非平衡结构填充方钴矿基热电材料的制备和热电性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Skutterudite是最受关注和最具应用前景的中温热电材料之一,但目前Skutterudite热电材料的研究仍停留于实验室阶段,规模化的批量生产仍无法开展。其原因在于现有的传统制备方法工艺复杂,耗时太长。本文采用SPS反应烧结工艺来实现填充方钴矿材料的快速制备,探讨了SPS烧结压力工艺参数和两段烧结工艺对快速制备样品的物相、结构和热电性能的影响。
     研究发现,SPS反应烧结工艺可用来制备填充方钴矿基热电材料。决定物相组成的关键因素是烧结温度,773 K以上烧结时所得样品为单相填充方钴矿。与传统熔融淬火退火工艺相比,快速制备工艺大大缩短了制备时间,降低了烧结温度和能耗。并且所制备的样品中含有独特的螺旋非平衡结构和广泛存在的几百纳米左右的晶须。
     通过在反应烧结时施加不同的压力快速制备所得样品的物相、结构和性能研究发现:在5~50MPa压力范围内,反应烧结所得样品仍为单相;结构中仍以晶须和螺旋非平衡结构为主;样品的热电性能较接近,在675 K时5 MPa反应所得样品ZT值最大为0.71。由此得出结论5~50MPa范围的压力变化对反应烧结样品的结构和性能较小。
     在反应烧结快速制备的基础上设计了低温合成高温烧结两步烧结工艺。结果显示:两步烧结工艺仍可制备出单相方钴矿基热电材料。随第二段烧结温度的增高,螺旋晶须结构逐渐长成螺旋块体结构。且样品的电性能增大,热导率降低,综合热电性能有所提高。这表明两步烧结工艺有助于提高快速制备样品的热电性能,快速制备工艺得到了优化。在第一段烧结温度为798 K第二段烧结温度为898 K时所制备样品在800 K时取得最大ZT值0.77。
Skutterudite is one of the most promising thermoelectric materials in the moderate and high temperature range. But many studies of skutterudites are focusing on the methods to enhance its thermoelectric properties by filling atoms and lowering its dimensions at present, few researchs on batch preparation are studied although general preparation is time-consuming and energy-wasting. Now a high-efficiency rapid preparation by SPS reaction sintering is adopted to fabricate CoSb3-based thermoelectrical materials. And the effect of sintering pressure is studied as one of the most important parameter to the composition, structure and properties, as well as two-step-sintering process.
     Results show that a high-efficiency rapid preparation method of melting-quenching combined with Spark Plasma reaction Sintering(SPS) process was developed to fabricate single-phase Ba0.3In0.2Co4Sb12. Non-equilibrium structure such as crystal-whisker and helix structure were found in all SPS samples at different temperature by rapid preparation for nominal composition Ba0.3In0.2Co4Sb12. With SPS temperature increasing, electrical conductivity lowered, Seebeck coefficient increased and ZT improved subsequently. A ZT of 0.72 has been achieved for Ba0.3In0.2Co4Sb12 SPS samples by reaction sintering at 675 K when sintering at 823K.
     Study on samples prepared by rapid preparation with different sintering pressure indicates that all of the samples are single-phase filled skutterudites from 5 MPa to 50 MPa, with a crystal-whisker and helix non-equilibrium structure. Electrical conductivity, Seebeck coefficient, and thermal conductivity of all samples are no significant differences. A ZT of 0.71 has been achieved for Ba0.3In0.2Co4Sb12 SPS samples by reaction sintering at 675 K when sintering at 5 MPa. This demonstrates pressure is not such a important parameter to the rapid prepared samples.
     Two-step low-temperature-reaction-high-temperature-sintering rapid preparation process based on previous reaction sintering rapid preparation is studied too. Results show that single-phase filled skutterudites can obtained by two step process. With increasing second-step-sintering temperature, helix whisker non-equilibrium structure grows to be helix grain non-equilibrium structure, and thermoelectrical properties are improved. This indicates that rapid preparation is optimized by a two step process. A ZT of 0.77 has been achieved for Ba0.3In0.2Co4Sb12 SPS samples by two step process at 800 K when reacting at 798 K and consolidating at 898 K.
引文
[1]B. C. Sales. Thermoelectric materials:Smaller is cooler. Science,2002,295(5558): 1248-1249.
    [2]F. J. DiSalvo. Thermoelectric cooling and power generation. Science,1999,285(5428): 703-706.
    [3]Heikens and Ure, Thermoelectricity:science and engineering, New York-London: Interscience Publishers,1961,105-110.
    [4]D. M. Rowe and C. M. Bhandari. Modern Thermoelectricity. London:Holt, Rinehalt and Wiston,1983,28-33.
    [5]高敏,张景韶,D. M. Rowe.温差电转换及其应用. 北京:兵器工业出版社.1996.
    [6]J. B. Cadoff, E. Miller. Thermoelectric Materials and Device, New York:Reinhold Publ Corp, 1961,84-92.
    [7]W. M. Yim, F. D. Rosi. Compound tellurides and their alloys for Peltier cooling-A review. Solid State Electronics,1972,15,1121-1134.
    [8]G D. Mahan. Good Thermoelectrics. Solid State Physics,1997,51:62-68.
    [9]朱文,杨君友,崔昆等.热电材料在发电和制冷方面的应用前景及研究进展.材料科学与工程,2002,80:585~588.
    [10]Lan, Y. C.; Minnich, A. J.; Chen, G.; Ren, Z. F., Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring Approach. Advanced Functional Materials,2010, 20, (3),357-376.
    [11]Zheng, J. C., Recent advances on thermoelectric materials. Frontiers of Physics in China 2008,3, (3),269-279.
    [12]G D. Mahan, and J. O. Sofo, The best thermoelectric, Proc. Natl. Acad. Sci. USA,1996,93: 7436.
    [13]C.B.Vining and G D. Mahan. The B factor in multilayer thermionic refrigeration, J. Appl. Phys.86,6852(1999).
    [14]Sales, B.; Mandrus, D.; Chakoumakos, B.; Keppens, V.; Thompson, J., Filled skutterudite antimonides:Electron crystals and phonon glasses. Physical Review B 1997,56, (23), 15081-15089.
    [15]Snyder, G. J.; Toberer, E. S., Complex thermoelectric materials. Nature Materials 2008,7, (2),105-114.
    [16]Cutler, M., Leavy, J. F.& Fitzpatrick, R. L. Electronic transport in semimetallic cerium sulfide. Phys. Rev.133, A1143-A1152 (1964).
    [17]Bhandari, C. M.& Rowe, D. M. in CRC Handbook of Thermoelectrics (ed. Rowe, D. M.) Ch.5,43-53 (CRC, Boca Raton,1995).
    [18]Koumoto, K., Terasaki, I.& Funahashi, R. Complex oxide materials for potential thermoelectric applications. Mater. Res. Soc. Bull.31,206-210 (2006).
    [19]Snyder, G. J., Caillat, T.& Fleurial, J.-P. Thermoelectric transport and magnetic properties of the polaron semiconductor FexCr3-xSe4. Phys. Rev. B 62,10185 (2000).
    [20]N. F. Mott and H. Jones. The Theory of the Properties of Metals and Alloys, Dover Publications, New York,1958.
    [21]Hicks L D, Dresselhaus M S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B,1993,47(19):12727-12731.
    [22]Hicks L D, Dresselhaus M S. Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B,1993,47(24):16631-16634.
    [23]Hicks L D, Harman T C, Sun X, et al. Experimental study of the effect of quantum-well structures on the thermoelectric figure ofmerit. Phys. Rev. B,1996,53(16): R10493-R10496.
    [24]Godart, C.; Goncalves, A. P.; Lopes, E. B.; Villeroy, B., Role of Structures on Thermal Conductivity in Thermoelectric Materials. Properties and Applications of Thermoelectric Materials 2009,19-49,340.
    [25]W. Y. Zhao, P. W, Q. J. Zhang et al. Enhanced Thermoelectric Performance in Barium and Indium Double-Filled Skutterudite Bulk Materials via Orbital Hybridization Induced by Indium Filler. J. Am. Chem.Soc,2009,131(10):3713-3720.
    [26]Kaspar, J. S., et al.:Intermetallic clathrates, Science 150,1713 (1965)
    [27]B. C. Sales, D. Mandrus, R. K. Williams et al. Filled skutterudite antimonides:A new class of thermoelectric materials. Science,1996,272:1325-1328.
    [28]卫群,刘丹敏,张忻等.方钻矿热电材料的研究进展.稀有金属,2006,30(4):517-522.
    [29]唐新峰,陈立东,後藤孝等.n型BayNixCo4-xSb12化合物的热电性能.物理学报,2002,51:2823~2828.
    [30]T. He, J. Zh. Chen, H. D. Rosenfeld et al. Thermoelectric Properties of Indium-Filled Skutterudites. Chem. Mater,2006,18:759-762.
    [31]Q. M. Lu, J. X. Zhang, X. Zhang et al. Effects of double filling of La and Ce on thermoelectric properties of CemLanFe1.0Co3.0Sb12 compounds by spark plasma sintering. J. Appl. Phys,2005,98:106107-1-106107-3.
    [32]J. Yang, W. Zhang, S. Q. Bai et al. Dual-frequency resonant phonon scattering in BaxRyCo4Sb12 (R=La, Ce, and Sr). Appl. Phys. Lett,2007,90:192111-1~192111-3.
    [33]W. Y. Zhao, C. L. Dong, P. Wei et al. Synthesis and high temperature transport properties of barium and indium double-filled skutterudites BaxInyCo4Sb12-z. J. Appl. Phys,2007,102: 113708-1~113708-6.
    [34]李涵,唐新峰,刘桃香等.Ca和Ce双原子复合填充p型CamCenFexCo4-xSb12化合物的合成及热电性能.物理学报,2005,54(11):5481~5486.
    [35]B. C. Sales, D. Mandrus, B. C Chakoumakos et al. Filled skutterudite antimonides:Electron crystals and phonon glasses. Phys. Rev., B,1997,56:15081-15089.
    [36]V. Keppens, D. Mandrus, B.C.Sales et al. Localized vibrational modes in metallic solids. Nature,1998,395:876-878.
    [37]C. Uher, S. Q. Hu, J. H. Yang. Cerium Filling and Lattice Thermal Conductivity of Skutterudites.17th Int. Conf. on Thermoelectric, IEEE,1998,306-309.
    [38]Koza. M. M, Johnson. M. R, Viennois. R et al. Breakdown of phonon glass paradigm in La-and Ce-filled Fe4Sb12 skurtterudites. Nat. Marer,2008,7(10):805-10.
    [39]B. C. Chakoumakos, B. C. Sales, D. Mandrus et al. Disparate atomic displacements in skutterudite-type LaFe3CoSb12, Acta Cryst,1999,55:341-347.
    [40]B. C. Sales, B. C. Chakoumakos, D. Mandrus et al. Atomic displacement parameters and the lattice thermal conductivity of clathrate-like thermoelectric compounds. Journal of solid State Chemistry,1999,146:528-532.
    [41]J. Yang, G. P. Meisner. D. T.Morelli, C. Uher. Iron valence in skutterudites:Transport and magnetic properties of Co1-xFexSb3. Phys. Rev. B,1999,63:14410-14417.
    [42]J. P. Fleurial, T. Caillat, A. Borshchevshy. Skutterudite:An Update,16th Int. Conf. on Thermoelectric, Piscataway, U.S.A., IEEE,1997,1-11.
    [43]G. S. Nolas, H. Takizawa, T. Endo et al. Thermolelectric properties of Sn-filled skutterudites. Appl. Phys. Lett,2000,77:52-54..
    [44]L. D. Chen, T. Kawahara, X. F. Tang et al. Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12. J. Appl. Phys,2001,90:1864-1868.
    [45]X. Y. Zhao, X. Shi, L. D. Chen et al. Synthesis and thermoelectric properties of Sr-filled skutterudite SryCo4Sb12. J. Appl. Phys,2006,99:053711-1~053711-4.
    [46]Rogl, G.; Grytsiv, A.; Bauer, E.; Rogl, P.; Zehetbauer, M., Thermoelectric properties of novel skutterudites with didymium:DDy(Fel-xCox)(4)Sb-12 and DDy(Fel-xNix)(4)Sb-12. Intermetallics 18, (1),57-64.
    [47]G. S. Nolas, J. L. Cohn, J. S. Dyck et al. Transport properties of polycrystalline type-Ⅰ Sn clathrates. Phys. Rev. B,2002,65(16):165201-1~165201-6
    [48]V. L. Kuznetsov, L. A. Kuznetsova, A. E. Kaliazin et al.. Preparation and thermoelectric properties of A8IIB,6IIIB3oIV clathrate compounds. J. Appl. Phys,2000,87(11):7871-7875
    [49]L. Qiu, I. P. Swainson, and G. S. Nolas et al. Structure, thermal, and transport properties of the clathrates Sr8Zn8Ge38, Sr8Ga16Ge3o, and Ba8Ga,6Si30. Phys. Rev. B,2004,70(3): 035208-1-035208-8
    [50]A. L. Pope, T. M. Tritt, M. Chermikov et al. Thermoelectric properties of the AlPdMn Quasicrystalline System.1998 MRS symposium Pro,1998,545:413-419.
    [51]M. Enrique. Quasicrystals as thermoelectric materials:a theoretical prospective. J. Alloys Compd,2002,342:460-463.
    [52]G. S. Nolas, J. L. Cohn, G. A. Slack et al. Semiconducting Ge clathrates:Promising candidates for thermoelectric applications. Appl. Phys. Lett,1998,73(2):178-180.
    [53]B. C. Sales, B. C. Chakoumakos, R. Jin et al. Structural, magnetic, thermal, and transport properties of X8Ga16Ge30 (X=Eu, Sr, Ba) single crystals. Phys. Rev. B,2001,63(24): 245113-1~245113-8.
    [54]A. Bentien, M. Christensen, J. D. Bryan et al. Thermal conductivity of thermoelectric clathrates. Phys. Rev. B,2004,69(4):045107-1-045107-5.
    [55]A. Saramat, G. Svensson, A. E. C. Palmqvist et al. Large thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba8Ga16Ge30. J. Appl. Phys,2006,99(2).
    [56]S. Sakurada, N. Shutoh. Effects of Ti substitution on the thermoelectric properties of (Zr, Hf)NiSn half-Heusler compounds. Appl. Phys. Lett,2005,86:082105-1~082105-3.
    [57]Toberer, E. S., Sasaki, K. A., Chisholm, C. R. I., Haile, S. M.& Snyder, G. J. Local structure of interstitial Zn in β-Zn4Sb3. Phys. Status Solidi 1,253-255 (2007).
    [58]Chalfin, E., Lu, H. X.& Dieckmann, R. Cation tracer diffusion in the thermoelectric materials Cu3Mo6Se8 and "beta-Zn4Sb3". Solid State Ionics 178,447-456 (2007).
    [59]Kim, H. J., Bozin, E. S., Haile, S. M., Snyder, G. J.& Billinge, S. J. L. Nanoscale alpha-structural domains in the phonon-glass thermoelectric material beta-Zn4Sb3. Phys. Rev. B 75,134103 (2007).
    [60]Chu, Y.; Tang, X. F.; Zhao, W. Y.; Zhang, Q. J., Synthesis and growth of rodlike and spherical nanostructures CoSb3 via ethanol sol-gel method. Crystal Growth & Design 2008, 8,(1),208-210.
    [61]Wang, W.; Poudel, B.; Wang, D.; Ren, Z., Synthesis of PbTe nanoboxes using a solvothermal technique. Advanced Materials 2005,17, (17),2110-2114.
    [62]Yang, J.; Hao, Q.; Wang, H.; Lan, Y.; He, Q.; Minnich, A.; Wang, D.; Harriman, J.; Varki, V.; Dresselhaus, M., Solubility study of Yb in n-type skutterudites Yb_{x} Co_{4} Sb_{12} and their enhanced thermoelectric properties. Physical Review B 2009,80, (11),115329.
    [63]Li, H.; Tang, X. F.; Su, X. L.; Zhang, Q. J., Preparation and thermoelectric properties of high-performance Sb additional Yb0.2Co4Sb12+y bulk materials with nanostructure. Applied Physics Letters 2008,92, (20).\
    [64]Garay, J. E., Current-Activated, Pressure-Assisted Densification of Materials. Annual Review of Materials Research, Vol 40 2010,40,445-468.
    [65]Orru, R.; Licheri, R.; Locci, A. M.; Cincotti, A.; Cao, G. C., Consolidation/synthesis of materials by electric current activated/assisted sintering. Materials Science & Engineering R-Reports 2009,63, (4-6),127-287.
    [66]Chen, I. W.; Wang, X. H., Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 2000,404, (6774),168-171
    [67]Olevsky, E. A.; Froyen, L., Impact of Thermal Diffusion on Densification During SPS. Journal of the American Ceramic Society,2009,92, (1), S122-S132.
    [68]Xi, L. L.; Yang, J.; Lu, C. F.; Mei, Z. G.; Zhang, W. Q.; Chen, L. D., Systematic Study of the Multiple-Element Filling in Caged Skutterudite CoSb3. Chemistry of Materials,2010,22, (7), 2384-2394.
    [69]Shi, X.; Kong, H.; Li, C. P.; Uher, C.; Yang, J.; Salvador, J. R.; Wang, H.; Chen, L.; Zhang, W., Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo(4)Sb(12) double-filled skutterudites. Applied Physics Letters 2008,92, (18).
    [70]Xun Shi, Jiong Yang, James R. Salvador, Miaofang Chi, Jung Y. Cho, Hsin Wang, Shengqiang Bai, Jihui Yang, Wenqing Zhang, and Lidong Chen, Multiple-Filled Skutterudites:High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports. J. Am. Chem. Soc.,2011,133 (20), pp 7837-7846.
    [71]Koza. M. M, Johnson. M. R, Viennois. R et al. Breakdown of phonon glass paradigm in La-and Ce-filled Fe4Sb12 skurtterudites. Nat. Marer,2008,7(10):805-10.
    [72]Shi X, Chen L, Yang J, et al. Enhanced thermoelectric figure of merit of CoSb3 via large-defect scattering. Appl. Phys. Lett.,2004,84(13):2301-2303.
    [73]Hara, R.; Inoue, S.; Kaibe, H. T.; Sano, S. Journal of Alloys and Compounds 2003,349, 297-301.
    [74]Pei, Y.; Chen, L.; Bai, S.; Zhao, X.; Li, X., Effect of Pd substitution on thermoelectric properties of Bao.32PdxCo4-xSb12. Scripta Materialia 2007,56, (7),621-624.
    [75]张忻;张久兴;路清梅;刘延秦,Skutterudite化合物Fe_xCo_(4-x)Sb_(12)的放电等离子烧结原位合成及热电性能.功能材料2005,(03),387-389+393.
    [76]张忻;张久兴;路清梅;刘延秦,放电等离子烧结原位合成Ce_yFe_(1.0)Co_(3.0)Sb_(12)热电材料.中国有色金属学报2005,(02),277-281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700