispum.Proc Natl Acad Sci USA1992,89:4713-4717.
    87. Keyvan Aghaei,Crop and medicinal plants proteomics in response to salt stress. January 2013doi: 10.3389/fpls.2013.00008
    88. Khan MA, Ungar IA, Showalter AM.2000.Effects of sodium chloride treatments on growth and ion accumulation of the halophyte Haloxylon recurvum.Communications in Soils science and Plant Analysis,31:2763-2774.
    89. Kim D W, Rakwal R Dr, Agrawal G K, Jung Y H, Shibato J, Jwa N S, Iwahashi Y, Iwahashi H, Kim D H, Shim I S, Usui K. A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis,2005,26(23):4521-4539.
    90. Kim Y O, Pan S, Jung C H, Kang H. A zinc finger- containing glycine- rich RNA- binding protein, atRZ-la, has a negative impact on seedgermination and seedling growth of Arabidopsis thaliana under salt or drought stress conditions. Plant and Cell Physiology,2007,48 (8):1170-1181.
    91. Kim YC, Kim SY, Choi D, et al. Molecular characterization of a pepper C2 domain-containing SRC2 protein implicated in resistanceagainst host and non-host pathogens and abiotic stresses [J]. Planta,2008,227(5):1169-79
    92. Kluge C, Lamkemeyer P, Tavakoli N, et al. cDNA cloning of 12 subunit of the V-type ATPase from mesembryanthemum crystallinum and their expression under stress [J]. Mol Membr Biol, 2003,20(2):171-183.
    93. Kornyeyev D,Barry A Longan et al.Enhanced photochemical light utilization and decreased chilling-induced photoinhibition of photosystem Ⅱ in cotton over expressiongenes encoding chloroplast-targeted antioxidant enzymes[J].Physiol Plant,2001,113(3):323-331.
    94. Lazareva EM, Chentsov IuS, Smirnova EA. The effect of low temperature on the microtubules in root meristem cells of spring and winter cultivars of wheat Triticum aestivum L [J]. Tsitologiia.2008,50(7):597-612
    95. Leterrier M, Del Rio LA, Corpas FJ. Cytosolic NADP-isocitrate dehydrogenase of pea plants: genomic clone characterization and functional analysis under abiotic stress conditions [J]. Free Radical Research,2007,41(2):191-9
    96. Lee,S.,Lee,E.J.,Yang,E.J.,Lee,J.E.,Park,A.R-,Song,W.H.,Park,O.K.,2004. Proteomic identification of annexins,calcium-dependent membrane binding proteins that mediate osmotic stress and abscisic acid signal transduction in Arabidopsis.Plant Cell 16,1378-1391.
    97. LiXJ, Yang M F, Chen H, Qu L Q, Chen F, Shen S H. Abscisic acid pretreatment enhances salt tolerance of rice seedlings:proteomic evidence.Biochimica et Biophysica Acta,2010,1804(4):929-940.
    98. Lourdes Gomez-Gomez2 and Pedro Carraseo* Differential Expression of the S-Adenosyl-L-Methionine Synthase Genes during Pea Development.Plant Physiol 1998, 117:397-405.
    99. Maeshima M.Tonoplast transporters:Organization and function[J].Physiol Plant Mol Biol,2001,52:469-497.
    100. Malakshah S N, Rezaei M H. Heidari M, Salekdeh G H. Proteomics reveals new salt responsive proteins associated with rice plasma membrane. Bioscience,Biotechnology,and Biochemistry,2007,71(9):2144-2154.
    101. Mariapina Rocco. Salt Stress Responses in Pinus halepensis.merican Journal of Plant Sciences, 2013,4,674-684
    102. McKersie B D,Bowley S R,Jones K S.Winter survival of transgenic alfalfa overexpressing superoxide dismutase[J].Plant Physiol,1999,119:839-848.
    103. Moller IM.2001.Plant mitochondria and oxidative stress:electron transport,NADPH turnover,and metabolism of reactive oxygen species.Annual Review of Plant Physiology and Plant Molecular Biology 52,561-591.
    104. Moonil Kim,Hye Sun Cho,Do-Myung Kim,Jeong Hee Lee,Hyun-Sook Pai*CHRKl,a chitinase-related receptor-like kinase,interacts with NtPUB4,an armadillo repeat Protein,in tobacco.Biochimica et Biophysica Acta 2003,1651:50-59.
    105. Munns R.1993. Physiological processes limiting plant growth in saline soils:some dogmas and hypotheses.Plant cell and Environment,16:15-24.
    106. Munns,R.;James,R.A.;Lauchli,A,Approaches to increasing the salt tolerance of wheat and other cereals.Exp.Bot.2006,57(5),1025-1043.
    107. Ndimba B K,Chivasa S,Simon W J,Slabas A R.Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics,2005,5(16):4185-4196.
    108. Niu X,Bressan RA,Hasegawa PM,Pardo JM.Ion homeostasis in NaCl stress environments[J]. Plant Physiol,1995,109(3):735-742.
    109. Pandey A,Mann M.Proteomics to study genes and genomes[J].Nature,2000,405:837-846.
    110. Pang Q Y, Chen S X, Dai S J, Chen Y Z, Wang Y,Yan X F. Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila.Journal of Proteome Research, 2010,9(5):2584-2599.
    111. Pan J, Zhang M, Kong X, et al. ZmMPK17, a novel maize group D MAP kinase gene, is involved in multiple stress responses [J]. Planta,2012,235(4):661-76
    112. Parida A,Das AB,Das P.2002.NaCl stress cause changes in photosynthetic pigments, proteins, and other metabolic components in the leaves of a true mangrove,Bruguiera parviflora, in hydroponic cultures.Journal of plant Biology,45:28-36
    113. Parida A K,Das A B,Mittra B.Effects of salt on growth,ion accumulation photosynthesis and leaf anatomy of the mangrove Bruguiera parviflora[J].Trees-Struct Funct,2004,18:167-174.
    114. Parida,A.K.,Das,A.B.,2005.Salt tolerance and salinity effects on plants:a review. Ecotoxicol.Environ.Saf.60,324-349.
    115. Parker R, Flowers T J, Moore A L, Harpham N V J. An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. Journal of Experimental Botany,2006,57(5):1109-1118.
    116. Pawtowski TA. Proteome analysis of Norway maple (Acer platanoides L.) seeds dormancy breaking and germination:influence of abscisic and gibberellic acids [J]. BMC Plant Biology,2009,9:48
    117. Pommerrenig B,Papini-TerZi FS,SauerN.2007 Differential regulation of sorbitol and sucrose loading into the Phloem of Plantago major in response to salts tress.Plant Physiology,144:1029-1038.
    118. Rao S,Pendleton MW,Kim H,Binzel ML,Ellis EA.2008.An ultrastructural study of salt glands in Zoysia matrella. Microscopy and Microanalysis,14:1446-1447.
    119. Ratajczak R.Structure.function and regulation of the plant vacuolar H+-translocating ATPase [J]. Biochim Biophys Acta,2000,1465(1-2):17-36.
    120. Rehana Kausar.Proteomics analysis of sensitive and tolerant barley genotypes under drought stresso Amino Acids (2013) 44:345-359
    121. Rhee SG,Kim KH,Chae HZ,Yim MB et al.Antioxidant defense mechanisms:a new thiol-specific antioxidant enzyme[J].Ann N Y Acad Sci,1994,738:86-92.
    122. Salehdeh G H, Siopomgcp J, Wade L J, Ghareyazie B, Bennett J. A proteomic approach to analyzing drought- and salt- responsiveness in rice. Field Crops Research,2002,76(2/3:199-219).
    123. Sakamoto A.Murata A.Murata N.Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold.Plant Mol Biol,1998,38:1011-1019.
    124. Saravanan R S, Rose J K C.A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues[J].Proteomics 2004(4) 2 522 2 532.
    125. Schaeffer,G.W.,Sharpe,F.T.,Sicher,R.C.,1997.Fructose 1,6-bisphosphate aldolase activity in leaves of a rice mutant selected for enhanced lysine.Phytochemistry 46,1335-1338.
    126. Schachtman D,Liu W.1999.Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in Plants.Trends in Plant Science,4:281-287.
    127. Schmitt S,Neeb A,Karl S,Linder M,Schubert S.The biochemical reaction ofmaize(Zea mays L.)to salt stress is characterized by amitigation of symptoms and not by a specific adaptation.Plant Sci 2004;167:91-100.
    128. Schroder,G.,Eichel,J.,Breinig,S.,Schroder,J.,Plant Mol.Biol.1997,33,211-222.
    129. Sengupta S, Patra B, Ray S, Majumder AL.2008. Inositol methyl tranferase from a halophytic wild rice, Porteresia coarctata Roxb.(Tateoka):regulation of pinitol synthesis under abiotic stress.Plant, Cell&Environment,31:1442-1459.
    130. Sengupta S,Majumder A L.Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata:a physiological and proteomic approach.Planta,2009,229(4):911-929.
    131. SHAW M M,RIEDERER B M,Sample preparation for two-dimensional gel electrophoresis[J].Proteomics,2003,3(8):1408-1417.
    132. Sivakumar,P.,Sharmila,P.,Partha Saradhi,P.,2000.Proline alleviates salt stress-induced enhancement in ribulose-1,5-bisphosphate oxygenase activity. Biochem.Biophys. Res. Comm. 279,512-515.
    133. Stock D, Leslie A G W, Walker J E. Molecular architecture of the rotary motor in ATP synthasee. Science,1999,286(5445):1700-1705.
    134. Takemura T, Hanagata N, Sugihara K, Baba S, Karube I, Dubinsky Z.2000. Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza.Aquatic Botany,68:15-28.
    135. Tuteja N.Mechanisms of high salinity tolerance in plants. Methods in Enzymology,2007,428: 419-438.
    136. Van Breusegem F, Dekeyser R.Gielen J,Van Montagu M, Kaplan A Characterization of a S-adenosylmethionine synthase gene in riee.Plant Physiol.1994,105:1463-1464.
    137. Vij S, Tyagi A K. Emerging trends in the functional genomics of the abiotic stress response in crop plants.Plant Biotechnology Journal,2007,5(3):361-380.
    138. Waditee R, Hibino T, Nakamura T, Incharoensakdi A, Takabe T.2002 Overexpression of Na+/H+ antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water. Proceedings of the National Academy of Sciences,99:4109-4114.
    139. Wang Y,Nii N.Changes in chlorophyll,ribulose biphosphate carboxylase-oxygenase,glycine betaine content,photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress[J].Journal of Horticultural Science and Biotechnoloy,2000,75(6):623-627.
    140. Wang W X.Vinocur B,Altman A.Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta,2003,218(1):1-14.
    141. Wen F P, Zhang Z H, Bai T, Xu Q, Pan Y H. Proteomics reveals the effects of gibberellic acid (GA3) on salt- stressed rice (Oryza sativa L) shoots. Plant Science,2010,178(2):170-175.
    142. Weiss W, Gorg A. Two-dimensional electrophoresis for plant proteomics[M]. Methods in Molecular Biology,2007, vol.355:121-43.
    143. Weiss D,Halevy AH Stamens and gibberellin in the regulation of corolla pigmentation and growth in Petunia hibrida.Planta,1989,179:89-96.
    144. Wickware P,Smaglik P.Proteomics technology character references[J]. Nature,2001,413:869-875.
    145. Wilkins M R,Sanchez J C,Gooley AA,et al.Progress with proteome projects:Why all proteins expressed by a genome should be identified and how to doit[J].Biotechnol.Genet Eng Rev,1996,13(1);19-50.
    146. Xifeng Chen, Proteomic analysis of a disease-resistance-enhanced lesion mimic mutant spotted leaf 5 in rice,Chen et al. Rice 2013,6:1
    147. Xu J, Wang W Y, Yin H X, et al. Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress[J]. Plant and Soil,2010,326(1/2):321-330.
    148.Yan S P, Tang Z C, Su W A, Sun W N.Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics,2005,5(1):235-244.
    149. Yoshida M, Muneyuki E, Hisabori T. ATP synthase-a marvelous rotary engine of the cell. Nature Reviews Molecular cell Biology,2001,2(9):669-677.
    150. Yoshiyuki Murata,Ichiro Obil,Manabu Yoshihashi,Masakatsu Noguchi and Tadaaki Kakutani.Reduced Permeability to K+and Na+Ions of K+Channels in the Plasma Membrane of Tobacco Cells in Suspension after Adaptation to 50 mM NaCl.Plant and cell Physiology[J],1993,35(1),87-92.
    151. Yuichi Tada*and Takaaki Kashimura.Proteomic Analysis of Salt-Responsive Proteins in the Mangrove Plant,Bruguiera gymnorhiza.Plant and cell Physiology[J],2009,50(3),439-446.
    152. Yuzuki Manabe,Ray A,Bressan,Tao Wang,Fang Li,Hisashi Koiwa,Irina Sokolchik,Xia Li,Albino Maggio.The Arabidopsis Kinase-Associated Protein Phosphatase Regulates Adaptation to Na+Stress[J]. Plant Physiology,2006,146:612-622.
    153. Ze Yun, Shuai Jin,Comparative transcriptomics and proteomics analysis of citrus fruit, to improve understanding of the effect of low temperature on maintaining fruit quality during lengthy post-harvest storage. Journal of Experimental Botany, Vol.63, No.8, pp.2873-2893,2012
    154. Zhang L, Tian L H, Zhao J F, Yun S, Zhang C J, Yi G. Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis. Plant Physiology,2009,149(2):916-928.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700