高频电感用Z型平面六角铁氧体材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着通讯技术向高频化方向的发展以及高速数字电路的快速发展,超高频段上的电磁干扰(EMI)问题日益突出,迫切需要能工作在超高频段且性能优异的软磁铁氧体介质材料。其中Z型六角铁氧体由于具有较高的磁晶各向异性,成为最有可能替代尖晶石铁氧体在超高频段应用的磁性介质,有望用作高频片式电感用铁氧体材料和超高频段抗电磁干扰对策元件用微波铁氧体材料。
     本文正是针对上述问题,以Z型六角铁氧体材料为研究对象,在深入分析了合成机理、掺杂改性和低温烧结机制的基础上,对材料和工艺做了探索性和创新性的研究,主要内容为:
     一、研究了工艺条件对Z型六角铁氧体材料电磁性能的影响机理。按照工艺流程改变预烧温度、升温速率、烧结温度和保温时间等工艺参数,通过扫描电镜分析、X-射线衍射分析等手段剖析了改变工艺参数对六角铁氧体材料微观结构的影响规律,通过对材料复数磁导率、介电常数以及品质因数等的测量掌握了工艺参数对材料电磁性能的影响规律。
     二、研究了不同离子取代以及掺杂剂对Z型平面六角铁氧体的改性机制。分别研究了Sr~(2+)、Ti4+-Zn~(2+)离子取代以及MnCO3、P2O5和Y_2O_3掺杂对Z型平面六角铁氧体显微结构和电磁性能的影响。发现Sr~(2+)离子与Ti4+-Zn~(2+)离子取代能够有效的提高Z型平面六角铁氧体的磁导率。发现Y_2O_3掺杂析出的Y3Fe5O12石榴石相改善了六角铁氧体的介电常数和磁导率的频率特性。揭示了P2O5掺杂促进晶粒生长从而获得高磁导率的影响机理。发现MnCO3掺杂在改善材料介电特性的同时还促进了磁导率的增加。
     三、研究了Bi_2O_3、Bi_2O_3-SiO2和Bi_2O_3-MgO掺杂对低温烧结Z型六角铁氧体的作用机理,同时研究了氧气氛低温烧结对Z型六角铁氧体的影响,发现Bi_2O_3-SiO2和Bi_2O_3-MgO掺杂以及氧气氛低温烧结显著改善了Z型六角铁氧体材料的高频电磁特性。
     四、采用sol-gel法合成超细的六角铁氧体粉料(NZHP)并在此基础上制备了低温烧结Z型平面六角铁氧体的材料。同时研究了掺入由溶胶-凝胶法获得的同成分纳米粉体(NZHP)对固相反应法制备低烧Z型平面六角铁氧体的改性机理,利用纳米-微米粒子匹配的方法获得了同时具备高磁导率和较高磁品质因数Q的低温烧结Z型平面六角铁氧体材料。
With the development of communications technology to high-frequency and the rapid development of high-speed digital circuits, the electromagnetic interference (EMI) is becoming an increasingly serious problem and the excellent soft magnetic materials able to work in the high frequency band are required urgently. Especially, Z-type hexaferrties are among the most widely used soft magnetic materials, instead of spinel ferrite for high-frequency application due to their high magnetic anisotropy. It can be used to the chip inductors for high-frequency and anti-EMI countermeasure devices for ultra-high frequency.
     In this thesis, the synthesis mechanism and the basic mechanisms of modification and low-temperature sintering of Z-type hexagonal ferrite have been analyzed. Then a series of novel materials and its preparation are explored and investigated.
     The main results are as follows:
     1. The effects of preparation process on the microstructures and electromagnetic properties of hexaferrites and the relative mechanisms were studied in detail. The presintering temperature, firing rate, sintering temperature, and holding time were changed regularly to investigate the phase formation and the microstructure evolvement of hexaferrites by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The variation of complex permeability, dielectric constant and quality factor with preparation parameters was studied.
     2. The modification mechanisms of different dopants were investigated. The variation of microstructures and electromagnetic properties of hexaferrites with different Sr~(2+), Ti4+-Zn~(2+), MnCO3, P2O5 and Y_2O_3 contents were investigated. The Sr~(2+) and Ti4+-Zn~(2+) addition can effectively increase the permeability. The Y3Fe5O12 phase was found in all samples with Y_2O_3, resulting in the improvement of electromagnetic properties of hexaferrites. The influence of the increasing grain size of the samples with P2O5 on the high permeability was discussed. The additive MnCO3 improved the complex permeability and the complex permittivity.
     3. The mechanisms of low-temperature sintering of the hexaferrites with Bi_2O_3, Bi_2O_3-SiO2 and Bi_2O_3-MgO were investigated. The influence of Bi_2O_3 additive on the phase composition, microstructures and electromagnetic properties of hexaferrties was revealed. The significant improvement of high-frequency characteristics was obtained for the samples with Bi_2O_3-SiO2 and Bi_2O_3-MgO additive. The high-frequency electromagnetic properties of Co2Z ferrite was also improved by sintered in oxygen atmosphere.
     4. Z-type hexaferrites prepared by sol-gel method were investigated. A novel route has been developed to prepare low-temperature sintered Z-type hexaferrites. The nanoparticles derived an improved sol-gel method were utilized to synthesize the low-temperature fired Z-type hexaferrite by a solid-state reaction method. The Z-type magnetic material with higher initial permeability and higher quality factor were obtained for the sample with NZHP.
引文
[1]沈庆峰,杨显万等.软磁铁氧体材料.昆明理工大学学报(理工版),2003,28 (2) :17
    [2]冯则坤,李海华等.甚高频应用的Co2-Z型铁氧体材料研究.现代技术陶瓷,2002. 92(2) :3
    [3]罗凌虹,周和平等.高频多层电感器介质材料的研究.无机材料学报,2001,16(5):1009
    [4] Zhang Huaiwu, Zhong Hui, Liu Baoyuan, et al. Electromagnetic Properties of a New Ferrite-Ceramic Low Temperature Cocalcined (LTCC) Composite Materials. IEEE Transactions on Magnetics, 2005, 41(10):3454-3456
    [5]燕小斌,高峰等.Co2Z型高频软磁铁氧体材料的研究进展.材料导报,2006,20(2):29
    [6] Wang Xiaohui, Ren Tianling,Li Longtu,et al. Synthesis hexaferrite of Cu modified Co2Z with planar structure by a citrate precursor method. Journal of Magnetism and Magnetic Materials, 2001,234: 255-260
    [7] Wang Xiaohui,Li Longtu, Su Shuiyuan, et al. Electromagnetic properties of low-temperature sintered Ba3Co2-xZnxFe24041 ferrites prepared by solid state reaction method. Journal of Magnetism and Magnetic Materials, 2004, 280: 10-13
    [8] Zhang Hongguo, Zhou Ji, Wang Yongli, et al. Dielectric characteristics of novel Z-type planar hexaferrite with Cu modification. Materials letters, 2002, 55: 351-355
    [9] Bao Jianer, Zhou Ji, Yue Zhenying, et al. Electrical and magnetic studies of Ba3Co2Fe23-xMn12xO41 Z-type hexaferrites. Materials Science & Engineering B, 2003, B99: 98-101
    [10] Takeshi Tachibana. Takeshi Nakagawa, Yukio Takada. Influence of ion substitution on the magnetic structure and permeability of Z-type hexagonal Ba-ferrites Ba3Co2-xFe24+x-yCryO41. Journal of Magnetism and Magnetic Materials, 2004, 284(1-3): 369-375
    [11] Zhang Hongguo, Li Longtu, Zhou Ji. Low-temperature sintering, densification and properties of Z-type hexaferrite with Bi2O3 additives. Journal of American Ceramics Society, 2001, 84(12): 2889-2894
    [12] Zhang Hongguo, Zhou Ji, Wang Yongli, et al. Microstucture and magnetic characteristics of low-temperature-fired modified Z-type hexaferrite with Bi2O3 additive. IEEE Transactions Magnetics, 2002, 38(4): 1797-1802
    [13]鲍健儿,周济,王晓慧,等.甚高频片式电感器用材料的研究进展.电子元件与材料,2002,21(9):14-16
    [68] Zhang Hongguo, Zhou Ji, Yue Zhenxing, et al. Synthesis of Co2Z hexagonal ferrite with planar structure by gel self-propagating method.Materials Letters, 2000, 43: 62-65
    [14] T. Tachibana, T. Nakagawa, Y. Takada, et al. X-ray and neutron diffrantion studies on iron-substituted Z-type hexagonal barium ferrite: Ba3Co2-xFe24+xO41(x=0~0.6). J Magn Magn Mater, 2003, 262(2): 248-257
    [15]贾利军.甚高频用Z型软磁铁氧体材料基础研究: [博士学位论文] .成都:电子科技大学, 2008
    [16] P. C. Yu, Q. F. Li, J. Y. H. Fiuh, T. Li, L.Lu. Two-stage sintering of nano-sized yttria stabilized zirconia process by powder injection moulding. J. M. Proc. Tech.193-193(2007)312-318
    [17] Li Jianggong,Ye Yinping. J. Am. Ceram. Soc. 2006, 89(1):139-143
    [18]陈智慧,李江涛等.两步法合成钇铝石榴石透明陶瓷.无机材料学报.2008,23(1):130-134
    [19]黄永杰,李世堃,兰中文编著.磁性材料.成都:电子科技大学出版社,1993:第三章
    [20] K. Kamishima, C. Ito, K. Kakizaki, N. Hiratsuka, et al. Improvement of initial permeability for Z-type ferrite by Ti and Zn substitution. Journal of Magnetism and Magnetic Materials, 2007, 312: 228-233
    [21]张良莹,姚熹编著.电介质物理.西安:西安交通大学出版社,1991.6
    [22] Denis Autissier. Microwave behavior in Z type hexaferrites. Key Engineering Materials, 1997, 1(132-136): 1424-1427
    [23] W. Simonet, A. Hermosin. Soft Li-Ti-Zn ferrites with resistivity﹥108Ω·cm. IEEE Trans, 1978, MAG-14(5): 903-905
    [24] Jian Er Bao, Ji Zhou, Zhen Xing Yue, et al. Electrical and magnetic studies of Ba3Co2Fe23-12xMn12XO41 Z-type hexaferrites.Materials Science and Engineering, B99, 2003: 98-101
    [25] V. D. Reddy, Y. Purushotham, M. B. Reddy, et al. Dielectric properties of W-type ferrites. Modern Phys. Lett, 1996, B10(29): 1461-1470
    [26] Jianer Bao, Ji Zhou, Zhengxing Yue, et al. Dielectric behavior of Mn-substituted Co2Z hexaferrites. Journal of Magnetism and Magnetic Materials, 2002, 250: 131-137
    [27]张有纲,黄永杰,罗迪民.磁性材料.成都:成都电讯工程学院出版社,1988, p.163
    [28] Zhao Junhong, Harmer Martin. Effect of pore distribution on microstructure development : II, first and second-generation pores. Journal of the American Ceramic Society, 1988, 71(7): 530-539
    [29] A. Globus, P. Duplex, M. Guyot. Determination of initial magnetization curve from crystallites size and effective anisotropy field. IEEE Transactions on Magnetics, 1971, 7: 617-622
    [30] Lijun Jia, Jun Luo, Huaiwu Zhang, et al. Effect of Y2O3 additive on the microstructure high-frequency properties of Z-type hexaferrites. Journal of Magnetism and Magnetic Materials, 2009, 321: 77-80
    [31]戴煜辉,尉旭波,苏桦,等.P2O5掺杂对高磁导率MnZn铁氧体性能的影响.磁性材料及器件,2005,36(2): 29-30
    [32]邓平锋.超宽带射频/微波铁氧体材料研究:[硕士学位论文].成都:电子科技大学, 2008
    [33] Jia Lijun, Zhang Huaiwu, Liu Yingli, et al. Effects of mixing procedure and Bi2O3 content of hexaferrites sintered at low-temperature. Journal of Magnetism and Magnetic Materials, 2007, 316(1) : 67-72
    [34] H. T. Kim, H. B. Im. Effects of Bi2O3 and Nb2O5 on the magnetic properties on Ni-Zn ferrites and Lithum ferrites. IEEE Transactions on Magnetics , 1982, 18 (6): 1541-1543
    [35]罗俊,陈世钗,贾利军,等.掺杂SiO2的低温烧结Ba3(Co0.4Zn0.6)2Fe24O41 Z型六角铁氧体材料.磁性材料及器件,2009,40(1): 41-43
    [36] C. Koops, et al. On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audiofrequencies. Phys. Rev.1951, 83 : 119-122
    [37] R.C. Pullar, S.G. Appleton, M.H. Stacey, et al. A method for the preparation of aligned fibre samples for magnetic measurement using VSM[J]. Magn. Magn. Mater. 1998, 186: 224-227
    [38] Xiao-Hui Wang, Long-Tu Li, Zheng-Xing Yue, et al. Effect of SiO2 additive on the high-frequency properties of low-temperature fired Co2Z . Magn. Magn. Mater. 2004, 271: 301-306
    [39]郑亚林,徐光亮,赖振宇.掺Mg对(Ni0.30Cu0.20Zn0.50)Fe2O4铁氧体烧结体性能的影响.功能材料,2007,5(38):730-733
    [40]张洪国,周济,岳振星,等.低温烧结Z型平面六角结构氧体研究.功能材料,1999,30 (6):613-614
    [41]施剑林.固相烧结-粗化与致密化关系及物质传输途径.硅酸盐学报,1997,125(16):657-668
    [42] T. Nakamura. Low-temperature sintering of Ni-Zn-Cu ferrite and its permeability spectra. Journal of magnetism and magnetic materials, 1997, 168: 285-291

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700