用户名: 密码: 验证码:
棉花TRIPTYCHON基因的电子克隆和功能初步验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花纤维的长度是评价棉花纤维内在品质的一个很重要的指标,同时单粒籽棉的棉花纤维数量直接影响棉花皮棉产量。
     研究表明,植物表皮细胞的发育受多个基因调控,表皮细胞的发育在不同植物中具有相似的基因调控模式。棉花纤维是胚珠外珠被表皮细胞发育延伸而成的表皮毛,棉花纤维细胞的发育与拟南芥表皮毛发育模式相似。拟南芥中存在GLABROUS1 (GL1)、GLABRA2 (GL2)、GLABRA3 (GL3)、TRANSPARENT TESTA GLABRA1 (TTG1)、TRANSPARENT TESTA GLABRA2 (TTG2)等基因促进拟南芥表皮毛的发育,同时又存在TRIPTYCHON(TRY)和CAPRICE (CPC)基因抑制拟南芥表皮毛的发育。前人研究报道,棉花中也存在TTG1、GL1、GL2等同源基因促进棉纤维的发育,但是棉花中尚未报道是否存在抑制棉花纤维发育的与TRY和CPC同源基因。
     本研究利用电子克隆和RT-PCR相结合的方法从徐州142无绒无絮突变体棉花中克隆到棉花TRY基因。经过RT-PCR克隆后测序,棉花TRY基因ORF(Open read frame)全长270bp,编码89个氨基酸,其蛋白质由18种氨基酸组成,其基因实测序列的ORF碱基序列与电子克隆的ORF的碱基序列仅有一个位点的差异,各自的ORF翻译为蛋白后,其氨基酸序列仅有一个位点的差异,表明电子克隆所得基因序列具有很强的真实性。
     利用生物信息学分析,该蛋白分子量为10638.1 Da;理论等电点pI:8.66;原子组成是C461H734N140O136S7;消光系数280nm :19605;不稳定系数是75.26;脂肪系数是61.35;总平均亲水性为-0.899。同拟南芥TRY蛋白一样,不存在信号肽、糖基化位点、跨膜结构、卷曲螺旋结构。同拟南芥TRY蛋白一样定位于细胞核中,同属于不稳定、疏水性蛋白,MYB类转录因子。功能预测表明,棉花TRY基因编码的蛋白在细胞内部将执行同拟南芥TRY基因编码的蛋白相似的功能。
     将棉花TRY基因重组到pBI121表达载体上,构建了棉花TRY基因的表达载体,同时利用农杆菌介导的方法将棉花TRY基因整合到烟草基因组中。通过实时荧光PCR检测,获得阳性转基因植株。对转基因烟草阳性植株叶毛发育情况和根毛发育情况的观察和分析,初步表明棉花TRY基因具有可以抑制表皮毛发育这一功能。
The length of cotton fiber is one important standard to evaluate the quality of cotton fibre. And the quantity of seed cotton fiber is direct factor to affect ginned cotton harvest.
     The study reveals that the growth of plant epidermal cell be regulated by many genes and the development of plant epidermal cell has similar molecule regulating pattern. The study reveals that cotton fiber is epidermal hair, epidermal cell of ovule outer integument from cotton fiber. And cotton fiber cell possesses the similar molecule regulating mode as the growth of epidermal hair cell in Arabidopsis. GLABROUS1 (GL1) / GLABRA2 (GL2) / GLABRA3 (GL3) / TRANSPARENT TESTA GLABRA1 (TTG1) /TRANSPARENT TESTA GLABRA2 (TTG2) to promot development of epidermal hair and TRIPTYCHON(TRY)/CAPRICE(CPC) inhibit development of epidermal hair in Arabidopsis. The study reveals homologous genes of TTG1/GL1/GL2 to promot development of cotton fiber in cotton, but no report about homologous genes of TRY/CPC in cotton.
     In silico cloning and RT-PCR technique was performed to isolate a TRIPTYCHON(TRY) gene in Xuzhou 142 no fiber mutants. After RT-PCR cloning, the DNA fragment was sequenced, and an ORF (Open read frame) of TRY which was 270bp in length, encoding 89 amino acids was found. The Protein is composed of 18 different amino acids. There are only one locus difference between the actual DNA sequence of ORF and the DNA sequence of ORF by in silico cloning. Both of their protein had only one animol acid difference, which indicated that the gene got from in silico cloning is more authentic.
     Through bioinformatics analysis, the protein molecular weight is 10638 Da, and theoretical pI:8.66, atomic composition: C461H734N140O136S7, extinction coefficients measured at 280 nm: 19605, the instability index: 75.26, aliphatic index: 61.35, grand average of hydropathicity: -0.899. This protein is same as Arabidopsis TRY protein and located in nucleolus. It belongs to instability, hydrophobic proteins and transcription factors of MYB family, and without signal peptide, glycosylation sites, trans-membrane structure, and coiled coil structure. Function prediction demonstrated that the protein coded by cotton TRY gene plays the same function as the protein does, coded by Arabidopsis TRY gene.
     Cotton TRY gene was recombined to pBI121 vector.. And integrate the cotton TRY gene to tobacco genome by the ways of Agrobacterium tumefaciens mediating. Masculine transgene plant could be got by real time fluorescence PCR detection. It is initially indicated that cotton TRY gene possess the function to restrain the growth of epidermal hair cell by observing and analyzing the development of Masculine transgene tobacco leaf hair and roots hair.
引文
[1] LARKIN J C,BROWN M L,SCHIEFELBEIN J.How do cells know what they want to be when they grow up? Lessons from epidermal patterning in Arabidopsis [J].Ann Rev Plant Biol,2003,54:403-430.
    [2] LARKIN J C,MARKS M D,NADEAU J,et al.Epidermal cell fate and patterning in leaves[J].Plant Cell,1997,9:1109-1120.
    [3] LARKIN J C,OPPENHEIMER D G,LLOYD A,et al.The roles of GLABROUS1 and TRANSPARENT TESTA GLABRA genes in Arabidopsis trichome development[J].Plant Cell,1994,6:1065-1076.
    [4] LARKIN J C,OPPENHEIMER D G,POLLOCKS,et al.Arabidopsis GLABROUS1 gene requires downstream sequences for function[J].Plant Cell , 1993 , 5 :1739-1748.
    [5] LARKIN J C,WALKER J D, BOLOGNESI-WINFIELD A C,et al.Allele-specific interactions between ttg and gl1 during trichome development in Arabidopsis thaliana[J].Genetics,1999,151:1591-1604.
    [6] LARKIN J C,YOUNG N,PRIGGE M,et al.The control of trichome spacing and number in Arabidopsis[J].Development,1996,122:997-1005.
    [7] SOLTIS P S,SOLTIS D E,CHASE M W.Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology[J].Nature,1999,402:402-404.
    [8] WANG S,WANG J W,YU N,et al.Control of plant trichome development by a cotton fiber MYB gene[J].Plant Cell,2004,16:2323-2334.
    [9] OPPENHEIMER D G,HERMAN P L,SIVAKUMARAN S,et al.A MYB gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules[J].Cell,1991,67:483-493.
    [10] ESCH J J,OPPENHEIMER D G,MARKS M D.Characterization of a weak allele of the GL1 gene of Arabidopsis thaliana[J].Plant Mol Biol,1994,24:203-207.
    [11] HAUSER M T,HARR B,SCHLOTTERER C.Trichome distribution in Arabidopsis thaliana and its close relative Arabidopsis lyrata: molecular analysis of the candidate gene GLABROUS1[J].Mol Biol Evol,2001,18:1754-1763.
    [12] KRANZ H D , DENEKAMP M , GRECO R , et al.Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana[J].Plant J,1998,16:263-276.
    [13] PERAZZA D,VACHON G,HERZOG M.Gibberellins promote trichome formation by up-regulating GLABROUS1 in arabidopsis[J].Plant Physiol, 1998 , 117 :375-383.
    [14] SZYMANSKI D B,JILK R A,POLLOCK S M,et al.Control of GL2 expression in Arabidopsis leaves and trichomes[J].Development,1998,125:1161-1171.
    [15] SZYMANSKI D B,MARKS M D.GLABROUS1 overexpression and TRIPTYCHON alter the cell cycle and trichome cell fate in Arabidopsis[J].Plant Cell,1998,10:2047-2062.
    [16] XIAO-XIA SHANGGUAN,BING XU,ZONG-XIA YU,et al. Promoter of a cotton fibre MYB gene functional in trichomes of Arabidopsis and glandular trichomes of tobacco[J].Journal of Experimental Botany,2008,59(13):3533-3542.
    [17] HUMPHRIES J A,WALKER A R,TIMMIS J N,et al.Two WD-repeat genes from cotton are functional homologues of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1(TTG1)gene[J].Plant MolBiol,2005,57:67-81.
    [18] YANG XIA , HOU LEI , XIAO YUE-HUA , et al.Sequence Analysis and Characterization of Four GL2 Homologous Genes in Cotton(Gossypium hirsutum L.)[J].acta agronomica sinica,2008,34(6):1086-1091.
    [19] SCHNITTGER A,FOLKERS U,SCHWAB B,et al.Generation of a spacing pattern:the role of TRIPTYCHON in trichome patterning in Arabidopsis[J].Plant Cell,1999,11:1105-1116.
    [20] SCHNITTGER A,JURGENS G,HULSKAMP M.Tissue layer and organ specificity of trichome formation are regulated by GLABRA1 and TRIPTYCHON in Arabidopsis[J].Development,1998,125:2283-2289.
    [21] SCHELLMANN S,SCHNITTGER A,KIRIK V,et al.TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis[J].EMBO,2002,21:5036-5046.
    [22] KOORNNEEF M.The complex syndrome of ttg mutants[J].Arabidopsis Inf Serv,1981,18:45-51.
    [23] NESI N, DEBEAUJON I , JOND C , et al.The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques[J].Plant Cell,2000,12:1863-1878.
    [24] WALKER A R, DAVISON P A, BOLOGNESI-WINFIELD A C, et al.The Transparent Testa Glabra1 locus,which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis,encodes a WD40 repeat protein[J].PlantCell,1999,11:1337-1349.
    [25] MASUCCI J D,SCHIEFELBEIN J W.Hormones act downstream of TTG and GL2 to promote root hair outgrowth during epidermis development in the Arabidopsis root[J].Plant Cell,1996,8:1505-1517.
    [26] CHRISTINE BERNHARDT,MINGZHE ZHAO,ANTONIO GONZALEZ,et al.The bHLH genes GL3 and EGL3 participate in an intercellular regulatory circuit that controls cell patterning in the Arabidopsis root epidermis[J].Development,2005,132:291-298.
    [27] ESCH J J,CHEN M,SANDERS M,et al.A contradictory GLABRA3 allele helps define gene interactions controlling trichome development in Arabidopsis[J]. Development,2003,130:5885-5894.
    [28] RAMSEY J C.Ultrastructure of early stages of cotton fiber differentiation[J]. Botanical Gazette.1976,137:11-19.
    [29]潘家驹.棉花育种学[M].北京:中国农业出版社,1998:178.
    [30] BEASLEY C A,BIRNBAUM E H,DUGGER W M,et al. A quantitative procedure for estimating cotton fiber growth[J].Staia Technol,1974,49(2):85-92.
    [31] BEASLEY C A,TIMG I P. The effect of plant growth substances on in vitro fiber development from fertilized cotton ovules[J].AmJ Bot,1973,60(2):130-139.
    [32]杜雄明,潘家驹,汪若海.棉纤维细胞分化和发育[J].棉花学报,2000,12(4):21-221.
    [33] BASRA A S,MALIK C P.Development of the cotton fiber[J].Int Rev Cytol,1984,89:65-113.
    [34]尹承伊,于风英.棉种繁育检验与加工[M].北京:中国农业科技出版社,1994,164-177.
    [35] ALEANDER D C.Gene expression in the developing cotton fiber[J].Plant Physiology,1983,72:147.
    [36] RINEHANT J A,PETERSEN M W,JOHN M E.Tissue-specific and development alregulation of cotton gene PbL2A[J].Plant Physiol,1996,112:1331-1341.
    [37]许玉章.温度对棉纤维发育的影响[J].西北农业学报,1993,2(4):19-20.
    [38] JOHN M E,CROW L J.Gene expression in cotton(Gossypium hirsutum L.)fiber:Cloning of the mRNAs[J].Proc Natl Acad Sci USA,1992,89:5769-5773.
    [39] JOHN M E.Characterization of a cotton(Gossypium hirsutum L.)fiber mRNA (Fb-B6)[J].Plant Physiol,1995,107:1477-1478.
    [40] JOHN M E,KELLER G.Characterization of mRNA for a praline-rich protein ofcotton fiber[J].Plant Physiol,1995,108:669-676.
    [41] JOHN M E,KELLER G.Metabolic pathway engineering in cotton biosynthesis of polydroxybutyrate in fiber cells[J].Proc Natl Acad Sci USA , 1996 , 923 :12768-12773.
    [42] JOHN M E.Structural characterization of genes corresponding to cotton fober mRNA,E6:reduced E6 protein in transgenic plants by antisense gene[J].Plant Mol Biol,1996,30:297-306.
    [43]郭旺珍,孙敬,张天真.棉花纤维品质基因的克隆与分子育种[J].科学通报,2003,48:410-417.
    [44] PAYNE T C,ZHANG F,LLOYD A M.GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1 [J].Genetics,2000,156:1349-1362.
    [45] HULSKAMP M,MISERA S,JURGENS G.Genetic dissection of trichome cell development in Arabidopsis[J].Cell,1994,76:555-566.
    [46] LLOYD A M,WALBOT V,DAVIS R W.Arabidopsis and Nicotiana anthocyanin production activated by maize anthocyanin-specific regulators, R and C1[J]. Science,1992,258:1773-1775.
    [47] MASUCCI J D,SCHIEFELBEIN J W.Hormones act downstream of TTG and GL2 to promote root hair outgrowth during epidermis development in the Arabidopsis root[J].Plant Cell,1996,8:1505-1517.
    [48] JOHNSON C S,KOLEVSKI B,SMYTH D R.TRANSPARENT TESTA GLABRA2,a trichome and seed coat development gene of Arabidopsis,encodes a WRKY transcription factor[J].Plant Cell,2002,14:1359-1375.
    [49] SCHELLMANN S,SCHNITTGER A,KIRIK V,et al.TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis[J].EMBO,2002,21:5036-5046.
    [50] WADA T,TACHIBANA T,SHIMURA Y,et al.Epidermal cell differentiation in Arabidopsis determined by a Myb homolog , CPC[J].Science , 1997 , 277 :1113-1116.
    [51] NAGATA T,TODORIKI S,HAYASHI T,et al.Gammaradiation induces leaf trichome formation in Arabidopsis[J].Plant Physiol,1999,120:113-120.
    [52] SCHIEFELBEIN J.Cell fate specification in the epidermis:a common patterning mechanism in the root and shoot[J].Plant Biol,2003,6:74-78.
    [53] KOORNNEEF M,DELLAERT L M,VANDER VEEN J H.EMS and radiationinduced mutation frequencies at individual loci in Arabidopsis thaliana[J].Heynh Mutat Res,1982,93:109-123.
    [54] KOORNNEEF M , VAN EDEN J , HANHART C J , et al.Linkage map of Arabidopsis thaliana[J].Heredity,1983,74:265-272.
    [55] SZYMANSKI D B,LLOYD A M,MARKS M D.Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis[J].Trends Plant Sci,2000,5:214-219.
    [56] JOHNSON H B.Plant pubescence:an ecological perspective[J].Bot Rev,1975,41:233-258.
    [57]李鑫,章涛.新基因的克隆策略和方法[J].海峡药学,2004,16(3):16 -19.
    [58] ZHANG C,YU Y,ZHANG S,et al.Characterization,chromosomal assignment,and tissue expression of a novel humangene belonging to the ARF GAP family[J]. Genomics,2000,63(3):400-408.
    [59] WEI M H,KARAVANOVA I,IVANOV S V,et al.In silicoinitiated cloning and molecular characterization of a novel human member of the L1 gene family of neural cell adhesion molecules[J].Human Genetics,1998,103(3):355-364.
    [60] HOSOI T,KOGUCHI Y,SUGIKAWA E,et al.Identification of a novel human eicosanoid receptor coupled to G(i/ o)[J].The Journal of Biological Chemistry,2002,277(35):31459-31465.
    [61]王俊美,孙燕飞,刘红彦,等.白粉菌诱导的小麦类萌发素蛋白的克隆、定位及表达分析[J].中国农业科学,2009,42(9):3104-3111.
    [62]张龙雨,李红霞,张改生,等.黏类小麦细胞质雄性不育相关基因cMDH的克隆与表达分析[J].作物学报,2009,35(9):1620-1627.
    [63]张毅,张岗,董艳玲,等.条锈菌诱导的小麦MBF1转录辅激活因子基因的克隆及其特征分析[J].作物学报,2009,35(1):11-17.
    [64]段迎辉,郭军,王淑娟,等.小麦丙氨酸氨基转移酶基因TaAlaAT1的克隆及表达特征分析[J].植物病理学报,2009,39(2):139-146.
    [65]胡守景,张治礼.一个新的玉米WRKY基因识别及其生物信息学分析[J].江西农业学报,2008,20(6):23-26.
    [66]杜金昆,姚颖垠,倪中福,等.一个玉米(Zea. MaysL.)杂交种增强表达的GA20氧化酶新基因(ZMGA20)的克隆和鉴定[J].自然科学进展,2008,18(8):874-882.
    [67]边鸣镝,吴忠义,张秀海,等.玉米蛋白激酶基因ZmPti1-1的cDNA克隆及其表达特性[J].华北农学报,2008,23(6):36-40.
    [68]边鸣镝,邓川,白忠义.玉米类受体蛋白激酶基因ZmLRRPK1的cDNA克隆与表达分析[J].中国生物工程杂志,2009,29(7):33-36.
    [69]马小龙,刘颖慧,袁祖丽,等.玉米蔗糖转运蛋白基因ZmERD6 cDNA的克隆与逆境条件下的表达[J].作物学报,2009,35(8):1410-1417.
    [70]李雅轩,李蕊,孟凡臣,等.大豆吡哆醛激酶基因的克隆与表达分析[J].华北农学报,2009,24(3):23-27.
    [71]李蕊,孟宪萍,胡英考,等.大豆吡哆醇生物合成蛋白基因(PDX)的电子克隆和进化分析[J].华北农学报,2007,22(1):64-68.
    [72]李晓晓,李蕊,李雅轩,等.大豆脱氢抗坏血酸还原酶基因的电子克隆及进化分析[J].大豆科学,2007,26(1):45-50.
    [73]张锋,崔百明,黎娟华.棉花生长素应答因子克隆和序列分析[J].生物技术通报,2007,5:160-162.
    [74]于海川,吴娇,崔百明,等.棉花中两个新的F-box蛋白基因的克隆与表达分析[J].棉花学报,2008,20(2):99-104.
    [75]蒋圣娟,孙玉军,张强,等.花生致敏蛋白Arah 1的电子克隆及生物信息学分析[J].安徽科技学院学报,2009,23(2):31-37.
    [76]易乐飞,王萍,周向红.向日葵BADH基因部分序列的克隆与分析[J].安徽农业科学,Journal of A nhui Sci,2008,36(32):14003-14004.
    [77]易乐飞,王萍,孟鹏.向日葵甜菜碱醛脱氢酶的电子克隆与分析[J].作物杂志,2007,6:54,64,74.
    [78]化文平,王结之.向日葵异戊烯焦磷酸异构酶基因(ipi)的电子克隆和生物信息学分析[J].植物生理学通讯,2008,44(1):81-86.
    [79]崇保强,谭小力,周佳,等.油菜长链酰基辅酶A合成酶基因(LACS4)的电子克隆和表达分析[J].江苏农业科学,2009,25(1):38-43.
    [80]孙涌栋,张传来,罗未蓉,等.黄瓜CsEXP10基因的电子克隆及生物信息学分析[J].生物信息学,2008,03:113-116.
    [81]易乐飞,王萍,周向红,等.条斑紫菜半胱氨酸合成酶基因的电子克隆与分析[J].中国水产科学,2009,16(4):518-524.
    [82]王冬冬,朱延明,李勇,等.电子克隆技术及其在植物基因工程中的应用[J].东北农业大学学报,2006,37(3):403-408.
    [83]王克夷.蛋白质导论[M].北京:科学出版社,2007:358-416.
    [84]佩特斯科G A,林格D.蛋白质结构与功能入门[M].葛晓春,译.1版.北京:科学出版社,2009:27-59.
    [85] RIECHMANN J L,HEARD J,MARTIN G,et al.More than 80 R2R3-MYBregulatory genes in the genome of Arabidopsis thaliana[J].Plant J,1998,14:273-284.
    [86] THOMAS J,GONDA.The International Journal of Biochemistry[J].Cell Biology,1998,30:547-551.
    [87] OGATA K,MORIKAWA S,NAKAMURA H,et al.Comparison of the free and DNA complexed forms of the DMA-binding domain from c-Myb[J].Nature Struct Biol,1995,2:309-320.
    [88] BEVAN M W,FLAVELL R B,CHILTON M D.A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation[J].Nature,1983,304:184-187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700