铁氧体材料的扫描电子显微镜分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用扫描电子显微镜(SEM)分析技术,从材料显微结构分析入手,针对掺杂MnZn铁氧体磁芯材料的研发以及环行器的YAlIG铁氧体基片表面脆裂问题,开展了如下研究:
     1.优化了JEOL6490LV型SEM的工作参数,确定了获得高分辨率图像的条件,内容包括:样品制备、灯丝电流的调整、SEM各操作参数(加速电压、束斑大小、工作距离、衬度和消像散)的优化;并比较了二次电子像和背散射电子像的特点及各自的适用条件和对象。
     2.探索了提高X射线能谱仪(EDS)分析准确度的方法,研究确定了操作条件,内容包括:样品制备要求、EDS操作参数(加速电压、束斑大小、工作距离、分析区域及收集时间)的优化以及谱线的判别与处理方法。为利用扫描电镜来分析和表征铁氧体材料的微结构做好基础工作。
     3.利用SEM-EDS分析技术,对掺杂MnZn铁氧体磁芯材料断面进行形貌观察,对微区成分进行定性和定量分析。以零掺杂铁氧体的显微结构作为参考,研究了掺杂剂在铁氧体中的分布,以及掺杂后铁氧体的晶粒尺寸与均匀性、晶界状态和气孔分布等进行了对比研究。分析了掺杂剂对铁氧体微结构的影响机理和对电磁性能的影响。这些分析结果对MnZn铁氧体掺杂改性研究具有参考价值。
     4.对微带环行器铁氧体基片表面脆裂剥块的问题进行了分析研究。该环行器经过温度振荡试验后,其钇铝石榴石型铁氧体(YAlIG)基片在微带线图形面出现脆裂掉块现象。通过测试烧银前、烧银后及温度冲击试验等三个环节下YAlIG基片的抗冲击强度,确定以烧银工序为研究对象。对烧银前后YAlIG基片冲击断面进行显微形貌及微区成分分析对比,观察到银浆在烧结过程中渗入基片表面得现象,讨论了银渗透对基片产生的影响。最终找出了YAlIG基片表面脆裂掉块的原因,并提出改进意见,对提高微带环行器可靠性起到积极的促进作用。
Based on the scanning electron microscopy (SEM) and energy dispersive x-ray spectrometer (EDS) analysis techniques, using microstructure investigation and micro-area composition analysis, the doped MnZn ferrite core materials were studied, and the reason of surface cracking of Y-A1 garnet-type ferrite (YAlIG) was found out. The main researches were as follows.
     1. In order to obtain high-resolution SEM image, the effect of sample character on the image quality was investigated; and the working parameters of Jeol 6490LV SEM were optimized. The features of the secondary electron image and backscattered electron image were compared, and the applicable objects for them were respectively illustrated.
     2. In order to improve quantitative analysis accuracy of energy dispersive x-ray spectrometer (EDS), the effect of sample character on the composition result was detected, and the instrumental operating parameters were optimized, which was based on theoretical study and experimental research. In addition, how to prepare the samples and reasonably process the collected spectrum were discussed. The all above pave the way for making full use of SEM-EDS to characterize the microstructure of ferrite materials.
     3. The microstructures of doped MnZn ferrites were characterized by SEM-EDS analysis techniques. The cross-section morphology and micro-area composition were analyzed. Compared to zero-doped MnZn ferrite, the microstructures of doped MnZn ferrites are different, such as typical distribution of the dopants, the corresponding grain size and uniformity, the state of the grain boundary and pore distribution (shape, size and quantity), the impurity distribution, etc. The typical doped microstructures were studied and the mechanism of the dopant’s effect on microstructure and electromagnetic property were discussed. The results above are of referential value to the following doped ferrites research and development.
     4. After the temperature surging test for the microstrip circulator, on the screen of microstrip line, the YAlIG ferrite show surface cracking phenomenon. In order to find out the cracking reason, the impact strength of the YAlIG substrates (before silver-sintered, after silver-sintered and after temperature surging) were tested and compared. The results showed that the impact strength declined sharply after silver-sintered, so the sintering process was determined to do a detailed study. The microstructure of cross-section of YAlIG was analyzed using SEM-EDS techniques, the results show that in the process of silver-sintered, silver penetrate in YAlIG ferrite, furthermore, the influence of silver diffusion was discussed. Ultimately the reason of surface cracking was found out,some suggestions were given out to improve the reliability of YAlIG microstrip circulator.
引文
[1]梁丽萍,刘玉存,王建华.软磁铁氧体的发展与应用.山西化工,2007,27(2):31-33
    [2] Roess E, Hanke I, Moser E. MnZn ferrite with initial permeability of over 20000 and their structure. Applied Physics, 1964, 17(7): 504-508
    [3]陆明岳.MnZn铁氧体最新进展及发展趋势.磁性材料及器件,2001,32(5):27-33
    [4] Janghorban K, Shokrollahi H. Influence of V2O5 addition on the grain growth and magnetic properties of Mn–Zn high permeability ferrites. Magn Mater, 2007,308(2):238-242
    [5] Sugimoto M. The past, present, and future of Ferrites. Amer Ceram, 1999, 82(2): 269-280
    [6]刘九皋,汪作国,邵顺中等.宽频高μ软磁铁氧体材料.第十一届全国磁学和磁性材料会议论文集,长沙,2002:368-370
    [7]李雪,张俊喜,等.锰锌铁氧体结构性能的研究及发展概况.材料导报,2008,22(8):9-14
    [8] NakamuraT, OkanoY. Electro-magnetic Properties of MnZn Ferrite Sintered Ceramics. Applied Physics, 1996, 79(9): 7129-7133
    [9] Koing U. Method for producing MnZn ferrite. 1975 IEEE Trans Magn, Vol.11: 1306
    [10]席国喜,等.Mn-Zn铁氧体掺杂改性研究进展.磁性材料及器件.2007,4:19-22
    [11]余忠,兰中文.掺Ni锰锌铁氧体力学与磁学性.硅酸盐学报,2006,34(11):1387-1391
    [12] Nan Lin, Mishra, R Thomas. CaO segregation in MnZn ferrite. 1982 IEEE Trans Magn, Vol.18(6): 1544-1546
    [13] Ishino S, Ishihara T, et al. Aging degradation of the mechanical properties of composite insulators and its analytical approaches. 1988 IEEE Trans on Power Delivery, Vol.3(1): 317-324
    [14]聂建华,李海华,冯则坤,等.纳米添加剂对MnZn功率铁氧体材料功率损耗的影响.磁性材料及器件,2003,34(3):14-16
    [15] Wang Yongming, Wang Xin, Jiang Yanfei. Study on sintering process and characteristic of nanosized soft magnetic MnZn ferrite powders. Rare Metals, 2006, 25(6): 531-535
    [16] Lin Yingchun, Gan Dershin. Microstructure of zirconia-(MnZn ferrite) composites. Materials Science and Engineering, 2008, 188 (2): 327-334
    [17]冯则坤,李海华,何华辉.掺杂对高磁导率MnZn铁氧体磁特性的影响.华中科技大学学报(自然科学版),2004,32(1):79-81
    [18]冯则坤,李海华,何华辉.Co2+或Sn4+对MnZn功率铁氧体磁特性的影响研究.功能材料,2003,34(6):649-651
    [19]宋晓敏,龚小燕,彭声谦,等.掺杂对功率铁氧体磁性能的影响.功能材料,2005,36(2):181-183
    [20] Mstsuo Y, Ono K. Magnetic properties and mechanical strength of MnZn ferrite. 2001 IEEE Trans Magn, Vol.37(4): 2369–2372
    [21]居毅,杨元兆.高磁导率MnZn铁氧体的研究进展.浙江工业大学学报,32(6):620-624
    [22]姚骏恩.电子显微镜的现状与展望.电子显微学报,1998,17(6):767-776
    [23]朱月香,段连运,钱民协.固体表面结构和常用表面分析技术,大学化学,2000,15(6):67-70
    [24]内山郁.电子探针X射线显微分析仪(刘济民).北京:国防工业出版社,1982:37
    [25] S.J.B.里德.电子探针显微分析(林天辉).上海:上海科学技术出版社,1980:160-162
    [26]任段胜,都建民等.现代表面分析技术在半导体材料中的应用,现代仪器,2003,3:20-22
    [27]田春生,表面分析技术在半导体器件研发与制作中的地位.中国集成电路,2005,73:62-65
    [28]廖乾初,蓝芬兰.扫描电镜分析技术与应用.北京:机械工业出版社,1990:23-30
    [29] J.Cazaux. Electron and X-ray induced Electron Emissions from Insulator. Polymer International, 2001, 50: 748-755
    [30]笠术远夫.木村著,陈凯旋译.C,N等轻元素的电子探针定量分析.热处理,1986:26(4):45-50
    [31]姜笛.电子探针定量分析中碳污染的扣除.分析测试通报,1986,5(5):48
    [32] J.R.Ares, A.Pascual, etal. A methodology to reduce error sources in the determination of thin film chemical composition by EDAX. Thin Solid Films, 2004, 450: 207–210
    [33] GB/T 17359-17998.电子探针和扫描电镜X射线能谱定量分析方法通则
    [34]李标荣.电子陶瓷工艺原理.武汉:华中工学院出版社,1986:59-140
    [35]林其壬.铁氧体工艺原理.上海:上海科学技术出版社,1987:21-70
    [36]王耕福.铁氧体工艺学.南京:南京电子工业职工大学出版社,2002:26-120
    [37]黄永杰.磁性材料.成都:电子科技大学出版社,1986:56-124
    [38] Chen S H, Chang S C. Effect of sintering parameters on Zn loss for preparation of high permeability MnZn ferrites. 1992 IEEE Trans Magn, Vol.28(5): 436-438
    [39]李配,蔡菊芳,桑商斌.水热法制备MnZn铁氧体纳米晶.陶瓷科学与艺术,2003,1:29-31
    [40] Thakur A, Singh M, Preparation and Charaeterization of nanosize Mn0.4Zn0.6Fe2O4 Ferrite bycitrate Precursor method Ceramics International 2003, 29(5): 505-511
    [41]聂建华.高性能MnZn铁氧体材料的制备及性能研究:[博士学位论文],武汉:华中科技大学,2004
    [42] K.Ishida. Effects of grain size on grain boundary segregation. Journal of Alloys and Compounds, 1996, 235: 244-249
    [43]黄爱萍,何华辉,等.掺杂对高导MnZn铁氧体材料性能的影响.华中科技大学学报,2006,34(2):39-41
    [44]迟煜頔,许启明.复合掺杂对高磁导率锰锌铁氧体磁性能的影响.电子元件与材料,2007,26(2):43-45
    [45] Matsuo Y, Ono K, Hashimoto T. Magnetic properties and mechanical strength of MnZn ferrite. 2001 IEEE Transactions on Magnetics, vol.37: 2369-2372
    [46]顾幸勇.陶瓷制品检测及缺陷分析.北京:化学工业出版社,2006:87-88
    [47]洪向东,许启明,陈明.YIG多晶微波铁氧体材料的开发与性能.磁性材料及器件,2008,39(1):63-65
    [48]韩志全.微波铁氧体材料尽现辉煌.世界产品与技术,2001,7:24-26
    [49]蒋微波.相控阵雷达中的多晶微波铁氧体材料及器件.磁性材料及器件,2004,10:31-33
    [50] Fechine P.B.A, Silva E.N, De Menezes A.S. Synthesis, structure and vibrational properties of GdIGX:YIG1-X ferrimagnetic ceramic composite. Journal of Physics and Chemistry of Solids, 2009, 70(1): 202-209
    [51]余声明.微波铁氧体器件在现代电子设备中的应用.电子元器件应用,2003,5(9):1-3
    [52] Frender R, Glogier W, Mroz T. Investigation of optimised YIG-Al substituted garnets in high-power below-resonance circulators. Microwaves, Radar and Wireless Communications, 2002, 2(20): 447– 450
    [53] Westrgtrg, Ship Ac, Hunt Rl. Effect of rare-earth and aluminum ions on the high-power threshold of YIG. Journal of Applied Physics, 2007, 42(4): 1730-1731
    [54]刘莉,张明.微波铁氧体器件失效情况的统计与分析.磁性材料及器件,2006,37(5):58-60
    [55]王崇琳.热等静压铁氧体磁头材料.粉末冶金技术,1998,16(1):5-11
    [56]杨正,路月娥,刘兴芬.铁氧体磁头材料的力学性质.电子学报,1987,4:35-38
    [57]张克实.多晶体变形应力的不均匀性及宏观响应.力学学报,2004.36(6):714-721

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700