PZT-NiCuZn铁氧体复合双性材料电磁性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信息化社会的不断发展推动着电子元器件向小型化、轻量化、多功能和高稳定方向发展。因而将各种材料的特殊功能进行复合,在一种元件中实现多种功能已经成为市场的迫切需求,这就使得功能复合材料的研究成为了一个重要方向和热点。目前在制作多功能元器件时多采用低温共烧陶瓷LTCC ( Low Temperature Co-fired Ceramic)技术,但不同介质层间存在着致密化速率、烧成收缩率等方面的失配,制约着共烧技术的工业化进程。
     本文正是针对上述问题,以基于LTCC工艺的PZT-NiCuZn铁氧体复合双性材料为主要研究对象,在深入分析了复合机理、掺杂改性和低温烧结机制的基础上,对材料和工艺做了探索性和创新性的研究,使其有望成为用于制作叠层片式滤波器的电感、电容复合双性材料。主要内容为:
     1.研究工艺条件对低温烧结NiCuZn铁氧体材料电磁性能的影响。按照工艺流程改变工艺参数预烧温度、烧结温度,并考察不同含量的助溶剂Bi_2O_3对NiCuZn铁氧体材料电磁性能的影响。利用扫描电镜SEM等分析手段了解改变工艺参数对铁氧体材料微观结构的影响规律,通过对材料介电常数频谱、磁导率频谱及品质因数的测量得到工艺参数对材料电磁性能的影响规律。根据实验数据结果得到最佳铁氧体烧结工艺.
     2.研究低温烧结NiCuZn铁氧体的组成对复合双性材料微观结构和电磁性能的影响,从而确定比较合适的NiCuZn铁氧体组成。将铁电性的PZT与选定的铁磁性的NiCuZn铁氧体复合成具有电感、电容双性的铁电-铁磁复合双性材料,考察铁电-铁磁组分关系对复合双性材料的微观显微结构的影响,并对其电磁性能进行了深入地分析研究。
     3.研究不同掺杂剂对低温共烧复合双性材料的改性机制。研究不同含量的助熔剂Bi_2O_3对其烧结特性、微观结构及电磁性能的影响;研究Co_2O_3- Bi_2O_3复合掺杂对复合双性材料微观结构及电磁性能的影响,即在固定Bi_2O_3的前提下,对复合双性材料进行不同含量的Co~(3+)离子掺杂,考察其对材料性能的影响。
     4.研究不同制备工艺方式对低温共烧复合双性材料的性能影响。采用软化学法中的溶胶-凝胶法合成复合双性材料,并与前面几章所采用的固相反应法制作的复合双性材料进行性能对比研究,考察分析制备工艺方式对复合双性材料微观结构和电磁性能等的影响。
     5.采用本文研制的低温烧结PZT-NiCuZn铁氧体复合双性材料为基板材料,制备多层片式电感、电容、抗EMI低通滤波器,利用ADS软件和HFSS软件对低通滤波器进行电路仿真和三维结构仿真,最终设计出如下两个封装尺寸均为0805型(2.0mm×1.25mm×0.8mm)的低通滤波器:截止频率为10MHz,带内纹波小于0.5dB,在40MHz处衰减大于40dB的LTCC低通滤波器和截止频率为50MHz,带内纹波小于0.5dB,在100MHz处衰减大于20dB的LTCC低通滤波器。
The continuous development of information society promotes the electronic components to the direction of small size, light weight, multi-functional and high stability. Thus put a variety of materials to carry out the special features composite, the component having a variety of functions has become the urgent needs of the market, it is become an important direction and hot spots to make the study of functional composite materials. At the present, the productions of many multi-functional components use LTCC (Low Temperature Co-fired Ceramic) technology. However, different dielectric layers rate mismatch between the densification rate, sintering shrinkage and thermal expansion, which restricts the industrialization process of cofired technology.
     In this thesis, the composite mechanism and the basic mechanisms of modification and low-temperature sintering of PZT-NiCuZn ceramic-ferrite composite materials have been analyzed. Then a series of novel materials and its preparation are explored and investigated. It is expected to become inductors, capacitors dual-performance materials. The main results are as follows:
     1. The effects of preparation process were researched on the microstructure and electromagnetic properties of ceramics. The pre-sintering temperature, sintering temperature are changed regularly to investigate the variation of the phase formation by X-ray diffraction studies, the micrographs of the sintered ceramics by SEM, and the bulk density by Archimedes method. The frequency dependence of complex permeability, quality factor, and dielectric constant are studied.
     2. With the systemically analyses of the synthesis of ferroelectric-ferromagnetic composite materials, the low temperature sintered NiCuZn ferrites and perovskite PZT was chosen as the main components. The ferroelectric-ferromagnetic composite material is synthesized by usual ceramic technology with NiCuZn ferrites and perovskite PZT as the main components. The microstructure and electromagnetic properties of the composite with different composition of NiCuZn ferrites and different perovskite contents are investigated.
     3. Bi_2O_3 doped low temperature sintered PZT-NiCuZn ceramic-ferrite composite materials were also investigated in the aspects of the microstructure and magnetic properties. On the basis of Bi_2O_3 doping in a fixed amount, the effects of Co_2O_3-Bi_2O_3 co-additive on the microstructure and electromagnetic properties of low temperature sintering composite materials were investigated.
     4. Preparation of different methods of low temperature co-fired double-composite material performance was investigated. The effects of microstructure and electromagnetic properties also were study analysis by different style of preparations.
     5. The prepared PZT-NiCuZn composite materials were chosen to design the multilayer chip inductor、capacitance and anti-EMI filter. The ADS and HFSS software simulated circuit diagram and three-dimensional structure diagram of low pass filter. Through simulating and revising the model repeatedly, finally design the follow two low pass filters which packages are 0805 type size (2.0mm×1.3mm×0.8mm): A low pass filter was set up with cut off frequency is 10MHz, ripple within the passband below 0.5dB, attenuation exceed 40dB at 40MHz, another low pass filter was set up with cut off frequency is 50MHz, ripple within the passband below 0.5dB, attenuation exceed 20dB at 100MHz
引文
[1] H. W. Zhang, Y. Shi, Z. Y Zhong. Electric and magnetic properties of a new ferrite-ceramic composite material. Chin Phys List, 2002, 19(2): 269-273
    [2] Mantese, Joseph Vito, et al. Filter with ferroelectric ferromagnetic composite materials. US Pat, 1997
    [3] S. Lopatin, I. Lapatona, I. Lisnevskaya, et al. Magnetoelectric PZT/ferrite composite materials. Ferroelectrics, 1994, 162: 63–68.
    [4] Gehring G A. On the microscopic theory of the magnetoelectric effect. Ferroelectrics, 1994, 161: 275–285
    [5]向勇,谢道华,片式多层元件新技术概论,电子元件与材料, 1999, 18(4): 34-40
    [6]陈福厚,表面贴装元件与工艺的新进展, ECN, 2003, 5: 39-44
    [7]岳振星,李龙土,周济,等,多层复合BZN电介质/Ni-Zn-Cu铁氧体的共烧行为,硅酸盐学报, 1999, 27(6): 709-713
    [8]王悦辉,周济,崔学民,等,低温共烧陶瓷(LTCC)技术在材料科学上的进展,无机材料学报, 2006, 21(2): 267-276
    [9] Y. Salabe, Recent development in multilayer ceramic capacitor, Ceramic Transaction, 999, 97: 13-15
    [10]兰中文,余忠,王京梅,等,工艺条件对MnZn功率铁氧体的影响,功能材料, 2000 31(5): 486-487
    [11] C. R. Chang and J. H. Jean, Effects of silver-paste formulation on camber development during the cofiring of a silver-based low-temperature-cofired ceramic package, J. Am. Ceram. Soc, 1998, 81(11):2805-2814
    [12] G. John, P. W. Borland, Electrode-based causes of delaminations in multilayer ceramic capacitors, J. Am. Ceram. Soc, 1989, 72(12): 2287-2291
    [13] Haertling Gene H, Ferroelectric ceramics: history and technology, Journal of the American Ceramic Society, 1999, 82 (4):797-818
    [14] Z. m. He, J. Ma, R. f. Zhang, et a1. PZT-based materials with bilayered structure: preparation and ferroelectric properties. Journal of the European Ceramic Society, 2003, 23:1943-1947
    [15] H. Saito, T. Takkao, T. Tani, et al. Lead-free piezoceramics, Nature, 2004, 432:84-87
    [16] Eric Cross. Lead-free at last. Nature, 2004, 432(4): 24–25
    [17] G. Garnweitner, J. Hentschel, M. Antonietti, et al. Synthesis of amorphous powder precursors for nanocrystalline PbTiO3, Pb(Zr,Ti)O3, and PbZrO3. Chemistry of Materials, 2005, 17(18): 4594-4599
    [18] D. L. Corker, R. W. Whatmore, E. Ringgaard. Liquid phase sintering of PZT ceramics. Journal of the European Ceramic Society, 2000, 20:2039-2045
    [19]赵国伟,黄海,夏人伟.柔性自适应衍架及其振动最优控制实验.北京航空航天大学学报, 2005, 31 (4); 434-438
    [20] L. B. Kong, J. Ma. PZT ceramics formed directly from oxides via reactive sintering. Materials Letters 2001, 51: 95-100
    [21] Formosa Teletek Corporation 2004, LTCC (Low Temperate Cofired Ceramic) Design Guide
    [22]钟慧,张怀武,低温共烧陶瓷( LTCC ):特点、应用及问题,磁性材料与器件, 2003, 34(4): 33-35
    [23] B. G. Choi, M. G. Stubbs, C. S. A. Park. Ka-band narrow bandpass filter using LTCC technology. IEEE. Microwave. Wireless. Comps. Lett, 2003, 8: 13-16
    [24] C. Q. Scrantom, J. C. Lawson. LTCC technology: where we are and where we’re going. Technologies for Wireless Applications, IEEE MTT-S Sympositum, 1999: 193-200
    [25] Ching-Wen Tang, Chi-Yang Chang, Using buried capacitor in LTCC-MLC balun. Electro, Lett, 2002, 10: 801-803
    [26] Sung-Hum Sim, Chong-Yun Kan. A compact lumped-element lowpass filter using low temperature co-fired ceramic technology. J. Euro. Ceram. Soc, 2003, 56: 2717-2720
    [27] Tim Mobley, Tony Donisi, et al. Filter Design Flow and Implementation in LTCC. Partners In Design Worldwide Technical Workshops Presentation 16. Ansoft Corporation and Dupont Electronic Technologies, 2001.
    [28]杨立群.低温共烧陶瓷嵌入式电感与电容元件之设计模型化: [硕士学位论文],台北:台湾国立中山大学, 2003
    [29] M. R. Gongora-Rubio, P. E. spinoza-Vallejos, et al. Overview of Low Temperature Co-fired Ceramic tape technology for meso-system technology (MsST). Sensors and Actuators A, 2001(89): 222
    [30] Blanco, J. C. T., et al., Rare Earth Substitutions in M-Type Ferrites. IEEE Transactions on Magnetics, 2003. 39(5 II): 2911
    [31] Mahmoud, M. H. and A. A. Sattar, Mossbauer study of Cu-Zn ferrite substituted with rare earthions. Journal of Magnetism and Magnetic Materials, 2004. 277(1-2): 101
    [32]黄永杰.磁性材料.北京:电子工业出版社. 1994, 5
    [33]胡国光.高磁导率锰锌铁氧体的性能研究.安徽大学学报(自然科学版), 1994, 4: 38-42
    [34]王军霞,杨世源,牟国洪,锆钛酸铅陶瓷的烧结研究进展.陶瓷, 2004, 4: 10-14
    [35] Jungho Ryu, Alfredo Vazquez Carazo, Kenji Vchino, et al. Piezoelectric and Magnetoelectric Properties of Lead Zirconate Titanate/Ni-Ferrite Particulate Composites. Journal of Electroceramics, 20017: 17-24
    [36]梁海珊.抗电磁干扰EMI技术.杭州电子工业学院学报. 2002, 22 (3): 59-61
    [37] Mao Wang, Zhen-zing Yue, Ji Zhou, et al. Cofiring behavior and interfacial structure of dielectric/ferrite composites for multiplayer LC filters. Key Engineering Materials, 2002, 224-226: 151-154
    [38] Feng Gao, Zu-pei Yang, Yu-dong Hou, et al. Cofiring properties and camber development of ferroelectric/ferrite multiplayer composites. Journal of Materials Science, 2003, 38:1523-1528
    [39] Feng Gao, Shao-bo Qu, Zu-pei Yang, et al. Interface and ionic inter diffusion in cofired ferroelectric/ferrite multiplayer composites. Journal of Materials Science Letters. 2002, 21(1): 15-19
    [40] R. Aran, G. K. Yurii, R. Ramesh. An investigation of cofired varistor-ferrite materials. Journal of the European Ceramic Society, 2004, 24: 2005-2013
    [41] H. I. Hsiang, W. C. Lia, Y. J. Wang, et al. Interfacial reaction of TiO2/NiCuZn ferrites in multilayer composites. Journal of the European Ceramic Society, 2004, 24: 2015-2021
    [42] E. P. Wohlfarth, Ferromagnetic Materials, vol. 3, New York, Oxford, 1982
    [43]贾利军.电子材料工艺原理,电子科技大学自编讲义, 2006
    [44]周济,吴海燕,桂治轮,李龙土, Bi掺杂对NiCuZn铁氧体的烧结与磁性能的影响,功能材料, 1997, 28(1): 24-25
    [45] H. Zhang, L. Li, J. Zhou, et al. Low-temperature sintering densification and properties of Z-type hexaferrite with Bi2O3 additives. J. Amer. Ceram. 2001, 2889-2894
    [46] T. Lottermoser, T. Lonkai, U. Amann, et al. Magnetic phase control by an electric field. Nature, 2004, 430: 541–544
    [47] A. M. Abdeen, Dielectric Behaviour in Ni–Zn Ferrites J. Magn. Magn. Mater. 1999, 192: 121
    [48]张药西.迭层片式电感器MLCI(上).电子元器件应用, 1999, N0. 4: 24
    [49] D. Uskokovic, et al. Sci. Sintering, 1977, 9(3): 265
    [50]宛德福,马兴隆磁性物理学.成都:电子科技大学出版社, 1994
    [51] Lijun Jia, Shichai Chen, HuaiWu Zhang, et al. Synthesis and electromagnetic properties of PZTS–NCZF composites, Journal of Materials Chemistry and Physics, 2009, 114: 697–701
    [52] P. J. Van Der Zagg, P. J. Van Der Vajk and M. TH. Rekveldt, A domain size effect in the magnetic hysteresis of NiZn-ferrites. Appl. Phys. Lett. 69, 2927 (1996)
    [53] J. J. Shrotri, S. D. Kulkarni, C. E. Deshpande, et al. Effect of Cu substitution on the magnetic and electrical properties of Ni-Zn Ferrite synthesized by soft chemical method, Mater. Chem. Phys. 59 (1999) 1
    [54] C. Koops, et al. On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audiofrequencies. Phys. Rev. 1951, 83: 119-122
    [55] Tae Young Byun, Soon Cheon Byeon and Kug Sun Hong. Factors affecting initial permeability of Co-substituted Ni-Zn-Cu ferrites. IEEE Trans Magn Magn, 1999. 35(5): 3445-3447
    [56] Woo Chul Kim, Sam Jin Kim, Seung Wha Lee, etc al. Growh of ultra fine NiZnCu ferrite and magnetic properties by a sol-gel method. Magn. Magn. Mater, 2001, 226-230: 1418-1420
    [57] Q. M. Zhang, H. Wang, N. Kim, and L. E. Cross, Direct evaluation of domain-wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconate-titanate ceramics. J. Appl. Phys. 1994. 75(1): 454-459
    [58]邓毅华,周东祥,庄志强, Co2O3掺杂0.85PZT-0.15PZN压电陶瓷的性能,华中科技大学学报(自然科学版), 2007, 35(4), 69-77
    [59] Arlt and H. Dederichs, Complex elastic, dielectric and piezoelectric constants by domain wall damping in ferroelectric ceramics. Ferroelectrics 1999. 29, 47-50.
    [60]张洪国,周济,岳振星,等.Z型Ba3Co2Fe24O41软磁铁氧体性能的改善.压电与声光,1999,4:277-280
    [61] Yue Zhenxing, Zhang Li, Wang Xiaohui, et al. Low-temperature sintered hexaferrites for high-frequency multilayer chip inductors. Journal of Alloys and Compounds, 2003, 361: 265-269
    [62]燕小斌.Co2Z型软磁铁氧体的低温烧结与磁性能研究:硕士学位论文.兰州:兰州理工大学
    [63] Jia Lijun, Zhang Huaiwu, Liu Yingli, et al. Effects of mixing procedure and Bi2O3 content of hexaferrites sintered at low-temperature. Journal of Magnetism and Magnetic Materials, 2007, 316(1): 67-72
    [64]王琦,管建国.共沉淀法制备Co2Z型铁氧体形成动力学过程研究.硅酸盐通报,2004,3:14-17
    [65] Dong Woo Hahn, Yong Ho Han. Co2Z type hexagonal ferrite prepared by sol-gel method. Materrials Chemistry and Physics, 2006, 95: 248-251
    [66]张药西.低温烧结铁氧体粉料的最新进展.电子元件与材料,2001,20(1):25-29
    [67]燕小斌,高峰,刘向春,等.Co2Z型高频软磁铁氧体材料研究进展.材料导报,2006,20(2):29-32
    [68]王子宇,张肇仪译.射频电路设计—理论与应用.北京:电子工业出版社.
    [69]甘本祓,吴万春.现代微波滤波器的结构与设计.北京:科学出版社, 1973:11-34
    [70]李宗谦,佘京兆,高葆新.微波工程基础.北京:清华大学出版社
    [71]苏宏:层叠片式LTCC微波滤波器设计与研究: [硕士学位论文].成都:电子科技大学, 2006
    [72]杨立群.低温共烧陶瓷嵌入式电感与电容元件之设计与模型化: [硕士学位论文].台湾:国立中山大学电机工程学系, 2001
    [73] Yu-Ting Huang, Chi-Jen, et al. The study of magnetic circuit design for multilayer ferrite chip inductors. IEEE Transactions on Magnetics, 1995, 31(6): 4071-4073
    [74] C.T.Chiu, T.S.Horng, H.L.Ma. S.M.Wu, et al. Super broadband lumped models for embedded passives. Electronic Components and Technology Conference. 2004: 1104-1107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700