细菌多糖和糖蛋白生物合成途径及相关酶类研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳水化合物是生物体中最为重要的生物分子之一,它们不仅是生物体不可或缺的结构组成部分,更在许多关键生物过程中发挥着不可替代的作用。碳水化合物的存在形式多种多样,如寡糖、多糖以及糖缀合物(包括糖蛋白、糖脂、脂多糖等)。糖型的改变与特定病理状态,如癌症和炎症密切相关,显示出其在临床诊断中的应用潜力以及作为药物开发靶点的可能性。
     糖及糖缀合物由糖基转移酶(GT)催化合成,反应中GT的底物特异性直接决定了所形成的糖链结构。与自然界中复杂多样的糖构型相对应,GT是一个大的酶家族。据统计,在业已测序的500多个物种的基因组中,1-2%的基因为GT,然而目前鉴定的GT却仅占其中的一小部分。GT催化一个糖基供体上的糖残基转移到一个受体上,即所谓的转糖基反应(Transglycosylation)。绝大多数的GT以糖核苷酸为糖基供体,如UDP-Gal、GDP-Fuc等,这样的GT称为Leloir型GT。另外磷酸脂连接的糖也可作为糖基供体,如dolichol连接的甘露糖、葡萄糖或寡糖作为糖蛋白合成过程中的糖基供体,这样的GT称为non-Leloir型GT。GT的受体可以是单糖、寡糖、多糖、多肽、蛋白、脂、有机小分子甚至DNA。
     生物活性寡糖的大量制备是现代医学中糖类应用和研究的前提条件。其合成主要通过酶法进行,而酶法合成主要利用Leloir型糖基转移酶。该酶法合成中仍存在两个问题:1)可用于寡糖大量合成的糖基转移酶数量有限;2)糖核苷酸供体昂贵且难以大量获得。这两个问题的有效解决将直接促进寡糖在医药领域的研究和应用。
     细菌中含有丰富和结构多样的多糖,其中主要的类型是共价结合于细胞表面的O-多糖(O-抗原)。O-多糖由多拷贝(可以多达100个)寡糖重复单元(O-Repeating Unit)构成,它们与核心寡糖和类脂A共价结合在细胞表面形成脂多糖。O-PS在不同细菌间存在巨大的多样性,例如在大肠杆菌(Escherichia coli)中发现了181种不同结构的O-PS,而沙门氏菌(Samonella)中多达90种。根据O-PS的结构不同,细菌菌株被分成不同的O-血清型(O-serotype),例如E. coli 086和0157。越来越多的证据表明O-PS在关联细菌与宿主环境、保护细菌不受免疫清除中扮演着重要角色,且参与细菌感染。因此,对O-多糖生物合成途径的研究有助于以其为靶点的医药试剂的开发。
     糖基化是真核生物中最为常见的翻译后修饰过程,利用现有的基因组/蛋白库分析推测,自然界中所有的蛋白中50%以上为糖蛋白。糖基化在生物系统中通过多种方式调控其功能,大量研究表明糖在许多细胞识别过程中起着重要作用,如肿瘤转移、细胞粘附、病原体入侵和免疫反应等。另外,更多研究表明,糖基化能够影响蛋白质的生物合成、折叠、抗原性、免疫原性及其在血浆中的半衰期,这些特性应用在增强蛋白药物药效、延长其在血浆中的半衰期上已经获得了成功。因此对糖基化和其相关酶的研究鉴定有助于医药领域糖蛋白药物的开发。
     本论文目标之一就是解决以上几个糖生物学相关问题。我们从大肠杆菌O-多糖生物合成基因簇鉴定了一个UDP-GlcNAc/Glc 4-Epimerase,对它的理化研究揭示了其底物适应性、动力学等性质,为其应用于寡糖合成提供了重要依据。另外我们结合糖芯片技术和蛋白体外表达技术建立了高通量鉴定糖基转移酶的方法,为今后GT的鉴定提供了一个快速有效的平台。我们表达了O-多糖生物合成基因簇中的所有关键基因,对其生物合成途径进行了体外重建,为该途径详细机理研究提供了一个完整的模型。最后,我们建立了过量表达和纯化细菌N-糖基化中心酶PglB的技术,为其生化和晶体学研究提供了条件。
     UDP-Gal和UDP-GalNAc为重要的转糖基反应供体,在寡糖(如ABO-antigen、Globo-H)合成中必不可少。然而它们制备困难、价格昂贵,一个有效的解决方法为反应中加入UDP-GlcNAc/Glc 4-Epimerase,和数倍价格以下的UDP-Glc或UDP-GlcNAc。E. coli O86.B7 O-多糖合成基因簇的gne被认为翻译一个UDP-GlcNAc 4-Epimerase。我们对其进行了克隆、过量表达和生化鉴定。毛细管电泳分析表明Gne同时催化UDP-Glc/UDP-Gal和UDP-GlcNAc/UDP-GalNAc之间的转化。Gne对UPD-Glc、UDP-Gal、UDP-GlcNAc和UDP-GalNAc的Km值分别是370、295、323和373μM,与其它来源的此类酶相比较,发现Gne为双功能酶。另外Gne对UDP-GalNAc和UDP-Gal的kcat/Km值是其对UDP-GlcNAc和UDP-Glc值的2至4倍,说明Gne催化UDP-GalNAc和UDP-Gal的活性稍高。将306位丝氨酸突变为苯丙氨酸(增大空间位阻)后Gne丧失了转化乙酰化底物的活性,而保留转化非乙酰化底物的活性,说明306位丝氨酸在决定Gne底物特异性上有重要作用。Gne是细菌O-多糖合成基因簇中发现的第一个双功能的差相异构酶,将该酶应用于寡糖合成将大大降低成本。
     糖基转移酶是生物界中一大类酶,目前已测序的基因组中发现近40000个GT基因。然而GT鉴定不仅困难而且繁琐,影响了其在寡糖合成中的应用。我们初步建立了一种高通量糖基转移酶活性鉴定的方法。该方法主要分为三个步骤:1)糖基转移酶克隆:本研究选择了来源于细菌的100个GT进行鉴定。为了避免针对每个酶设计酶切位点克隆,我们选择了更高效、快速的LIC克隆方法,将所有97个成功扩增的基因片段克隆入了LIC质粒pMCSG7。2)蛋白体外表达:我们选择了Expressway Cell-Free E. coli Protein Expression System对所有97个目的蛋白进行表达。表达在4小时内完成,western blot检测到77个蛋白表达。3) MALDI-MS Label Free检测:我们将25种单糖、寡糖固定与金分子层形成糖芯片,然后选择7种糖核苷酸对每个酶进行活性测定,总反应数为34300。反应后清洗去除杂质后直接进行MALDI-TOF/MS检测,无需标记。使用该方法我们成功鉴定获得了9个新的GT。
     细菌多糖是细菌细胞表面的重要组成部分,在诸如宿主-细胞相互作用中起到关键作用。其合成途径研究主要使用体内基因操作,因此其过程中诸多问题仍然未能解决。我们化学合成了O-多糖生物途径起始底物GalNAc-PP-Und,并使用过量表达的相关糖基转移酶顺序合成了RU (Repeating Unit)-PP-Und。同时我们采用伴侣蛋白共表达的方法表达了O-PS聚合酶Wzy,并纯化得到具有活性的蛋白。使用放射性同位素检测的方法,我们证实Wzy在体外催化了O-PS的合成。随后我们纯化了来自086不同型菌种的O-PS链长控制蛋白Wzz,将其与Wzy共同反应,体外合成了与天然LPS具有相同表型的O-PS。本研究使用化学-酶法体外重建了大肠杆菌O-多糖的wzy-依赖型途径,为今后研究该途径详细机理提供了一个完整的模型。
     一直以来,人们普遍认为N-糖基化仅存在于真核生物细胞中,直到本世纪初,发现人类肠道致病菌空肠弯曲杆菌中存在一个类似真核生物的N-糖基化途径,这也是目前细菌中发现的唯一N-糖基化途径。膜蛋白PglB是该途径中的关键酶,与真核生物中寡糖基转移酶的STT3蛋白同源,作用是转移寡糖到蛋白的特定氨基酸上。本论文第五章建立了大量表达纯化PglB蛋白的方法,并对其整体拓扑学结构进行了生物信息学预测与实验证明。我们将PglB表达于E. coli C43(DE3)中,表达量可达1 mg/L培养物。使用化学合成的GalNAc-PP-Und为底物供体,体外酶活检测证明该过量表达的酶为正确折叠的活性蛋白。该反应证明PglB是寡糖基转移反应中唯一作用的酶,并且进一步证实了PglB对糖基供体特异性不强。另外,使用经典的PhoA/LacZ融合的方法,我们证明了PglB含有11个跨膜结构域,且C端为一个大的周质空间结构域。这与真核生物STT3蛋白相同。
     总之,本论文以糖基转移酶等的生化研究为出发点,建立了O-多糖生物合成途径体外模型,提高了人们对细菌多糖生物合成的认识;发展了高通量糖基转移酶活性鉴定的方法,为GT鉴定提供了快速高效的平台;得到了大量高纯度的寡糖基转移酶,为N-糖基化机理研究提供了前体。
Carbohydrates (also known as Glycans) constitute one of the major classes of bio-macromolecules in living organisms, they not only are essential components of cells but also play important roles in a variety of vital biological processes. Carbohydrates are of diverse structural complexities, they exist as oligosaccharides, polysaccharides and glycoconjugates (including glycoprotein, glycolipid, lipopolysaccharides). Specific changes in glycan profiles have been associated with certain disease states such as cancer and inflammation, illustrating the potential of using glycans in clinical diagnosis and perhaps as targets to develop therapeutics.
     The biosynthesis of glycans and glycoconjugates is catalyzed by glycosyltransferases (GT), which directly determined the structure of the glycans. Corresponding to the diverse structural complexities of glycans, GT constitute one of the largest enzyme families in nature. Statistically, around 1-2% of the genes in the sequenced genomes are putative GT, whereas only a small portion of which were characterized. GT catalyze the transfer of glycan moieties from glycan donor to acceptor to form a specific glycosidic bond. Most of the GT utilize sugar nucleotides (such as UDP-Gal, GDP-Fuc) as donors, which are called Leloir type GT. Others could utilize lipid (such as dolichol) linked sugar as donor, and called non-Leloir type GT. The acceptor of GT could be monosaccharides, oligosaccharides, polysaccharides, polypeptides, proteins, lipids, small molecules and even DNA.
     The application of glycans in modern medical science relies on large scale synthesis of such molecules. Enzymatic synthesis is the major approach for the synthesis, and Leloir type GT are mainly used. However, there are two unsolved problems:1) Few GT can be used for large scale glycan synthesis; 2) Sugar nucleotides are both expensive and hard to obtain.
     O-Polysaccharides (OPS) is one of the major bacterial polysaccharides, constituted by O-repeating units (up to 100 copies). O-PS covalently linked to core oligosaccharide and lipid-A to form complete LPS. O-PS exhibit vast structural complexities, for example, there are 181 O-PS with distinct structures in E. coli and 90 in Samonella. Based on the structural complexities, bacteria are divided into different O-serotypes, such as E. coli 086 and 0157. Increasing evidences show that O-PS play essential roles in bacteria-host interactions, and involved in bacterial infection. Thus, investigations on O-PS biosynthesis pathway will facilitate the development of pharmaceutics targeting on such bacteria.
     Glycosylation is one of the most common posttranslational modifications of proteins in eukaryotes. A recent analysis on the genome/protein databases revealed that more than half of all proteins in nature would be glycoproteins. Glycosylation modules protein's structure and function in biological systems in many ways. For example, the oligosaccharide components in glycoproteins are implicated to play roles in many intercellular recognition processes such as cell adhesion, tumor metastasis, pathogen infections, and immune responses. On the other hand, glycosylation can influence protein's biosynthesis, folding, antigenicity, immunogenicity, serum half-life. Such properties have been utilized in development of glycoprotein pharmaceutics. Thus, investigations on details of protein glycosylation will facilitate the development of glycoprotein pharmaceutics.
     We targeted on these glycobiology problems in this dissertation. Firstly, We characterized a bifunctional UDP-GlcNAc/Glc 4-Epimerase from E. coli O-PS biosynthesis gene cluster, provided biochemical details that facilitate the application in oligosaccharide synthesis. Secondly, we developed a high-throughput method for indentifying GT activities, provided a platform for rapid and efficient GT identification. Thirdly, we in vitro reconstituted the O-PS biosynthesis pathway, provided a model for detailed mechanism investigation toward this pathway. Lastly, we have overexpressed the first bacterial oligosaccharyltransferase, Pg1B, which makes the investigation related to N-glycosylation more easier.
     UDP-Gal and UDP-GalNAc are important sugar donors in the synthesis of a variety of human related antigens. However, they are hard to prepare and significantly expensive, one way to solve this problem is the addition of UDP-GlcNAc/Glc 4-epimerase into the reactions. A gne gene in E. coli O86:B7 O-PS gene cluster were thought to encode such an enzyme. To confirm this annotation, overexpression, purification and biochemical characterization of Gne was performed. By using capillary electrophoresis, we showed that Gne can catalyze the interconversion of both UDP-GlcNAc/GalNAc and UDP-Glc/Gal. The Km values of Gne for UDP-Glc, UDP-Gal, UDP-GlcNAc and UDP-GalNAc are 370, 295,323, and 373μM, respectively. The comparison of the kinetic parameters of Gne from E. coli 086:B7 to those of other characterized UDP-GlcNAc/Glc 4-Epimerases indicated that it is a bifunctional UDP-GlcNAc/Glc 4-Epimerase. Moreover, the calculated kcat/Km values for UDP-GalNAc and UDP-Gal are approximately two to four times higher than those for UDP-GlcNAc and UDP-Glc, suggesting that Gne is slightly more efficient for the epimerization of UDP-GalNAc and UDP-Gal. One mutation (S306Y) retained the activity for non-acetylated substrate, but totally abolished the activity for N-acetylated substrate, indicating that residue S306 plays an important role in the determination of substrate specificity.
     There are nearly 40,000 putative GT genes among the sequenced genomes. However, due to the difficulty in characterizing such enzymes, only a very small portion of them were used in oligosaccharide synthesis. Herein, we developed a high-throughput GT indentification method, including mainly three steps:1) Rapid GT cloning:LIC were used to clone 97 GT. LIC does not need to design specific restriction sites for each GT, it uses less DNA and less time-consuming; 2) In vitro protein expression:Expressway Cell-Free E. coli Protein Expression System were used to express 97 GT, the expression was finished within 4 hours, and 77 of them were detected in western blot; 3) MALDI-MS Label Free Detection:we prepared a glyco-array with 25 acceptors and 7 donors. All the enzymes were analyzed with each donor and acceptor, the number of total reactions was 34300. The bio-chips were rinsed and applied to MALDI-TOF/MS directly. We found 9 new GT using this method.
     Polysaccharides constitute a major component of bacterial cell surfaces and play critical roles in bacteria-host interactions. The biosynthesis of such molecules, however, has mainly been characterized through in vivo genetic studies, thus precluding discernment of the details of this pathway. Accordingly, we present a chemical approach that enabled reconstitution of the E. coli O-polysaccharide biosynthetic pathway in vitro. Starting with chemically prepared GalNAc-PP-Und, the E. coli 086 oligosaccharide repeating unit was assembled by means of sequential enzymatic glycosylation. Successful expression of the putative polymerase Wzy using a chaperone coexpression system then allowed demonstration of polymerization in vitro using this substrate. Analysis of more substrates revealed a defined mode of recognition for Wzy toward the lipid moiety. Specific polysaccharide chain length modality was furthermore demonstrated to result from the action of Wzz. Collectively, polysaccharide biosynthesis was chemically reconstituted in vitro, providing a well defined system for further underpinning molecular details of this biosynthetic pathway.
     Campylobacter jejuni contains a post-translational N-glycosylation system in which a STT3 homologue, Pg1B, functions as the oligosaccharyltransferase. Herein, we established a method for obtaining relatively large quantities of homogenous Pg1B proteins. Pg1B was overexpressed in E. coli C43(DE3) at a level of 1 mg/L cell cultures. The activity of purified Pg1B was verified using a chemically synthesized sugar donor:GalNAc-PP-Und and a synthesized peptide acceptor. The result confirms that Pg1B is solely responsible for the oligosaccharyltransferase activity and complements the finding that Pg1B exhibits relaxed sugar substrate specificity. In addition, we performed the topology mapping of Pg1B using the PhoA/LacZ fusion method. The topological model shows that Pg1B possesses 11 transmembrane segments and two relatively large periplasmic regions other than the C-terminal domain, which is consistent with the proposal of the common Ncyt-CPeri topology with 11 transmembrane segments for the STT3 family proteins.
     In summary, through detailed investigation on GT, we established an O-PS in vitro biosynthesis model, enriched the basic knowledge of bacterial polysaccharide biosynthesis; developed and high-throughput enzyme assay method, provided a platform for rapid GT identification; in addition, we obtained large quantities of Pg1B protein, facilitated further investigation on the mechanisms of N-glycosylation.
引文
1. Ball, S.G.& Morell, M.K. From bacterial glycogen to starch:understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol 54,207-233 (2003).
    2. Ohtsubo, K.& Marth, J.D. Glycosylation in cellular mechanisms of health and disease. Cell 126,855-867 (2006).
    3. Varki, A. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature 446,1023-1029 (2007).
    4. Dube, D.H.& Bertozzi, C.R. Glycans in cancer and inflammation--potential for therapeutics and diagnostics. Nat Rev Drug Discov 4,477-488 (2005).
    5. Helenius, A.& Aebi, M. Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73,1019-1049 (2004).
    6. Dempski, R.E., Jr.& Imperiali, B. Oligosaccharyl transferase:gatekeeper to the secretory pathway. Curr Opin Chem Biol 6,844-850 (2002).
    7. Nakagawa, J., Tamaki, S., Tomioka, S.& Matsuhashi, M. Functional biosynthesis of cell wall peptidoglycan by polymorphic bifunctional polypeptides. Penicillin-binding protein 1Bs of Escherichia coli with activities of transglycosylase and transpeptidase. J Biol Chem 259,13937-13946 (1984).
    8. Raetz, C.R.& Whitfield, C. Lipopolysaccharide endotoxins. Annu Rev Biochem 71, 635-700 (2002).
    9. Varki, A. Essentials of Glycobiology,Second Editon. Cold Spring Harbor Laboratory Press, La Jolla, California (2009).
    10. Holmes, E.H. et al. Human alpha 1,3/4 fucosyltransferases. Characterization of highly conserved cysteine residues and N-linked glycosylation sites. J Biol Chem 275, 24237-24245 (2000).
    11. Wuyts, W.& Van Hul, W. Characterization and genomic localization of the mouse Extl2 gene. Cytogenet Cell Genet 89,185-188 (2000).
    12. Weijers, C.A.G.M., Franssen, M.C.R.& Visser, G.M. Glycosyltransferase-catalyzed synthesis of bioactive oligosaccharides. Biotechnol Adv 26,436-456 (2008).
    13. Cantarel, B.L. et al. The Carbohydrate-Active EnZymes database (CAZy):an expert resource for Glycogenomics. Nucleic Acids Res 37, D233-238 (2009).
    14. Wiggins, C.A.& Munro, S. Activity of the yeast MNN1 alpha-1,3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases. Proc Natl Acad Sci U S A 95,7945-7950 (1998).
    15. Lairson, L.L., Henrissat, B., Davies, G.J.& Withers, S.G. Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77,521-555 (2008).
    16. Hughes, E.D, Ingold, C.K.& Whitfield, I.C. The Walden Inversion in the Replacement of Hydroxyl by Halogen. Nature 147,206-207 (1941).
    17. Song, J. et al. Enzymatic biosynthesis of oligosaccharides and glycoconjugates. Curr Org Synth 3,159-168(2006).
    18. Ishiyama, N., Creuzenet, C., Lam, J.S.& Berghuis, A.M. Crystal structure of WbpP, a genuine UDP-N-acetylglucosamine 4-epimerase from Pseudomonas aeruginosa: substrate specificity in udp-hexose 4-epimerases. J Biol Chem 279,22635-22642 (2004).
    19. Kowal, P.& Wang, P.G. New UDP-GlcNAc C4 epimerase involved in the biosynthesis of 2-acetamino-2-deoxy-L-altruronic acid in the O-antigen repeating units of Plesiomonas shigelloides 017. Biochemistry 41,15410-15414 (2002).
    20. Guo, H., Li, L.& Wang, P.G. Biochemical characterization of UDP-GlcNAc/Glc 4-epimerase from Escherichia coli O86:B7. Biochemistry 45,13760-13768 (2006).
    21. Bernatchez, S. et al. A single bifunctional UDP-GlcNAc/Glc 4-epimerase supports the synthesis of three cell surface glycoconjugates in Campylobacter jejuni. J Biol Chem 280,4792-4802 (2005).
    22. Su, D.M. et al. Enzymatic synthesis of tumor-associated carbohydrate antigen Globo-H hexasaccharide. Org Lett 10,1009-1012 (2008).
    23. Chen, X. et al. Changing the donor cofactor of bovine alpha 1,3-galactosyltransferase by fusion with UDP-galactose 4-epimerase. More efficient biocatalysis for synthesis of alpha-Gal epitopes. J Biol Chem 275,31594-31600 (2000).
    24. Thoden, J.B.& Holden, H.M. Dramatic differences in the binding of UDP-galactose and UDP-glucose to UDP-galactose 4-epimerase from Escherichia coli. Biochemistry 37,11469-11477(1998).
    25. Sears, P.& Wong, C.H. Toward automated synthesis of oligosaccharides and glycoproteins. Science 291,2344-2350 (2001).
    26. Plante, O.J., Palmacci, E.R.& Seeberger, P.H. Automated solid-phase synthesis of oligosaccharides. Science 291,1523-1527 (2001).
    27. Seto, NO. et al. Donor substrate specificity of recombinant human blood group A, B and hybrid A/B glycosyltransferases expressed in Escherichia coli. Eur J Biochem 259, 770-775 (1999).
    28. Crout, D.H.& Vic, G. Glycosidases and glycosyl transferases in glycoside and oligosaccharide synthesis. Curr Opin Chem Biol 2,98-111 (1998).
    29. Koeller, K.M.& Wong, C.H. Enzymes for chemical synthesis. Nature 409,232-240 (2001).
    30. Shoda, S.-i., Kohri, M.& Kobayashi, A. Glycosidase-catalyzed synthesis of oligosaccharides through intermediate analogue substrates. Biocatalysis:Chemistry and Biology,83-98 (2005).
    31. Singh, S., Scigelova, M.& Crout, D.H.G. Glycosidase-catalyzed synthesis of alpha-galactosyl epitopes important in xenotransplantation and toxin binding using the alpha-galactosidase from Penicillium multicolor. Chem Commun,2065-2066 (1999).
    32. Nilsson, K.G.I. Synthesis with glycosidases. Front Nat Prod Res 1,518-547 (1996).
    33. Nilsson, K.G.I. Glycosidase-catalyzed synthesis of di-and trisaccharide derivatives related to antigens involved in the hyperacute rejection of xenotransplants. Tetrahedron Lett 38,133-136(1997).
    34. Ly, H.D.& Withers, S.G. Mutagenesis of glycosidases. Annu Rev Biochem 68,487-522 (1999).
    35. Tolborg, J.F. et al. Solid-phase oligosaccharide and glycopeptide synthesis using glycosynthases. J Org Chem 67,4143-4149 (2002).
    36. Ohrlein, R. Glycosyltransferase-catalyzed synthesis of non-natural oligosaccharides. Top Curr Chem 200,227-254 (1999).
    37. Shao, J., Zhang, J., Kowal, P., Lu, Y.& Wang, P.G. Overexpression and biochemical characterization of β-1,3-N-acetylgalactosaminyltransferase LgtD from Haemophilus influenzae strain Rd. Biochem Biophys Res Commun 295,1-8 (2002).
    38. Gilbert, M. et al. Biosynthesis of ganglioside mimics in Campylobacter jejuni OH4384. Identification of the glycosyltransferase genes, enzymatic synthesis of model compounds, and characterization of nanomole amounts by 600-mhz (1)h and (13)c NMR analysis. JBiol Chem 275,3896-906 (2000).
    39. Wang, G., Boulton, P.G., Chan, N.W.C., Palcic, M.M.& Taylor, D.E. Novel Helicobacter pylori α1,2-fucosyltransferase, a key enzyme in the synthesis of Lewis antigens. Microbiology 145,3245-3253 (1999).
    40. Chan, N.W.C. et al. The biosynthesis of Lewis X in Helicobacter pylori. Glycobiology 5,683-8(1995).
    41. Chen, X. et al. Reassembled biosynthetic pathway for large-scale carbohydrate synthesis:alpha-gal epitope producing "superbug". ChemBioChem 3,47-53 (2002).
    42. Zhang, J. et al. Synthesis of galactose-containing oligosaccharides through superbeads and superbug approaches:substrate recognition along different biosynthetic pathways. Methods Enzymol 362,106-124(2003).
    43. Osborn, M.J. Biosynthesis and assembly of the lipopolysaccharide of the outer membrane. in Bacterial Outer Membranes (ed. Inouye, M.) 15-34 (John Wiley and Sons, Inc., New York,1979).
    44. Aspinall, G.O. Classification of Polysaccharides. in The Polysaccharides, Vol.2 (ed. Aspinall, G.O.) 1-9 (Academic Press, New York,1983).
    45. Westphal, O., Jann, K.& Himmelspach, K. Chemistry and immunochemistry of bacterial lipopolysaccharides as cell wall antigens and endotoxins. Prog Allergy 33, 9-39(1983).
    46. Guo, H., Yi, W., Song, J.K.& Wang, P.G. Current understanding on biosynthesis of microbial polysaccharides. Curr Top Med Chem 8,141-151 (2008).
    47. Jann, K.& Jann, B. Capsules of Escherichia coli, expression and biological significance. Can J Microbiol 38,705-710 (1992).
    48. Whitfield, C. Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75,39-68 (2006).
    49. Paton, J.C.& Morona, J.K. Pneumococcal capsular polysaccharides:biosynthesis and regulation. Mol Biol Streptococci,119-139 (2007).
    50. Myszka, K.& Czaczyk, K. The role of microbial exopolysaccharides in food technology. Zywnosc 11,18-29 (2004).
    51. Hallemeersch, I., De Baets, S.& Vandamme, E.J. Exopolysaccharides of lactic acid bacteria. Biopolymers 5,407-429 (2002).
    52. Leathers, T.D.& Cote, G.L. Biofilm formation by exopolysaccharide mutants of Leuconostoc mesenteroides strain NRRL B-1355. Appl Microbiol Biotechnol 78, 1025-1031(2008).
    53. Sutherland, I.W. Biofilm exopolysaccharides:a strong and sticky framework. Microbiology 147,3-9 (2001).
    54. Jodar, L., Feavers, I.M., Salisbury, D.& Granoff, D.M. Development of vaccines against meningococcal disease. Lancet 359,1499-1508 (2002).
    55. Moreau, M.& Schulz, D. Polysaccharide based vaccines for the prevention of pneumococcal infections. J Carbohydr Chem 19,419-434 (2000).
    56. French, N. Use of pneumococcal polysaccharide vaccines:no simple answers. J Infect 46,78-86 (2003).
    57. Griffioen, A.W., Toebes, E.A., Zegers, B.J.& Rijkers, GT. Role of CR2 in the human adult and neonatal in vitro antibody response to type 4 pneumococcal polysaccharide. Cell Immunol 143,11-22 (1992).
    58. Plotkin, S.A. Vaccines:past, present and future. Nat Med 11, S5-11 (2005).
    59. Wacker, M. et al. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298,1790-1793 (2002).
    60. Feldman, M.F. et al. Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli. Proc Natl Acad Sci U S A 102,3016-3021 (2005).
    61. Wacker, M. et al. Substrate specificity of bacterial oligosaccharyltransferase suggests a common transfer mechanism for the bacterial and eukaryotic systems. Proc Natl Acad Sci USA 103,7088-7093 (2006).
    62. Erridge, C., Bennett-Guerrero, E.& Poxton, I.R. Structure and function of lipopolysaccharides. Microbes Infect 4,837-851 (2002).
    63. Morona, R., van den Bosch, L.& Manning, P.A. Molecular, genetic, and topological characterization of O-antigen chain length regulation in Shigella flexneri. J Bacteriol 177,1059-1068(1995).
    64. Wang, L., Liu, D.& Reeves, P.R. C-terminal half of Salmonella enterica WbaP (RfbP) is the galactosyl-1-phosphate transferase domain catalyzing the first step of O-antigen synthesis. JBacteriol 178,2598-2604 (1996).
    65. Amer, A.O.& Valvano, M.A. The N-terminal region of the Escherichia coli WecA (Rfe) protein, containing three predicted transmembrane helices, is required for function but not for membrane insertion. J Bacteriol 182,498-503 (2000).
    66. Liu, D., Cole, R.A.& Reeves, P.R. An O-antigen processing function for Wzx (RfbX): a promising candidate for O-unit flippase. J Bacteriol 178,2102-2107 (1996).
    67. Feldman, M.F. et al. The activity of a putative polyisoprenol-linked sugar translocase (Wzx) involved in Escherichia coli O antigen assembly is independent of the chemical structure of the O repeat. J Biol Chem 274,35129-35138 (1999).
    68. Daniels, C., Vindurampulle, C.& Morona, R. Overexpression and topology of the Shigella flexneri O-antigen polymerase (Rfc/Wzy). Mol Microbiol 28,1211-1222 (1998).
    69. Perlstein, D.L., Zhang, Y., Wang, T.S., Kahne, D.E.& Walker, S. The direction of glycan chain elongation by peptidoglycan glycosyltransferases. J Am Chem Soc 129, 12674-12675 (2007).
    70. Franco, A.V., Liu, D.& Reeves, PR. A Wzz (Cld) protein determines the chain length of K lipopolysaccharide in Escherichia coli O8 and O9 strains. J Bacteriol 178, 1903-1907(1996).
    71. Franco, A.V., Liu, D.& Reeves, P.R. The wzz (cld) protein in Escherichia coli:amino acid sequence variation determines O-antigen chain length specificity. J Bacteriol 180, 2670-2675 (1998).
    72. Yi, W. et al. Formation of a new O-polysaccharide in Escherichia coli 086 via disruption of a glycosyltransferase gene involved in O-unit assembly. Carbohydr Res 341,2254-2260 (2006).
    73. Morona, R., Van Den Bosch, L.& Daniels, C. Evaluation of Wzz/MPA1/MPA2 proteins based on the presence of coiled-coil regions. Microbiology 146 (Pt 1),1-4 (2000).
    74. Tocilj, A. et al. Bacterial polysaccharide co-polymerases share a common framework for control of polymer length. Nat Struct Mol Biol 15,130-138 (2008).
    75. Bastin, D.A., Stevenson, G, Brown, P.K., Haase, A.& Reeves, P.R. Repeat unit polysaccharides of bacteria:a model for polymerization resembling that of ribosomes and fatty acid synthetase, with a novel mechanism for determining chain length. Mol Microbiol 7,725-734 (1993).
    76. Fath, M.J. & Kolter, R. ABC transporters:bacterial exporters. Microbiol Rev 57, 995-1017(1993).
    77. Young, J.& Holland, I.B ABC transporters:bacterial exporters-revisited five years on. Biochim Biophys Acta 1461,177-200 (1999).
    78. McGrath, B.C.& Osborn, M.J. Localization of the terminal steps of O-antigen synthesis in Salmonella typhimurium. J Bacteriol 173,649-654 (1991).
    79. Abeyrathne, P.D., Daniels, C., Poon, K.K., Matewish, M.J.& Lam, J.S. Functional characterization of WaaL, a ligase associated with linking O-antigen polysaccharide to the core of Pseudomonas aeruginosa lipopolysaccharide. J Bacteriol 187,3002-3012 (2005).
    80. Abeyrathne, P.D.& Lam, J.S. WaaL of Pseudomonas aeruginosa utilizes ATP in in vitro ligation of O antigen onto lipid A-core. Mol Microbiol 65,1345-1359 (2007).
    81. Wu, T. et al. Identification of a protein complex that assembles lipopolysaccharide in the outer membrane of Escherichia coli. Proc Natl Acad Sci U S A 103,11754-11759 (2006).
    82. Yi, W. et al. Two different O-polysaccharides from Escherichia coli 086 are produced by different polymerization of the same O-repeating unit. Carbohydr Res 341,100-108 (2006).
    83. Landsteiner, K. Zbl Bakt 27,357-362 (1900).
    84. Thall, A.& Galili, U. Distribution of Gal alpha 1-3Gal beta MGlcNAc residues on secreted mammalian glycoproteins (thyroglobulin, fibrinogen, and immunoglobulin G) as measured by a sensitive solid-phase radioimmunoassay. Biochemistry 29,3959-3965 (1990).
    85. Springer, G.F.& Horton, R.E. Blood group isoantibody stimulation in man by feeding blood group-active bacteria. J Clin Invest 48,1280-1291 (1969).
    86. Springer, G.F.& Horton, R.E. Erythrocyte Sensitization by Blood Group-Specific Bacterial Antigens. J Gen Physiol 47,1229-1250 (1964).
    87. Yi, W. et al. Escherichia coli 086 O-antigen biosynthetic gene cluster and stepwise enzymatic synthesis of human blood group B antigen tetrasaccharide. J Am Chem Soc 127,2040-2041(2005).
    88. Apweiler, R., Hermjakob, H.& Sharon, N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473, 4-8(1999).
    89. Kelleher, D.J.& Gilmore, R. An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16,47R-62R (2006).
    90. Dempski, R.E., Jr.& Imperiali, B. Heterologous expression and biophysical characterization of soluble oligosaccharyl transferase subunits. Arch Biochem Biophys 431,63-70 (2004).
    91. Nilsson, I. et al. Photocross-linking of nascent chains to the STT3 subunit of the oligosaccharyltransferase complex. J Cell Biol 161,715-725 (2003).
    92.Yan, Q.& Lennarz, W.J. Studies on the function of oligosaccharyl transferase subunits. Stt3p is directly involved in the glycosylation process. J Biol Chem 277,47692-47700 (2002).
    93. Kim, H., von Heijne, G.& Nilsson, I. Membrane topology of the STT3 subunit of the oligosaccharyl transferase complex. J Biol Chem 280,20261-20267 (2005).
    94. Weerapana, E.& Imperiali, B. Asparagine-linked protein glycosylation:from eukaryotic to prokaryotic systems. Glycobiology 16,91R-101R (2006).
    95. Young, N.M. et al. Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni. J Biol Chem 277,42530-42539 (2002).
    96. Olivier, N.B., Chen, M.M., Behr, J.R.& Imperiali, B. In vitro biosynthesis of UDP-N,N'-diacetylbacillosamine by enzymes of the Campylobacter jejuni general protein glycosylation system. Biochemistry 45,13659-13669 (2006).
    97. Weerapana, E., Glover, K.J., Chen, M.M.& Imperiali, B. Investigating bacterial N-linked glycosylation:synthesis and glycosyl acceptor activity of the undecaprenyl pyrophosphate-linked bacillosamine. J Am Chem Soc 127,13766-13767 (2005).
    98. Glover, K.J., Weerapana, E.& Imperiali, B. In vitro assembly of the undecaprenylpyrophosphate-linked heptasaccharide for prokaryotic N-linked glycosylation. Proc Natl Acad Sci U S A 102,14255-14259 (2005).
    99. Alaimo, C. et al. Two distinct but interchangeable mechanisms for flipping of lipid-linked oligosaccharides Embo J 25,967-976 (2006).
    100. Glover, K.J., Weerapana, E., Numao, S.& Imperiali, B. Chemoenzymatic synthesis of glycopeptides with PglB, a bacterial oligosaccharyl transferase from Campylobacter jejuni. Chem Biol 12,1311-1315 (2005).
    101.Kowarik, M. et al. N-linked glycosylation of folded proteins by the bacterial oligosaccharyltransferase. Science 314,1148-1150 (2006).
    102. Chen, M.M. et al. Polyisoprenol specificity in the Campylobacter jejuni N-linked glycosylation pathway. Biochemistry 46,14342-14348 (2007).
    103.Kowarik, M. et al. Definition of the bacterial N-glycosylation site consensus sequence. EmboJ25,1957-1966(2006).
    104.Chen, M.M., Glover, K.J.& Imperiali, B. From peptide to protein:comparative analysis of the substrate specificity of N-linked glycosylation in C. jejuni. Biochemistry 46,5579-5585 (2007).
    105. Paulson, J.C., Blixt, O.& Collins, B.E. Sweet spots in functional glycomics. Nat Chem Biol2,238-248(2006).
    106. Blixt, O. et al. Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc Natl Acad Sci USA 101,17033-17038 (2004).
    107.Manimala, J.C., Roach, T.A., Li, Z.& Gildersleeve, J.C. High-throughput carbohydrate microarray analysis of 24 lectins. Angew Chem Int Ed Engl 45,3607-3610 (2006).
    108. Park, S.& Shin, I. Fabrication of carbohydrate chips for studying protein-carbohydrate interactions. Angew Chem Int Ed Engl 41,3180-3182 (2002).
    109.Houseman, B.T., Gawalt, E.S.& Mrksich, M. Maleimide-functionalized self-assembled monolayers for the preparation of peptide and carbohydrate biochips. Langmuir 19,1522-1531 (2003).
    110. Fazio, F., Bryan, M.C., Blixt, O., Paulson, J.C.& Wong, C.H. Synthesis of sugar arrays in microtiter plate. J Am Chem Soc 124,14397-14402 (2002).
    111. Su, J.& Mrksich, M. Using mass spectrometry to characterize self-assembled monolayers presenting peptides, proteins, and carbohydrates. Angew Chem Int Ed Engl 41,4715-4718(2002).
    112. Ban, L.& Mrksich, M. On-chip synthesis and label-free assays of oligosaccharide arrays. Angew Chem Int Ed Engl 47,3396-3399 (2008).
    113.Min, D.H., Su, J.& Mrksich, M. Profiling kinase activities by using a peptide chip and mass spectrometry. Angew Chem Int Ed Engl 43,5973-5977 (2004).
    114.Yeo, W.S., Min, D.H., Hsieh, R.W., Greene, G.L.& Mrksich, M. Label-free detection of protein-protein interactions on biochips. Angew Chem Int Ed Engl 44,5480-5483 (2005).
    115. Soelaiman, S. et al. Structure-based inhibitor discovery against adenylyl cyclase toxins from pathogenic bacteria that cause anthrax and whooping cough. J Biol Chem 278, 25990-25997 (2003).
    116. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F.& Higgins, D.G. The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25,4876-4882 (1997).
    117.Cho, H., Hamza, A., Zhan, C.G.& Tai, H.H. Key NAD+-binding residues in human 15-hydroxyprostaglandin dehydrogenase. Arch Biochem Biophys 433,447-453 (2005).
    118.Thoden, J.B., Wohlers, T.M., Fridovich-Keil, J.L.& Holden, H.M. Crystal lographic evidence for Tyr 157 functioning as the active site base in human UDP-galactose 4-epimerase. Biochemistry 39,5691-5701 (2000).
    119.Creuzenet, C., Belanger, M., Wakarchuk, W.W.& Lam, J.S. Expression, purification, and biochemical characterization of WbpP, a new UDP-GlcNAc C4 epimerase from Pseudomonas aeruginosa serotype 06. J Biol Chem 275,19060-19067 (2000).
    120.Demendi, M., Ishiyama, N., Lam, J.S., Berghuis, A.M.& Creuzenet, C. Towards a better understanding of the substrate specificity of the UDP-N-acetylglucosamine C4 epimerase WbpP. Biochem J 389,173-180 (2005).
    121. Samuel, G.& Reeves, P. Biosynthesis of O-antigens:genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly. Carbohydr Res 338, 2503-2019(2003).
    122. Guo, H., Yi, W., Li, L.& Wang, P.G. Three UDP-hexose 4-epimerases with overlapping substrate specificity coexist in E. coli 086:B7. Biochem Biophys Res
    Commun 356,604-609 (2007).
    123.Bengoechea, J.A. et al. Functional characterization of Gne (UDP-N-acetylglucosamine-4-epimerase), Wzz (chain length determinant), and Wzy (O-antigen polymerase) of Yersinia enterocolitica serotype 0:8. J Bacteriol 184, 4277-4287 (2002).
    124.Schulz, J.M. et al. Determinants of function and substrate specificity in human UDP-galactose 4'-epimerase. J Biol Chem 279,32796-32803 (2004).
    125.Varki, A. Biological roles of oligosaccharides:all of the theories are correct. Glycobiology 1993,2 (1993).
    126.Bertozzi, C.R. & Keissling, L.L. Chemical glycobiology. Science 291,2357-2364 (2001).
    127.Jahn, M. Expansion of the glycosynthase repertoire to produce defined manno-oligosaccharides. Chemical Communications 12,1327-1329 (2003).
    128.Jagus, R.& Beckler, G.S. Overview of eukaryotic in vitro translation and expression systems. Curr Protoc Cell Biol Chapter 11, Unit 111 (2003).
    129. Fang, J. A highly efficient chemo-enzymatic synthesis of a-galactosyl epitopes with a recombinant a1,3-galactosyltransferase. J Am Chem Soc 120,6635-6638 (1998).
    130.Yi, W., Shen, J., Zhou, G, Li, J.& Wang, P.G. Bacterial homologue of human blood group A transferase. J Am Chem Soc 130,14420-1 (2008).
    131.Haun, R.S., Serventi, I.M.& Moss, J. Rapid, reliable ligation-independent cloning of PCR products using modified plasmid vectors. Biotechniques 13,515-518 (1992).
    132.Aslanidis, C.& Jong, P.J.d. Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18,6069-6074 (1990).
    133.Stols, L. et al. A new vector for high-throughput, ligation-independent cloning encoding a tobacco etch virus protease cleavage site. Protein Expr Purif 25,8-15 (2002).
    134.Mrksich, M. Mass spectrometry of self-assembled monolayers:a new tool for molecular surface science. ACS Nano 2,7-18 (2008).
    135.Patrie, S.M.& Mrksich, M. Self-assembled monolayers for MALDI-TOF mass spectrometry for immunoassays of human protein antigens. Anal Chem 79,5878-87 (2007).
    136.Rietschel, E.T. et al. Bacterial endotoxin:Chemical constitution, biological recognition, host response, and immunological detoxification. Curr Top Microbiol Immunol 216, 39-81 (1996).
    137.Moran, A.P., Prendergast, M.M.& Appelmelk, B.J. Molecular mimicry of host structures by bacterial lipopolysaccharides and its contribution to disease. FEMS Immunol Med Microbiol 16,105-115 (1996).
    138.Lerouge, I.& Vanderleyden, J. O-antigen structural variation:mechanisms and possible roles in animal/plant-microbe interactions. FEMS Microbiol Rev 26,17-47 (2002).
    139. Li, M. et al. Characterization of a novel alpha 1,2-fucosyltransferase of Escherichia coli O128:b12 and functional investigation of its common motif. Biochemistry 47,378-387 (2008).
    140.Yi, W. et al. Characterization of a bacterial beta-1,3-galactosyltransferase with application in the synthesis of tumor-associated T-antigen mimics. Biochemistry 47, 1241-1248(2008).
    141. Yi, W. et al. The wbnH gene of Escherichia coli O86:H2 encodes an alpha-1,3-N-acetylgalactosaminyl transferase involved in the O-repeating unit biosynthesis. Biochem Biophys Res Commun 344,631-639 (2006).
    142. Guo, H. et al. Overexpression and characterization of Wzz of Escherichia coli O86:H2. Protein Expr Purif 48,49-55 (2006).
    143. Guo, H. et al. Molecular analysis of the O-antigen gene cluster of Escherichia coli O86:B7 and characterization of the chain length determinant gene (wzz). Appl Environ Microbiol 71,7995-8001 (2005).
    144.Nishihara, K., Kanemori, M., Kitagawa, M., Yanagi, H.& Yura, T. Chaperone coexpression plasmids:differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli. Appl Environ Microbiol 64,1694-1699 (1998).
    145.Datsenko, K.A.& Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97,6640-6645 (2000).
    146. Wang, L.& Reeves, PR. Involvement of the galactosyl-1-phosphate transferase encoded by the Salmonella enterica rfbP gene in O-antigen subunit processing. J Bacteriol 176,4348-4356 (1994).
    147.Branch, C.L., Burton, G.& Moss, S.F. An expedient synthesis of allylic polyprenyl phosphate. Synth Commun 29,2639-2644 (1999).
    148.Woodward, R. et al. In vitro bacterial polysaccharide biosynthesis:Defining the functions of Wzy and Wzz. Nat Chem Biol 6(2010).
    149.Bigge, J.C. et al. Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal Biochem 230,229-238 (1995).
    150. Ye, X.Y. et al. Better substrates for bacterial transglycosylases. J Am Chem Soc 123, 3155-3156(2001).
    151. Valvano, M.A. Undecaprenyl phosphate recycling comes out of age. Mol Microbiol 67, 232-235 (2008).
    152.Faridmoayer, A., Fentabil, M.A., Mills, D.C., Klassen, J.S.& Feldman, M.F. Functional characterization of bacterial oligosaccharyltransferases involved in O-linked protein glycosylation. JBacteriol 189,8088-8098 (2007).
    153.Al-Dabbagh, B., Mengin-Lecreulx, D.& Bouhss, A. Purification and characterization of the bacterial UDP-GlcNAc:undecaprenyl-phosphate GlcNAc-1-phosphate transferase WecA. J Bacteriol 190,7141-7146 (2008).
    154.Miroux, B.& Walker, J.E. Over-production of proteins in Escherichia coli:mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260,289-298 (1996).
    155. Barrett, D. et al. Analysis of glycan polymers produced by peptidoglycan glycosyltransferases. J Biol Chem 282,31964-31971 (2007).
    156. Zhang, Y. et al. Synthesis of heptaprenyl-lipid IV to analyze peptidoglycan glycosyltransferases. J Am Chem Soc 129,3080-3081 (2007).
    157.Marolda, C.L., Tatar, L.D., Alaimo, C., Aebi, M.& Valvano, M.A. Interplay of the Wzx translocase and the corresponding polymerase and chain length regulator proteins in the translocation and periplasmic assembly of lipopolysaccharide o antigen. J Bacteriol 188,5124-5135 (2006).
    158. Tang, K.H., Guo, H., Yi, W., Tsai, M.D.& Wang, P.G. Investigation of the conformational states of Wzz and the Wzz.O-antigen complex under near-physiological conditions. Biochemistry 46,11744-11752 (2007).
    159.Larue, K., Kimber, M.S., Ford, R.& Whitfield, C. Biochemical and structural analysis of bacterial O-antigen chain length regulator proteins reveals a conserved quaternary structure. J Biol Chem 284,7395-7403 (2009).
    160.Daniels, C., Griffiths, C., Cowles, B.& Lam, J.S. Pseudomonas aeruginosa O-antigen chain length is determined before ligation to lipid A core. Environ Microbiol 4, 883-897 (2002).
    161,Manoil, C. Analysis of membrane protein topology using alkaline phosphatase and β-galactosidase gene fusions. Methods Cell Biol 35,61-75 (1991).
    162.Baker, S.J., Daniels, C.& Moraona, R. PhoP/Q regulated genes in Salmonella typhi identification of melittin sensitive mutants. Microb Pathog 22(1997).
    163.Sreerama, N.& Woody, R.W. On the analysis of membrane protein circular dichroism spectra. Protein Sci 13,100-112 (2004).
    164.Li, H., Chavan, M., Schindelin, H., Lennarz, W.J.& Li, H. Structure of the oligosaccharyl transferase complex at 12 A resolution. Structure 16,432-440 (2008).
    165.Knauer, R.& Lehle, L. The oligosaccharyltransferase complex from yeast. Biochim Biophys Acta 280,259-273 (1999).
    166. Wang, L.X. Toward oligosaccharide-and glycopeptide-based HIV vaccines. Curr Opin Drug Discov 9,194-206 (2008).
    167. Wei, Y. et al. Glycoengineering of human IgGl-Fc through combined yeast expression and in vitro chemoenzymatic glycosylation. Biochemistry 47,10294-10304 (2008).
    168.Witte, K., Sears, P., Martin, R.& Wong, C.H. Enzymatic glycoprotien synthesis: preparation of ribonuclease glycoforms via enzymatic glycopeptide condensation and glycosylation. J Am Chem Soc 119,2114-2118 (1997).
    169. Schwarz, F. et al. A combined method for producing homogeneous glycoproteins with eukaryotic N-glycosylation. Nat Chem Biol 6,264-266 (2010).
    170.Maita, N., Nyirenda, J., Igura, M., Kamishikiryo, J.& Kohda, D. Comparative structural biology of eubacterial and archaeal oligosaccharyltransferases. J Biol Chem 285,4941-4950(2010).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700