NiZn铁氧体薄膜及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NiZn铁氧体材料作为一种微波旋磁铁氧体材料,具有高的旋磁特性,低损耗、宽频率范围、高功率负荷以及良好温度稳定性等特点,广泛应用于隔离器、相移器、环形器、调制器等微波铁氧体器件。随着现代电子器件的小型化与微型化,NiZn铁氧体薄膜的应用日益广泛,如高频薄膜电感、高频薄膜变压器等。本文以射频磁控溅射法制备NiZn旋磁铁氧体薄膜为主要研究内容,通过理论分析与大量实验,针对薄膜材料的主要技术参数,分析退火温度,基片,靶材等多种因素对薄膜性能的影响,并对其微波旋磁性能进行了研究,研制既具有优异的磁性能又适合于在高频下应用的NiZn铁氧体薄膜材料。
     首先通过靶材制备,基片清洗等前期准备,完成薄膜制备需要达到的客观条件,然后使用射频磁控溅射仪在Si(100)基片上制备NixZn(1-x)Fe2O4铁氧体薄膜。通过对薄膜样品的XRD、AFM、SEM、VSM测试数据进行分析,进而明确了制备薄膜过程中溅射功率、溅射气压、薄膜厚度、基片温度等前处理工艺对薄膜性能影响,用于选取最优的解决办法对薄膜进行制备。然后对后处理工艺和基片、材料配比等其他影响薄膜性能的因素加以分析。最后再对薄膜按照微波旋磁器件的要求,通过传输式谐振腔进行铁磁共振线宽ΔH的测试,综合上面各种参数的影响,对制备参数进行了优化选择。在Si(100)基片上,在1Pa气压下溅射,膜厚为800nm,经过800℃退火,得到Ni0.6Zn0.4Fe2O4薄膜,饱和磁化强度Ms=150e.m.u/cc,矫顽力Hc=110Oe,铁磁共振线宽ΔH=140Oe的NiZn旋磁铁氧体薄膜材料。
NiZn ferrite as one kind of microwave ferrite materials has been found widely application in isolator, phase shifter, circulator, modulator with its good gyromagnetic property, low loss, broad band width, high power and good temperature stability. With the development of miniaturization of modern electronic devices, NiZn ferrite thin film is becoming more important and widely applicated in high frequency thin film inductor, thin film transformer and thin film circulator and Isolator. This dissertation mainly researched on the properties of NiZn ferrite thin films deposited by RF magnetron sputtering. The relationships between the main technical paramters of NiZn films and processing parameters such as annealing temperature, substrate conditions and target materials had been studied and the microwave property also studied theoretically and experimentally. Then NiZn ferrite thin film materials with good magnetic properties had been prepared which had the potential application in high frequency and microwave thin film devices.
     In order to deposite NiZn thin film, target materials are prepared and substrates are cleaned firstly, then NixZn(1-x)Fe2O4 thin film is deposited on the Si(100) substrate by Rf magnetron sputtering. By means of using XRD, AFM, SEM and VSM to measure microstructure and magnetic properties of thin film samples, the relationship between the technical performance of NiZn films, such as sputtering power, sputtering pressure, film thickness and substrate temperature, and the pro-processing has been studied and clarified. This is useful for selecting the best solution for thin film deposition. Other factors which could also affect the thin film’s performance, like post-processing, substrates and material content, have also been analyzed. Moreover, the ferromagnetic resonance linewidthΔH measuring has been done by transmission resonance cavity at 9.385GHz (wave length=3cm) according to the optimization requirements of gyromagnetic device. Eventually, the depositing parameters have been decided considering the general influences resulted from the factors mentioned above. The Ni0.6Zn0.4Fe2O4 thin film has been deposited on the Si(100) subtracts, under the conditions that atmospheric pressure = 1 Pa, thickness of film = 800nm, annealing temperature = 800℃. This key properties of the NiZn gyromagnetic ferrite thin film is as following: Ms=150e.m.u/cc, Hc=110Oe,ΔH=110Oe.
引文
[1]韩志全,微波铁氧体的发展概况,磁性材料与器件, 2000, 31(5): 32-35
    [2]李世根,新型微波铁氧体器件的开发和应用,磁性材料与器件, 2000, 31(3): 26-30
    [3] V.KOrenivski, R.B.vanDove, Design of High Frequeney Induetors Based On MagnetieFilm, IEEE, Trans.Magn, 1998, 34:1375-1377
    [4] I.Sasada, T.Yamaguch, K.Harad, Planar inductors using NiZn ferrite thin plates and the application to high frequency DC-to-DC converters, IEEE transaction on magnetics, 1993, Vol.29, 6-14
    [5] Kawabe K, Koyama H, ShiraeK.Planarinductor, IEEETrans.Magn,1984,20:1804-1806.
    [6] H.J.Ryu, S.H.Han, H.J.Kim. Charaeteristics of Twin Spiral TypeThin Film lnduetor with Fe-based Nanocrystalline Core.IEEETrans.Magn., 1999, 35, (5):3568-3570.
    [7] C.-S.Kim, S.Bae, H.-J.Kim, Fabrication of High Frequeney DC-DC Converter Using Ti/FeTaN Film Induetor. IEEE Trans. Magn, 2001, 37(4):2894-2896
    [8] T.Saito, K.Isutsui, S.Yahagi.Quasi, Microwave-range inductors covered with Co-based Magnetic Thin Films, IEEE trans.Magn, 1999,35(5):3187-3189
    [9] M.Yamaguchi, M.·Baba,K.Suezawa. ImProved RF Integrated Magnetie Thin-Film Induetor By means of Micro Slits and surface PlanariZation Techniques. IEEE Trans Magn, 2000, 36(5):3495-3497
    [10] H.Nakazawa, M.Edo, Y.Katayama, DC/DC Converter that Integrates Planar Inductor onpowerIC·IEEETrans.Magn,2000,36(5):3518-3520
    [11] Chen D H, He X R. Synthesis of nickel ferrite nanoparticles by sol-gel method.Materials Research Bulletin, 2001, 36(7-8): 1369-1377
    [12]凌翠翠,陆海鹏,崔晶晶,微波频段用高磁导率铁氧体薄膜研究进展,磁性材料与器件, 2006,37(1), 10-13
    [13] E. Schloemann,“Miniature circulators,”IEEE Trans. Magn, Sep. 1989, Vol. 25,No. 5, 3236–3241
    [14] S. D. Yoon, Jiangwei Wang, Nian Su, Ferrite-Coupled Line Circulator Simulations For Application at X-Band Frequency, IEEE Trans. Magn,2007, 43, 2639-2641
    [15] Yoshikazu Murakami, Microwave Ferrite Technology in Japan: Current Status and FutureExpectations Wei-Chih Hsu, IEEE Trans. Magn, 1993, 207-210
    [16] J.D.Adam et al, Monolithic integration of an x-band circulator with GaAs MMICs, IEEE 1995, 97-98
    [17]黄永杰,磁性材料,北京:电子工业出版社, 1994, 97-99
    [18] Hiroshi Fukushima, Yasutaro Uesaka, et al, Influence of Gyromagnetic Term and Temperature on Switching Time of a Single-Domain Particle, IEEE Trans. Magn,2003, 39(5):2519-2521
    [19] Soohoo, R. F, Magnetic thin film inductors for integrated circuit applications, IEEE, Trans.Magn, 1979, 15:1830-1835.
    [20] Sekiguchi. Digests of Internaliana Conference on Ferrite, Satellite Conference in Tokyo Japan, Sept25-27, 2000
    [21] B. Parvatheeswara Rao, Chong-Oh Kim,et al, Structural and Magnetic Characterizations of Coprecipitated Ni–Zn and Mn–Zn Ferrite Nanoparticles, IEEE Trans. Magn,42(10):2858-2860
    [22] M. Abe, A. I. Shames, N. Matsushita, et al, Ferromagnetic Resonance Study on Magnetic Homogeneity in Spin-Sprayed NiZn Ferrite Films Highly Permeable at Gigahertz Frequencies, IEEE Trans. Magn,39(5):3142-3144
    [23] Zhenghong Qian, Geng Wang, John M. Sivertsen, et al, Nizn Ferrite thin films prepared by FTS, IEEE Trans. Magn,33(5):3748-3750
    [24] Carmine A. Carosella and Douglas B. Chrisey, Pulsed Laser Deposition of Ferrite Thin Films, in Pulsed Laser Deposition of Thin Films, edited by Douglas B.Chrisey and Graham K. Hubler (Wiley, Nork, 1994).
    [25]杨邦朝,王文生,薄膜物理与技术,成都:电子科技大学出版社,1994,60-63
    [26] Ovidiu F. Caltun, Leonard Spinu. Magnetic properties of high frequeccy Ni-Zn ferrites doped with CuO, IEEE Trancactions Magnetics, 2001, 37(4):2353-2355
    [27] A.Chatterjee, D. Das, S. K. Pradhan, et al. Synthesis of nanocrystalline nickel-zinc ferrite by the sol-gel method, Journal of Magnetism and Magnetic Materials. 1993, 127(1):214-218
    [28]陈光华,邓金祥,纳米薄膜技术与应用,北京:化学工业出版社, 2004, 29-54
    [29]田明波,薄膜技术与薄膜材料,北京:清华大学出版社, 2006, 516-524
    [30]杨邦朝,崔红玲,溅射靶材的制备与应用, .真空.2001, 3:11-15
    [31] Chul Sung Kim, Woo Chul Kim, Sung Yong An, et al. Structure and M?ssbauer studies of Cu-doped Ni–Zn ferrite, Journal of Magnetism and Magnetic Materials, 2000, 215(2): 213-216
    [32] D.C.Webb, Microwave magnetic thin-film devices, IEEE Trans. Magn, 1988, 24(6):2799-2804
    [33] Stobieeki, T, KoPeewiez M, Powroznik W, Strueture and magnetie properties of (Fe97Al3)100-xNx films and (Fe97Al3)85N15/Al2O3 rnultilayers, Jounral of Magnand Magn Materials, 2002, 240(1):448-450
    [34]孙光飞,强文江,磁功能材料,北京:化学工业出版社, 2007, 348-352
    [35] M. Abe, A. I. Shames, N. Matsushita, Ferromagnetic Resonance Study on Magnetic Homogeneity in Spin-Sprayed NiZn Ferrite Film Highly Permeable at Gigahertz Frequencies, IEEE Trans. Magn, 2003, 39(5):3142-3144
    [36]常铁军,祁欣等,现代仪器分析,哈尔滨:哈尔滨工业大学出版社,2003,11-15
    [37]苏桦.低温共烧NiCuZn铁氧体材料及叠层片式电感应用研究: [博士学位论文].成都:电子科技大学. 2006
    [38] M.Tada, J.Miyasaka, N.Matsushita, et al, alkaline metal ion free synthesis of NiZn ferrite film for GHz conducted noise suppressors, INTERMAG 2006, 742
    [39]杨邦朝,王文生,薄膜物理与技术,成都:电子科技大学出版社,1994,70-75
    [40] Y. Nakayama, H. Yajima, Y. Kitamoto, Preparation of Ferrite Films for Electrical Insulation by Ultrasound-Enhanced Ferrite Plating, 1999, 35(5):3040-3042
    [41]付恩刚,庄大明,等,工作气压对磁控溅射ZAO薄膜性能的影响,功能材料, 34(5):543-545
    [42] Xiang SHen, Rongzhou Gong, et al, J.Mater. Sci. Technol., 23(4):473-476
    [43]李伟,高BsNiCuZn旋磁铁氧体材料的研制: [硕士学位论文].成都:电子科技大学,2008,19-25
    [44] Y.K.Kim, M.Oliveria, Magnetic properties of sputtered Fe thin films: processing and thickness dependence, J.Appl Phys, 1993, 74(2) 1233-1244
    [45] Kobayashi H, Ishida T, N akamura K, et al, Properties of indium TIN oxide films prepared by the electron beam evaporation method in relation to characteristics of indium TIN oxide/ silicon oxide/ slicon junction solar cells , J.Appl Phys, 1992, 72 (11) : 5288- 5293 .
    [46] Soonchul jo, Sehick Park,et al, Magnetic property Variations of Sputtered FeN Films on Substrate Temperature and Film Thickness, IEEE Trans. Magn, 1995, 31(6):2706-2708
    [47] HiratsukaN, KkaizakiK, Cyrstal structure of acieular fine bariume frritePartieles, Meta Powder Report.1999, 54(l):37-39
    [48] Weidong Li, Yuqin Sun, et al, High-Frequency Resistivity of Soft Magnetic Granular Films, IEEE Trans. Magn, 2005, 41(10):3283-3285
    [49]周世昌,磁性测量,成都:电子科技大学出版社, 1994, 164-167
    [50] Sangita S. Kalarickal, Pavol Krivosik, et al, Ferromagnetic resonance linewidth in metallic thin films: comparison of measurement methods, J.Appl.Phys, 2006, 99:1-7
    [51] Yuuichi Awao, Yoshio Nikawa,et al, Microwave plasma spray in application to process microwave ferrite films, IEEE Trans. Magn, 1987, 23(5):3733-3735
    [52]袁超,安兵,张同俊,基片弯曲法分析Ag/Fe多层膜退火过程中界面应力的变化,理化检验-物理分册, 39(5):237-239
    [53]卢磊等译,薄膜材料——应力、缺陷的形成和表面演化,北京:科学出版社, 2007, 1-37
    [54]李济林,刘海定,贺文海,贺润侨,雷鸣.高性能大功率NiZn软磁铁氧体材料研究.磁性材料及器件, 2006, 37(6): 53-58
    [55]宛德福,马兴隆,磁性物理学,成都:电子科大出版社,1994, 287-300

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700