多孔硅生物化学表面修饰研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验研究包括以下几个内容:
     1.多孔硅电极制备及其检测抗坏血酸的研究
     本实验通过电化学阳极氧化方法制备多孔硅,并用多孔硅作为研究电极对抗坏血酸进行检测。通过LK-2005型电化学工作站测定塔菲尔曲线、线性扫描曲线来进行分析电压,电流,pH与抗坏血酸浓度之间的关系。实验研究表明同一电压下电流随着抗坏血酸浓度的增大而增大。随着抗坏血酸浓度的增大,塔菲尔曲线整体往正电位方向平移。在抗坏血酸溶液浓度为1.0g/L条件下测得电流值随着pH的减小而逐渐增大,但不成良好线性关系。多孔硅电极表面修饰一层银与未修饰的多孔硅对同一浓度的抗坏血酸测量塔菲尔曲线比较,修饰后的电极在相同浓度和电位情况下电流明显的增大。
     2.生物功能化的多孔硅对尿素溶液的检测研究
     用3-氨基丙基三乙氧基硅烷(APTS)对多孔硅表面进行处理,在780℃通入Ar气的条件下对其高温退火,使多孔硅表面形成大量的氨基基团,使其作为前躯体,通过共价键结合的方法,能够很好的固定生物分子,然后用尿素酶进行处理并对0.4×10~(-3)mol/L~8.0×10~(-3)mol/L范围内不同浓度的尿素溶液进行检测。经过研究发现生物功能化的多孔硅对尿素溶液具有良好的传感性和可重复检测性。
     3.多孔硅复合酶电极对葡萄糖溶液传感的研究
     多孔硅(PS)具有纳米级尺寸,大比表面积,生物兼容性的特点为固定生物分子提供了有利的条件。本文采用光电化学腐蚀的方法,制备出新鲜的多孔硅,并将3-氨基丙基三乙氧基硅烷(APTS)共价结合到多孔硅表面实现其生物功能化。通过戊二醛(Gluta)交联的方式将葡萄糖氧化酶(GOD)固定到生物功能化多孔硅上,形成GOD-Gluta-APTS-PS复合结构并用作电化学测量的工作电极。铂金和饱和甘汞电极分别作辅助电极和参比电极。通过测量还原电流对数与电极电势的关系以及计时电流曲线,对10×10~(-6)—55×10~(-6) mol dm~(-3)浓度范围的葡萄糖水溶液进行测量分析,发现还原电流与葡萄糖溶液在在一范围内有线性响应关系。制成的多孔硅酶复合电极间隔5天重复使用1次,20天能保持性能基本不变。
This experimental study includes the following contents:
     1. Electrochemical detection of ascorbic acid by porous silicon electrode Porous silicon prepared by electrochemical anodic oxidation and modified through biofunctionalization surfaces has been used to detect ascorbic acid. The relationship between ascorbic acid concentration and voltage, current, pH has been analyzed, respectively, by measuring Tafel curve, linear sweep curves with electrochemical workstation LK-2005. Experimental studies have shown that current increases with the concentration of ascorbic acid at a given voltage, Tafel curves shift toward positive potential with increase of ascorbic acid concentration. The current increases with decrease of pH values, but there was not a goog linear relationship. Surface modification of porous silicon has been conducted by silver layer and the modified electrode showed greater current than non-modifited electrode at same ascorbic acid concentration and same potential from the measurement of Tafel curve.
     2.Biological function of porous silicon on the biological sensing of urea solution
     A unique electrode based on aminopropyl-triethoxysilane ( APTS)-coated porous silicon(PS) substrate has been fabricared and used as a urea-sensitive electrode after urease immobilization. PS substrate was formed by electrochemical anodization in an etching solution composed of HF and ethanol. APTS layer was formed on the PS surface by coating and heating at 780℃in argon atmosphere. Urease immobilization was carried out by immersing the APTS/PS in urease solution. The immobilized system gives linear response for concentrations of urea ranging in values between 3.6×10~(-3) and 8.0×10~(-3) mol dm~(-3) , studied with voltammetry. The surface of biofunctionized porous silicon has thus provided a suitable environment for urease with 15 days retention of its activity. The molecular structure on the PS surface was characterized with Fourier-transform infrared (FTIR) technique. The change in the surface morphology has been studied by scanning electron microscopy and it is observed that the immobilized system has successfully retained urease. The eleperimental results showed that porous silicon with biofunctionalization surfaces could give a good sensitivity and repeatability to detect urea solution.
     3. porous silicon enzyme electrode biosensors solution of Glucose.
     Porous siicon(PS) is provided with characteristics of nanometer size, large specific surface and bio-compatibility. Photoelectrochemical etching technique has been used to prepare a porous silicon substrate which then modified by aminopropyl-triethoxysilane(APTS) to realize biofunctionalization of the surface. Glucose oxidase(GOD) immobilization was carried out by glutaraldehyde(Gluta) cross-linking to the porous silicon and to form GOD-Gluta-APTS-PS composite structure. The GOD-Gluta-APTS-PS structure was used as working electrode mou nted in a measuring cell sealed by an O-ring. A saturated calomel electrode(SCE) and platinum dish was used as reference electrode and counter electrode, respectively. Chrononamperemeter and logarithmic current-popential measurements were performed to detect a glucose solution. Under the selected conditions,the enzyme composite electreode offered a liner response in the glucose concentration range of 10×10-6—55×10-6 mol dm~(-3). The sensor remained good response after 20 days through 5 days interval measurements.
引文
[1]夏建白,硅发光研究[J],半导体学报,1998,19(5):321-326。
    [2] Turner D R.Electropolishing Silicon in Hydrofluoric Acid Solutions[J] , Electrochem Soc,1958,105(7):402-408.
    [3]刘小兵,史向华编著,多孔硅与全硅基纳米薄膜发光理论及应用[M],国防科技大学出版社,湖南长沙: 2002, p67-73。
    [4]郭宝增,多孔硅(PS)及其光电器件研究进展[J],半导体技术,1999,24(3):8-13。
    [5].Starovoitov A. and Bayliss S., Structured luminescent porous silicon layers produced with laser assisted chemical etching[J], Applied Physics Letters, 1998, 73 (9) : 1284 - 1286.
    [6] Cullis A. G., Canham L. T. and Calcott P. D. J., The structure and luminescence properties of porous silicon[J], Applied Physics Reviews, 1997, 82 (3) : 910 - 950.
    [7] J.Charrier et a1.,Porosity Gradient Resulting from Porous Silicon:Waveguiding[J],phys.stst.sol. 2000,1 82:43 1-436.
    [8] L.T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers [J], Appl.Phys.Lett.,1990, 57(10):1046–1048.
    [9]李志华,申华军,李宝霞,杨成樾,万里兮,用于芯片间光互连的新型光电探测器,中国科学院科学发展报告[M],科学出版社,北京: 2008,p136-138.
    [10]方志烈,半导体发光材料和器件[M],复旦大学出版社,上海,1992, P142-146.
    [11] C.M.A. Ashruf, P. J. French, P.M.M.C. Bressers, J. J. Kelly, Galvanic porous silicon formation without external contacts[J], Sensors and Actuators,1999,27 (74):118-122.
    [12] Robinson M. B., Dillon A. C., Haynes D. R., George S. M., Effect of thermal annealing and surface coverage on porous silicon photoluminescence[J], App. Phys .Lett., 1992, 61 (12) : 1414 -1416.
    [13] Qin G. G., and Jia Y. Q., Mechanism of the visible luminescence in porous silicon[J], Solid State Commun, 1993, 86 (9): 559-563.
    [14] R.W. Fathaure, T. K. George, A. Sendzov and R. P. Vasquez, Visibleluminescence form silicon wafers subjected to stain etches [J], Appl. Phys. Lett, 1992, 60(8): 995-998.
    [15] M.T. Kelly, J.K. Chun, A.B. Bocasly, High efficiency chemical for the formation of luminescent porous silicon[J], Appl.Phys.Lett,1994,64(13):1693-1695.
    [16] M. J. Winton, S. D. Russel, R. Gronsky, Observation of competing etches in chemically etched porous silicon [J], J.Appl.Phys,1997,82(1):436-441.
    [17] A. Splinter,J. Sutrmann,W. Benecke,Novel porous silicon formation technology using internal current generation [J],Mat. Sci. Eng. C,2001,15:109-112
    [18] H. Foll,M. Christophersen,J. Carstensen,etal.,Formation and application of porous silicon [J],Mat. Sci. Eng. R,2002,39:93-141.
    [19] J. C. Lin, H. T. Hou, W. C.Tsai, A mask-free method of patterned porous silicon formation by a localized electrical field[J], Microelectronic Engineering,2007, 84:336–339.
    [20] G. Barillaro, A. Diligenti, A. Nannini, A. Pennelli, A thick silicon dioxide fabrication process based on electrochemical trenching of silicon[J],Sensors and Actuators A, 2003,107:279–284.
    [21] S.Yae, T. Kobayashi, T. Kawagishi, N. Fukumuro, H. Matsud, Antireflective porous layer formation on multicrystalline silicon by metal particle enhanced HF etching[J],Solar Energy,2006,80:701–706.
    [22] C. Chartier, S. Bastide, C. Levy-Clement, Metal-assisted chemical etching of silicon in HF–H2O2[J], Electrochimica Acta,2008, 53:5509–5516.
    [23] P. Y. Y. Kan, T. G.Finstad, Bi-stable pore size during electrochemical etching ofn-type silicon during a thermal ramp[J], Thin Solid Films,2007,515:5241–5247.
    [24] J. Jakubowicz, K. Smardz, L. Smardz, Characterization of porous silicon prepared by powder technology[J], Physica E, 2007,38:139–143.
    [25] A. N. Chifen, W. Knoll, R. Firch, Fabrication of nano-porous silicon oxide layers by plasma polymerisation methods [J], Materials Letters, 2007,61:1722–1724.
    [26] M. Ray, S. Ganguly, M. Das, S. M. Hossain, N. R. Bandyopadhyay, Genetic algorithm based search of parameters for fabrication of uniform porous silicon nanostructure[J], Computational Materials Science 2009,45(1):60–64.
    [27] D.J. Gargas, O. Muresan, D. J. Sirbuly, and S. K. Buratto, Micropatterned Porous-Silicon Bragg Mirrors by Dry-Removal Soft Lithography [J], Adv.Mater. 2006,18:3164–3168.
    [28] V. Kapaklis, A .Georgiopoulos, P. Poulopoulos, C. Politis, Patterning of porous silicon by metal-assisted chemical etching under open circuit potential conditions [J], Physica E,2007,38:44–49.
    [29]郭成花,多孔硅复合ZnO和CdS纳米粒子的光致发光特性,《山东师范大学硕士论文》- 2003-04-28。
    [30] Ogasawara K., Momma T. and Osaka T., Enhancement of Electroluminescence from n-Type Porous Silicon and Its Photoelectrochemical Behavior, J. Electrochem. Soc., 1995, 142 (6): 1874-1879.
    [31]薛亮,多孔硅复合结构传感性能的研究,《山东师范大学硕士论文》- 2009-04-15。
    [32]章小鸽,硅及其氧化物的电化学[M],化学工业出版社,北京,2004,p362-363.
    [33] J. Gargas,D. J. Sirbuly, M. D. Mason, P. J. Carson, S. K. Buratto,Investigation of polarization anisotropy in individual porous silicon nanoparticles [J], Microelectronics Journal, 2008,39:1144–1148.
    [34] A. G.. Cullis, L.T. Canham, Visible light emission due to quantum size effects in highly porous crystalline silicon, [J], Nature, 1991, 353, 335.
    [35] M. I. J. Beale, J. D. Benjamin, M.J. Uren, et al., J. Cryst. Growth, 1985. 73:622.
    [36] A. Nakajima, Y. Harvey F, R. A. Lux, D. W. Echart, Microstructure of visibly luminescent porous silicon [J], Appl. Phys. Lett, 1992, 60, 2800.
    [37]于磊,多孔硅电极的光电功能及其应用研究,《山东师范大学硕士论文》,2010, 04-23.
    [38] K. Rumpf, P. Granitzer, P. Polt, et al., Structural and magnetic characterization of Ni-filled porous silicon [J], Thin Solid Films, 2006, 515: 716–720.
    [39] P. Granitzer, K. Rumpf, H. Krenn, Micromagnetics of Ni-nanowires filled in nanochannels of porous silicon [J], Thin Solid Films, 2006, 515:735–738.
    [40] K. Rumpf, P. Granitzer, P. Polt, et al., Characterization of a ferromagnetic porous silicon-based Ni/Si nanocomposite with a novel strong high-field anisotropy[J], Physica E, 2007, 37:270–273.
    [41] P. Granitzer, K. Rumpf, P. Polt, et al., Quasi-regular self-organized porous silicon channels metallized with Ni-structures of strong anisotropy[J], Journal of Magnetism and Magnetic Materials,2007,310: e838–e840.
    [42] H. F. Li, H. M. Han, Y. G. Wu, S. J. Xiao, Biological functionalization and patterning of porous silicon prepared by Pt-assisted chemical etching [J], Applied Surface Science, 2010,256(12): 4048-4051.
    [43] Ye W, Shen C, Tian J, Wang C, Bao L, Gao H, Self-assembled synthesis of SERS-active silver dendrites and photoluminescence properties of a thin porous silicon layer[J], Electrochemistry Communications, 2008, 10:625–629.
    [44] A.I. Manilov, S.A. Alekseev, V.А. Skryshevsky, S.V. Litvinenko, G.V. Kuznetsov, V. Lysenko, Influence of palladium particles impregnation on hydrogen behavior in meso-porous silicon [J], Journal of Alloys and Compounds, 2010,492(12): 466-471.
    [45] F. Fonthal, T. Trifonov, A. Rodriguez, et al., AC impedance analysis of Au/porous silicon contacts[J], Microelectronic Engineering, 2006, 83: 2381–2385.
    [46] M. C. Arenas, H. Hu, J. Antonio del Rio, et al., Electrical properties of porous silicon/polypyrrole heterojunctions[J], Solar Energy Materials&SolarCells,2006, 90:2413–2420.
    [47] V. Chirvony, V. Bolotin, E. Matveeva, V. Parkhutik, Fluorescence and 1O2 generation properties of porphyrin molecules immobilized in oxidized nano-porous silicon matrix [J], Journal of Photochemistry and Photobiology A: Chemistry 2006,181:106–113.
    [48] E. Sabatani, Y. Kalisky, A. Berman, et al., Photoluminescence of polydiacetylene membranes on porous silicon utilized for chemical sensors[J], Optical Materials, 2008, 30:1766–1774.
    [49] Chao J, Han H M, Xia B, Ba L, Liu H B, Xiao S J, Poly-benzyl domains grown on porous silicon and their I–V rectification[J], Applied Surface Science, 2007, 253: 9130–9136.
    [50] Saakshi Dhanekar, S.S. Islam, T. Islam, A.K. Shukla, Harsh, Organic vapour sensing by porous silicon: Influence of molecular kinetics in selectivity studies [J], Physica E: Low-dimensional Systems and Nanostructures, 2010, 42 (5): 1648-1652.
    [51] Lahoz F, Capuj N, Oton C J, Cheylan S, Optical gain in conjugated polymer hybrid structures based on porous silicon waveguides[J], Chemical Physics Letters, 2008, 463(4): 387–390.
    [52] Zhao Y, Li D, Sang W, Yang Y, Jiang M, Study of photoconductivity and photoluminescence of organic/porous silicon complexes[J], Applied Surface Science, 2007, 253: 4566–4569.
    [53] D. Dattilo, L.Armelao, M, Maggini. G. Fois, and G. Mistura, Wetting Behavior of Porous Silicon Surfaces Functionalized with a Fulleropyrrolidine[J], Langmuir 2006, 2: 8764-8769.
    [54] J. Salonen, V. P. Lehto, Fabrication and chemical surface modification of mesoporous silicon for biomedical applications[J],Chemical Engineering Journal, 2008, 137:162–172.
    [55] M. Arroyo-Hernandez, R. J.Martin-Palma, J.Perez-Rigueiro, et al., Biofunctionalization of surfaces of nanostructured porous silicon[J], Materials Science and Engineering C, 2003, 23:697–701.
    [56] Chen S, Zhu Z, Zhu J,Zhang J, et al.,Hydroxyapatite coating on porous silicon substrate obtained by precipitation process[J],Applied Surface Science,2004, 230:418–424.
    [57] L.Pramatarova, E.Pecheva, D.Dimova-Malinovska, et al., Porous silicon as a substrate for hydroxyapatite growth [J],Vacuum, 2004, 76:135–138.
    [58] Kim Y H, Song H, Riu D H, Kim S R, Kim H J, Moon J H, Preparation of porous Si-incorporated hydroxyapatite [J], Current Applied Physics, 2005, 5: 538–541.
    [59] L. T. Canham, C. L. Reeves, A. Loni, et al., Calcium phosphate nucleation on porous silicon: factors influencing kinetics in acellular simulated body fluids[J], Thin Solid Films,1997, 197:304-307.
    [60] I. Kleps, M. Danila, A. Angelescu, et al., Gold and silver/Si nanocomposite layers[J],Materials Science and Engineering C,2007,27:1439–1443.
    [61] F. Cunin, P. E. Milhiet, E. Anglin, et al., Brunel D,Devoisselle J M, Continuous planar phospholipid bilayer supported on porous silicon thin film reflector[J], Ultramicroscopy, 2007, 107:1048–1052.
    [62] F. Z. Tighilt, N. Gabouze, S. Sam , et al., Morphology and specific interaction of PMMA coating with the surface of porous silicon[J], Surface Science, 2007, 601: 4217–4221.
    [63] V. Parkhutik, V. Chirvony, E. Matveyeva, Optical properties of porphyrin molecules immobilized in nano-porous silicon[J], Biomolecular Engineering, 2007, 24: 71–73.
    [64] G. Barillaro, A. Diligenti, L.M. Strambini, E. Comini, G. Faglia, NO2 adsorption effects on p–n silicon junctions surrounded by a porous layer [J], Sensors and Actuators B: Chemical. 2008, 134:922-927.
    [65] H.M. Martínez, N.E. Rincon, J. Torres, J.E. Alfonso, Porous silicon thin film as CO sensor [J], Microelectronics Journal. 2008, 39:1354-1355.
    [66] S. Polisski, B. Goller, K. Wilson, D. Kovalev, V. Zaikowskii, A. Lapkin, In situ synthesis and catalytic activity in CO oxidation of metal nanoparticles supported on porous nanocrystalline silicon [J], Journal of Catalysis, 2010, 271(1): 59-66.
    [67] H. J. Kim, Y. Y. Kim, K. W. Lee, Multiparametric sensor based on DBR porous silicon for detection of ethanol gas [J], Current Applied Physics, 2010, 10: 181-183.
    [68] G. Palestino, V. Agarwal, R. Aulombard, C. Gergely, Biosensing and Protein Fluorescence Enhancement by Functionalized Porous Silicon Devices [J], Langmuir, 2008, 24(23):13765-13771.
    [69] A. M. Rossi, L. Wang , V. Reip, T. E. Murphy, Porous silicon biosensor for detection of viruses [J], Biosensors and Bioelectronics, 2007, 23:741-745.
    [70] C. W. Lin, C. F. Teng, Y. L. Chen, Effect of in-grain porous silicon structure on photovoltaic device [J], Journal of Physics and Chemistry of Solids, 2008, 69:641-644.
    [71] P. Furbert, C. Lu, N. Winograd, L. DeLouise Label-free optical detection of peptide synthesis on a porous silicon scaffold sensor [J], Langmuir, 2008, 24:2908-2915.
    [72] B. Benyahia, N. Gabouze, M. Haddadi, L. Guerbous, K. Beldjilali, Enhancement of the porous silicon photoluminescence by surface modification using a hydrocarbon layer [J], Thin Solid Film, 2008, 516:8707-8711.
    [73] Y. Zhang, Z. Yang, D. Liu, E. Nie, X. Bai, Z.Li, H. Song, Y. Zhou, W. Li, M. Gong, X.. S Sun, Stable ultraviolet photoluminescence emission in n-type porous silicon [J], Journal of Luminescence, 2010, 130: 1005-1010.
    [74]黎学明,潘进,万体智,张玉奇,环境中二氧化硫检测的多孔硅光学传感方法研究[J],分析化学研究报告,2005,33(3):321-324.
    [75] S. Green, P. Kathirgamanathan, Effect of oxygen on the surface conductance of porous silicon: towards room temperature sensor applications [J], Mater.Lett. 2002, 52:106-113.
    [76] Z.M. Rittersma, A. Splinter, A. Bǒdecker, W. Benecke, A novel surface-micromachined capacitive porous silicon humidity sensor [J], Sens. Aetuators B.2000, 68:210-217.
    [77] L.H. Mai, P.T.M. Hoa, N.T. Binh, N.T.T. Ha, D.K. An, Some investigation results of the instability of humidity sensors based on alumina and porous silicon materials [J], Sens. Aetuators B. 2000,66:63-65.
    [78] G. Di Franeia, A. Castaldo, E. Massera, I. Nasti, L.Quercia, I.Rea, A very sensitive porous silicon based humidity sensor [J], Sens. Actuators B. 2005, 111-112:135-139.
    [79] A. Fouearan, B. Sorli, M. Gareia, F. Paseal-Delannoy,A. Giani,A. Boyer,Porous silicon layer coupled with thermoelectric cooler: a humidity sensor [J], Sens Actuators. 2000,79:189-193.
    [80] Shuxiang Chen, Weishan Wang, Hirokage Kono, Kensuke Sassa, Shigeo Asai. Abnormal grain growth of hydroxyapatite ceramic sintered in a high magnetic Field[J], Journal of Crystal Growth, 2010,312(2) ,323-326.
    [81] Hande Demirkiran,Yongfeng Hu, Lucia Zuin, Narayana Appathurai, Pranesh B. Aswath, XANES analysis of calcium and sodium phosphates and silicates and hydroxyapatite–Bioglass co-sintered bioceramics[J], Materials Science and Engineering C ,2011,31 (2): 134-143.
    [82] A. Fouearan, B. Sorli, M. Gareia, F. Paseal-Delannoy,A. Giani,A. Boyer,Porous silicon layer coupled with thermoelectric cooler: a humidity sensor [J], Sens Actuators. 2000,79:189-193.
    [83] M.Thust, M.J.Schǒning,P.Schroth, et al, Enzyme immobilisation on planar and porous silicon substrates for biosensor applications [J], Journal of Molecular Catalysis B: Enzymatic, 1999 (07):77-83.
    [84] PiechottaG, Albers J, Hintsche R, Novel micromachined silicon sensor for continuous glucose monitoring[J], Biosensors and Bioelectronics, 2005, 21: 802–808.
    [85] Lopez-Garcia J, Mart?n-Palma R J, Manso M, Mart?nez-Duart J M, Porous silicon based structures for the electrical biosensing of glucose[J], Sensors and Actuators B, 2007, 126: 82–85.
    [86] Wang G, Yau S T, Mantey K, Nayfeh M H, Fluorescent Si nanoparticle-based electrode for sensing, biomedical substances[J], Optics Communications,2008,281: 1765–1770.
    [87] Jin J H, Min N K, Hong S I, Poly(3-methylthiophene)-based porous silicon substrates as a urea-sensitive electrode[J], Applied Surface Science,2006, 252: 7397–7406.
    [88] Ahmet A.Yanik,MinHuang,Osami Kamohara,Alp Artar,Thomas W. Geisbert, John H. Connor,and Hatice Altug.An Optofluidic Nanoplasmonic Biosensor for Direct Detection of Live Viruses from Biological Media[J], Nano Lett. 2010, 10(12), 4962–4969.
    [89] Kristen A. Zimmermann, Jill M. LeBlanc, Kevin T. Sheets, Robert W. Fox, Paul Gatenholm.Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications[J],Materials Science and Engineering C,2011,31(1), 43-49.
    [90]葛斌,壳聚糖修饰电极的研究及其在生物分析中的应用,《湖南师范大学硕士论文》- 2008-05-01。
    [91]王镜岩,朱圣庚,许长法主编.生物化学(第三版)[M].高等教育出版社,北京,2002.320.
    [92] D.R.Thdvenot,K.Toth,R.A.Durst,G.S.Wilson.Electrochemical biosensors : recommended definitions and classification[J] . Pure Appl.Chem. 1999,71(12):2333—2348.
    [93] L.C.Clark,C.Lyons.Electrode systems for continuous monitoring in cardiovascular surgery[J].Ann.N.Y.Acad.Sci. 1962,102(1):29-45.
    [94] S.Updike,Q P.Hicks.The enzyme electrode[J].Nature,1967,2 1 4(5):986—988.
    [95]邵丽,基于多孔硅生物传感器原理性研究,《华东师范大学硕士论文》2004-05-01。
    [96]沈春平,纳米增强酶生物传感器的研究,《苏州大学硕士论文》, 2006-05-01。
    [97] S.Koide,K.Yokoyama.Electrochemical characterization of fill enzyme electrode based on a ferrocene-containing redox polymer[J].Electroanal.Chem.,1999,468(2):l 93-201.
    [98] F.Patolsky,Y.Weizmann,I.Willner.Redox-active nucleic—acid replica for the amplified bioelectrocatalytic detection of viral DNA.J.Am.Chem.Soc.,2002,1 24(5):770-772.
    [99] N.Sato,H.Okuma.Amperometric simultaneous sensing system for D-glucose and L-lactate based on enzyme-modified bilayer electrodes[J].Anal.Chim.Acta,2006,565(2):250-254.
    [100] E.S.Forzani,H.Q.Zhang,L.A.Nagahara,I.Amlani,R Tsui,N . J . Tao . A conducing polymer nanojunction sensor for glucose detection[J].Nano.Lett.,2004,4(9):1 785-1 788.
    [101] N.Nakadan,S.Imabayashi,M.Watanabe.Temperature—induced reversible change in the redox response in phenothiazine—labeled poly(ethoxyethyl glycidyl ether)and its application to the thermal control of the catalytic reaction of glucose oxidase[J].Langmuir,2004,20(20):8786-879.
    [102] T.Nakaminami,S.Kuwabata,H.Yoneyama.Electrochemicaloxidation of cholesterol catalyzed by cholesterol oxidase with use of an artificial electron mediator[J].Anal.Chem.,1997,69(13):2367-2372.
    [103] B.Strehlitz,B.Grulndig,W.Schumacher,P.M.H.Kroneck,K.D.Voflop,H.Kotte.A nitrite sensor based on a highly sensitive nitrite reductase mediator-coupled amperometric detection[J].Anal.Chem.,1 996,68(5):807-816.
    [104] A. Mulchandani,S. Pan.Ferrocene—conjugatedm。phenylenediamine conducting polymer-incorporated peroxidase biosensors[J]. Anal.Biochem.,1999,267(1):141-147.
    [105] J.Njagi,S.Andreescu.Stable enzyme biosensors based on chemically synthesized Au-polypyrrole nanocomposites[J].Biosens.Bioelectron.,2007,23(2):168-175。.
    [106] V C.Sanz,M.L.Mena,A.Gonzfilez-Cortds,P.Yanez-Sedeno,J.M.Pingarron.Development of a tyrosinase biosensor based on goldnanoparticles—modified glassy carbon electrodes : application to themeasurement of a bioelectrochemical polyphenols index in wines[J].Anal.Chim.Acta, 2005,528(1):1-8.
    [107] H.Muguruma,Y Shibayama,Y Matsui.An amperometric biosensor based on a composite of single—walled carbon nanotubes,plasma—polymerized thin film,and an enzyme[J].Biosens.Bioelectron.,2008,23(6):827-832.
    [108] D.E.Dodor,H.M.Hwang,S.I.N.Ekunwe.Oxidation of anthracene and benzo pyrene by immobilized laccase from Trametes versicolor[J].Enzyme Microb.Technol.,2004,35(2-3):210-217.
    [109] M.Niculescu,S.Gfispfir,A.Schulte,E.Csoregi,W. Schuhrnann.Visualization of micropattemed complex biosensor sensing chemistries by means of scanning electrochemical microscopy[J].Biosens.Bioelectron.,2004,19(10):1175-1 184.
    [110] B.H.Liu,R.Q.Hu,J.Q.Deng.Characterization of Immobilization of an enzyme in a modified zeolite matrix and its application to an amperometric glucose biosensor[J].Anal.Chem.,1997,69(13):2343-2348.
    [111] C.E.Campbell,J.Rishpon.NADH oxidation at the honey-comb like structure of active carbon : coupled to formaldehyde and sorbitol dehydrogenases[J].Electroanalysis,2001,13(1):17-20.
    [112] M.Kamori,T.Hori,Y Yamashita,Y Hirose,Y Naoshima.Immobilization of lipase on a new inorganic ceramics support, toyonite,and the reactivity and enantioselectivity of the immobilized lipase[J].J.Mol.Catal.B:Enzym.,2000,9(4-6):269-274.
    [113] Z.J.Lin,J.Q.Deng,D.Ling.A new tyrosinase biosensor based on tailoring the porosity of A1203 sol-gel to co-immobilize tyrosinase and the mediator[J].Anal.Chim.Acta, 2000,407(1-2):87-96.
    [114] H.Tatsumi,H.Katano,T.Ikeda.Kinetic analysis of enzymatic hydrolysis of crystalline cellulose by cellobiohydrolase using an amperometric biosensor[J].Anal.Biochem.,2006,357(2):257-261.
    [115] S.D.Sprules,J.P.Hart,S.A.Wring,R.Pittson.A reagentless,disposable biosensor for lactic acid based on a screen—printed carbon electrode containing Meldola's B lue and coated with lactate dehydrogenase,NAD+ and cellulose acetate[J].Anal.Chim.Acta,1 995,304(1):17-24.
    [116] Y Sekine,E.A.H.Hall.A lactulose sensor based on coupled enzyme reactions with a ring electrode fabricated from tetrathiafulvalen tetracyanoquinodimetane[J].Biosens Bioelectron.1998,13(9):995-1005.
    [117] A.Belay, A.Collins,T.Ruzgas,E T.KissingerKissinger,L.Gorton,E.Redox hydrogel based bienzyme electrode for L-glutamatemonitoring[J].J.Pharm.Biomed.Anal,1999,19(1-2):93-105.
    [118] P.Asberg,O.Inganas.Hydrogels of a conducting conjugated polymer as 3-D enzyme electrode[J].Biosens.Bioelectron.,2003,19(3):199-207.
    [119] N.Dung,N.Huyen,N.Hang,T.Canh.Immobilization of urease on grafted starch by radiation method[J].Radiat.Phys.Chem.,1 995,46(4-6):1037-1042.
    [120] A.S.Fahmy,V B.Bagos,T.M.Mohammed.Immobilization of citrullus vulgaris urease on cyanuric chloride deae—cellulose ether:preparation and properties[J].Bioresour.Technol.,1998,64(2):121-129.
    [121] S.Karboune,A.Archelas,R.Furstoss,J.Baratti.Immobilization of epoxide hydrolase from Aspergillus niger onto DEAE-cellulose:enzymatic properties and application for the enantioselective resolution of a racemic epoxide[J].J.Mol.Catal.B:Enzym.,2005,32(5-6):175-183.
    [122] C.A.Marqueae,L.J.Blum.Self-containing reactant biochips for the electrochemiluminescent determination of glucose , lactate and choline[J].Sens.Actuators.B:Chem.2003,90(1-3):112-117.
    [123] V C.Tsafack,C.A.Marquette,F.Pizzolato,L.J.Blum.Chemiluminescent choline biosensor using histidine-modified peroxidase immobilised on metal-chelate substituted beads and choline oxidase immobilised on anion-exchanger beads co-entrapped in a photocrosslinkablepolymer[J].Biosens.Bioelectron.,2000,15(3-4):125-133.
    [124] S.G Lee,S.E Hong,M.H.Sung.Removal and bioconversion of phenol in wastewater by a thermostable 13-tyrosinase[J] . Enzyme Mierob.Technol.,1996,19(5):374-377.
    [125] L.S.Bean,L.Y Heng,B.M.Yamin,M.Ahmad, The electrochemical behaviour of ferrocene in a photocurable poly(methylmethacrylate-co-2-hydroxylethyl methacrylate)film for a glucose biosensor[J].Bioelectrochem.,2005,65(2):157-162.
    [126] Y Ikariyama,S.Yamauchi,T.Yukiashi,H.Ushioda.Micro-enzyme electrode prepared on platinized platinum[J].Anal.Lett.,1987,20(9):1791-1801.
    [127] T.Ikeda,H.Hamada,K.Mili,M. Senda. Glucose oxidase—immobilized benzoquinone—carbon paste electrotle.as a glucose[J].Agric.Biol.Chem.,1985,49(2):541-543.
    [128] C.W Chen,J.Anzai,T.Osa.Enzyme sensors based on a coated—wire electrode:effects of buffer concentration and pH on the potentiometric response of penicillin sensor[J].Chem.Pharm.Bull.(Tokyo),1988,36(9):3671-3674.
    [129] H.Z.Bu,S.S.R.Mikkelsen,A.M.English.NAD(P)H sensors based on enzyme entrapment in ferrocene-conmimng polyacrylamide-based redox gels[J].Anal.Chem.,1998,70(20):4320-4325.
    [130] T . Lumley-Woodyear,P . Rocca , J . Lindsay,Y Dror,A . Freeman ,A.Heller.Polyacrylamide—based redox polymer for connecting redox centers of enzymes to electrodes[J].Anal.Chem.,1995,67(8):1332-1338.
    [131] S.E.Stanca,I.C.Popescu.Amperometric study of the inhibitory effect of carboxylic acids on tyrosinase[J].J.Mol.Catal.B:Enzym.,2004,27(4-6):221-225.
    [132] H.G Zhu,R.Srivastava,J.Q.Brown,M.J.McShaneMcShane.Combined Physical and chemical immobilization of glucose oxidase in alginate microspheres improves stability of encapsulation and activity[J].Bioconjugate Chem.,2005,16(6):1451-1458.
    [133] R . E . Ionescu , S . Cosnier,R . S . Marks . Protease amperometric sensor[J].Anal.Chem.,2006,78(1 8):6327-6331.
    [134] C.S.Pundir,N.S.Chauhan,M.Bhambi.Activation of polyvinyl chloride sheet surface for covalent immobilization of oxalate oxidase and its evaluation as inert support in urinary oxalate determination[J].Anal.Biochem,2008,374(2):272-277.
    [135] Y Wang,Y L.Hsieh. Immobilization of lipase enzyme in polyvinyl alcohol(PVA)nanofibrous membranes[J].J.Membr.Sci.,2008,309(1-2):73·81.
    [136] F.M.Andreopoulos,M.J.Roberts,M.D.Bentley,J.M.Harris,E.J.Beckman,A.J.Russell.Photoimmobilization of organophosphorus hydrolase within a PEG—based hydrogel[J].Biotechnol.Bioeng.,1999,65(5):579-588.
    [137]Y S.Lu,M.H.Yang,E L.Qu,G L.Shen, Q.Yu.Enzyme—functionalized gold nanowires for the fabrication of biosensors[J].Bioelectrochemistry,2007,7l(2):211-216。
    [138] A.Josten,M.Meusel,E Spener,L.Haalck.Enzyme immobilization via microbial transglutaminase:a method for the genermion of stable sensing surfaces[J].J.Mol.Catal.B:Enzyme.,1999,7(1-4):57-66.
    [139] Y C.Liu,H.Y Liu,J.H.Qian,J.Q.Deng,T.Y Yu.Regenerated silk fibroin membrane as immobilization matrix for peroxidase and fabficmion of a sensor for hydrogen peroxide utilizing methylene blue as electron shuttle[J].Anal.Chim.Acta,1 995,316(1):65-72.
    [140] T.Mori,T.Motonaga,Y Okahata.Cast films of lipid—coated enzymes as selective sensors for disaccharides[J].Colloids Surf.,A,1999,146(1-3):387-395.
    [141] H.Zejli,J.L.Cisneros,I.Naranjo—Rodriguez,B.H.Liu,K.R Temsamani,J.L.Marry.Phenol biosensor based on sonogel—carbon transducer with tyrosinase alumina sol—gel immobilization[J].Anal.Chim.Acta,2008,6 12(2):198-203.
    [142] A. A. Karyakin , E. A . Kotel’nikova , L . V Lukachova, E.E.Karyakina,J.Wang.Optimal environment for glucose oxidase in perfluorosulfonated ionomer membranes: improvement of first-generation biosensors[J].Anal.Chem.,2002,74(7):1597-1603.
    [143]李黎,多巴胺生物传感针的研制及应用,《华中科技大学硕士论文》, 2008-05-01。
    [144] D.Raf.fa,K.T.Leung,F.Battaglini.A Midroelectrochemical enzyme transistor based on an N-alkylated poly(aniline)and its application to determine hydrogen peroxide at neutral pH[J].Anal.Chem.2003,75(19):4983-4987.
    [145] D. Horak, M. Karpisek,J.Turkovfi, M. Benes.Hydrazide·-functionalized poly(2--hydroxyethyl methacrylate) microspheres for immobilization of horseradish peroxidase[J].Biotechnol.Prog, 1999,15(2):208-215.
    [146] F.Trudeau,F.Daigle,D.Leech.Reagentless mediated laccase electrode for the detection of enzyme modulators[J].Anal.Chem., 1997,69(5):882-886.
    [147] H.H.Kim,Y.C.Zhang,A.Heller.Bilirubin oxidase label for all enzyme-linked affinity assay with a substrate in a neutral pH NaCl solution[J].Anal.Chem.,2004,76(8):2411-2414.
    [148] R.Villalonga,A.Fujii,H.Shinohar, S.Tachibana,Y Asano.Covalent immobilization of phenylalanine dehydrogenase on cellulose membrane for biosensor construction[J].Sensor.Actuators,B,2008,129(1):195-199.
    [149] Q.M.Zhou,Q.J.Xie,Y C.Fu,Z.H.Su,X.E.Jia,S.Z.Yao. Electrodeposition of carbon nanotubes--chitosan—·glucose oxidase biosensing composite films triggered by reduction ofp-benzoquinone or H202[J].J.Phys.Chem.B.2007,111(38):11276-11284.
    [150] L.S.Britta,C.G.Juan.Electron transfer to a gold electrode from cytochrome oxidase in a biomembrane via a polyelectrolyte film[J].Langmuir,1998,14(23):6705-6708.
    [151] M.Portaccio,M.El-Masry,N.R.Diano,A.De Maio,V Grano,M.Lepore,E Travascio,U.Bencivenga,N.Pagliuca,D.G Mita.An amperometrie sensor employing glucose oxidase immobilized on nylon membranes with different pore diameter and grafted with different monomers[J].J.Mol.Catal.B:Enzym.,2002,1 8(1-3):49-67.
    [152] H.Zheng,H.G Xue,Y F.Zhang,Z.Q.Shen.A glucose biosensor based on microporous polyacrylonitrile synthesized by single rare-earth catalyst[J].Biosens.Bioelectron.,2002,1 7(6-7):541-545.
    [153] H.Sangodkar,S.Sukeerthi,R.S.Sfinivasa,R.Lal,A.Q.Contractor.A biosensor array based on polyaniline[J].Anal.Chem.1996,68(5):779—783.
    [154] D.R.Ling,G Q.Wu,C.Wang,E Wang,G Q.Song.The preparation and characterization of an immobilized L-glutamic decarboxylase and its application for determination of L—glutamic acid[J] . Enzyme Microb.Technol.,2000,27(7):5 1 6-52 1.
    [155] E.J.Tomotani,M.Vitolo.Immobilized glucose oxidase as a catalyst to the conversion of glucose into gluconie acid using a membrane reactor[J]. Enzyme Microb.Technol.2007, 40(5):1020-1025。.
    [156] S.X.Zhang,Y M.Niu,C.Q.Sun.Construction of covalently attached enzyme multilayer films based on the photoreaction of diazo-resins and glucose oxidase[J].Electrochim.Acta, 2004,49(26):4777-4786.
    [157] B.Serra,S.Jimdnez,M.L.Mena,A.J.Reviejo,J.M.Pingarrdn.Composite electrochemical biosensors:a comparison of three different electrode matrices for the construction of amperometric tyrosinase biosensors[J]. Biosens.Bioelectron,2002,l 7(3):217-226.
    [158] H.C.Shu,N.P.Wu.A chemically modified carbon paste electrode with D-lactate dehydrogenase and alanine aminotranferase enzyme sequences for D—lactic acid analysis[J].Talanta, 200 1,54(2):361—368.
    [159] S.K.Beh,G J.Moody,J.D.R.Thomas.Effect of pre-treatment of platinum for modified platinum wire glucose oxidase amperometricelectrodes[J].Analyst,1989,114(1):29-32.
    [160] H.C.Yoon,M.Y Hong,H.S.Kim.Functionalization of a poly(amidoamine)dendrimer with ferrocenyls and its application to the construction of a reagentless enzyme electrode[J].Anal.Chem.2000,72(18):4420-4427.
    [161] M.Darder,E.Casero,F.Pariente,E.Lorenzo.Biosensors based on membrane-bound enzymes immobilized in a 5-(Octyldithio)一2一nitrobenzoic acid layer on gold electrodes[J].Anal.Chem.,2000,72(16):3784-3792.
    [162]高盐生,一种基于葡萄糖氧化酶的新颖葡萄糖电化学传感器的研究,《苏州大学硕士论文》,2007-11-01。
    [163] V Christophe,E Silvia,T.M.Canh.Amperometric tyrosinase based biosensor using an electrogenerated polythiophene film as an entrapment support[J].Talanta, 2003,59(3):53 5-544.
    [164] A.Griffith,A.Glidle,J.M.Cooper.Probing enzyme polymer biosensors using X—ray photoelectron spectroscopy:determination of glucose oxidase in electropolymerised films[J].Biosens.Bioelectron,1996,11(6-7):625-631.
    [165] W.J.Sung,H.B.You.A glucose oxidase electrode based on electropolymerized conducting polymer with polyanion—enzyme conjugated dopant[J].Anal.Chem. 2000,72(9):2177—2181.
    [166] M.Kanungo,A.Kumar,A.Q.Contractor.Microtubule sensorsand sensor array based on polyaniline synthesized in the presence of poly(styrrene sulfonate) [J].Anal.Chem.,2003,75(21):5673-5679.
    [167]金利通,赵桂珠,方禹之.聚邻苯二胺修饰电极抗坏血酸氧化酶生物传感器的研究[J].高等学校化学学报,1994,5(2):189-192.
    [168]罗颖华,郑东升,张荣坤,汪瑾.聚吡咯电化学固定化胆固醇氧化酶电极的电流响应及应用[J].高等学校化学学报,1991,12(10):1320-1322.
    [169] P N.Bartlett,P.Tebbutt,C.H.Tyrrell.Electrochemical immobilization of enzymes Immobilization of glucose oxidase in thin films ofelectrochemically polymerized phenols[J].Anal.Chem.1992,64(2):138-142.
    [170]傅谊,马建标,何炳林,导电聚合物酶电极的研究概况[J].功能聚合物学报,1997,l0(3):443-448.
    [171] K.D.Trimukhe,S.Bachate,D.V Gokhale,A.J.Varma.Metal complexes of crosslinked chitosans:Part II.An investigation of their hydrolysis to chitooligosaccharides using chitosanase[J].Int.J.Bio.Macrom1.,2007,41(5):49 1-496.
    [172] Z.Sasvziri,B.Asb6th.Crosslinking of glucoamylases via carbohydrates hardly affects catalysis but impairs stability[J].Biotechnol.and Bioeng.,1999,63(4):459-463.
    [173] J.Bryjak,A.W.Trochimczuk.Immobilization of lipase and penicillin acylase on hydrophobic acrylic carriers[J].Enzyme Microb.Technol.,2006,39(4):573-578.
    [174] I.R.W.Z.Oliveira,S.C.Femandes,I.C.Vieira.Development of a biosensor based on gilo peroxidase immobilized on chitosan chemically crosslinked with epichlorohydrin for determination of rutin[J].J.Pharm.Biomed.Anal.,2006,41(2):366-372.
    [175] W.J.Cho,H.J.Huang.An amperometric urea biosensor based on a polyaniline-perfluorosulfonated ionomer composite electrode[J].Anal.Chem.,1998,70(18):3946-3951.
    [176] R.J.Geise,J.M.Adams,N.J.Barone,A.M.Yacynych.Electropolymerized films to prevent interferences and electrode fouling in biosensors[J].Biosens.Bioelectron.1991,6(2):151-160.
    [177] T.Nakaminami,S.I.Ito,S.Kuwabata,H.Yoneyama.Amperometric determination of total cholesterol at gold electrodes covalently modified with cholesterol oxidase and cholesterol esterasewith use of thionin as an electron mediator[J].Anal.Chem.1999,7l(5):1068-1076.
    [178] M . B . Madaras , R . P . Buck . Miniaturized biosensors employing electropolymerized permselective films and their use for creatinine assays inhuman serum[J].Anal.Chem.1996,68(21):3832-3839.
    [179] Z.Matharu,G.Sumana,S.K.Arya,S.P.Singh,V.Gupta,B.D.Malhotra.Polyaniline Langmuir-Blodgett film based cholesterol biosensor[J].Langmuir, 2007,23(26):13188-13192.
    [180] T.M.Canh,G Broun.Construction and study of electrodes using crosslinked enzymes[J].Anal.Chem.1975,47(8):1359-1364.
    [181] D . R . Thevenot , R . Sternberg , P . R . Coulet, J . Laurent, D . C . Gautheron . Enzyme collagen membrane for electrochemical determination of glucose.[J] , Anal.Chem.1979,51(1):96-100.
    [182] N.Rahni,A.Mohammad,G G Guilbault,G D.0.Neto.Immobilized enzyme electrode for the determination of oxalate in urine[J].Anal.Chem.,1 986,58(3):523-526.
    [183] M.Gamella,S.Campuzano,A.J.Reviejo,J.M.Pingarron.Integrated multienzyme electrochemical biosensors for the determination of glycerol in wines[J].Anal.Chim.Acta,2008,609(2):201-209.
    [184] N.Vasileva,T.Godj evargova.Study on the behaviour of glucoseoxidase immobilized on microfiltration polyamide membrane[J].J.Membr.Sci.,2004,239(2):157-161.
    [185] Y Q . Zhang . Natural silk fibroin as a support for enzyme immobilization[J].Biotechnol.Adv.,1998,16(5-6):961-971.
    [186]陈石根,周润琦编著.酶学[M].复旦大学出版社,上海, 2001年,p142.
    [187] L.B.Jr Wingard,L.A.Cantin,J.F.Castner.Effect of enzyme-matrix composition on potentiometric response to glucose using glucose oxidase immobilized on platinum[J].Biochim.Biophys.Acta.1983,748(1):21-27.
    [188] Y Yang,M.Yang,H.Wang,L.Tang,G Shen,R.Yu.Inhibition biosensor for determination of nicotine[J].Anal.Chim.Acta,2004,509(2):15l-157.
    [189] M.K.Sezginturk,E.Dinqkaya.Direct determination of sulfite in food samples by a biosensor based on plant tissue homogenate[J].Talanta,2005,65(4):998-1 002.
    [190] G.M.Whitesides,J.P.Mathias,C.T.Seto.Molecular self-assembly and nanochemistry : a chemical strategy for the synthesis ofnanostructures[J].Science,1991,254(7):13 12-13 19.
    [191]任恕.膜受体与传感器[M].科学出版社,北京,1996,p86.
    [192] C.L.D.Gibb,B.C.Gibb.Estimating the efficiency of selfassemblies[J]. J.Supramol.Chem.200 1,1(1):39-52.
    [193] C.C.You,F.Wurthner.Self-Assembly of ferrocenefunctionalized perylene bisimide bridging ligands with Pt(II)comer to electrochemically active molecular squares[J].J.Am.Chem.Soc.,2003,125(32):9716-9725.
    [194] Z.Peng,S.Dong.Formation of a self-assembled monolayer of 2-Mercapto-3-n-octylthiophene on gold[J] . Langmuir , 2001 , 17(16) :4904-4909.
    [195] D.Brandl,C.Schoppmann,C.Tomaschko,M.Schurr,H Voit.Vacuum stability of Langmuir-B lodgett films of fatty acids and fatty acid salts[J].Thin Solid Films,1995,256(1-2):220-225.
    [1] Han,J.G.;Ni,G.Q. Research on preparation of porous silicon applied to MEMS[J].Electronic Components and Materials 2004(6):32-34. [韩建国,倪国强,应用于MEMS的多孔硅制备方法研究[J],电子元件与材料, 2004(6):32-34.]
    [2] Canham L.T.,Silicon quantum wire array fabrication by electrochemical and Chemical dissolution of wafers[J], Appl.Phys.Leet.,1990,57(10):1046-1048.
    [3] Tichler M.A.,Collins R.T.,Starhis, J.H.,Tsang J. C, Luminescence degradation in porous silicon[J], Appl .Phys .Lett.,1992,60(5):639-641.
    [4]李志全,乔淑欣,蔡亚男,腾峰成,张乐欣,直流电化学腐蚀法制备多孔硅表面形貌研究[J],理化检验:物理分册,2006,42(8):392-395.
    [5] Wang, J..Y.;Zhu,S.G.;Xu,C.F.Biochemistry [M],Higher Education Press, Beijing ,2002, p461-462. [王镜岩,朱圣庚,徐长法,生物化学[M],高等教育出版社,北京:2002,p461-462.]
    [6] Ye W, Shen C, Tian J, Wang C, Bao L, Gao H, Self-assembled synthesis of SERS-active silver dendrites and photoluminescence properties of a thin porous silicon layer[J], Electrochemistry Communications, 2008, 10: 625–629.
    [7]薛亮,多孔硅复合结构传感性能的研究,《山东师范大学硕士论文》- 2009-04-15。
    [8] Diligenti A., Nannini A., Pennelli G., Pellegrini V., et al., Electrical characterization of metal Schottky contacts on luminescent porous silicon[J], Thin Solid Films, 1996, 276:179 - 182.
    [9]薛舫时,多孔硅中电子光跃迁过程的研究[J],固体电子学研究与进展,1998,18(1):27-37.
    [10]吴克跃,黄伟其,许丽,多孔硅的形成和发光[J],皖西学院学报,2006,22:38-41.
    [11]章小鸽,硅及其氧化物的电化学[M],化学工业出版社,北京:2004,p362-363.
    [12] Gargas J,Sirbuly D J, Mason M D, Carson P J, Buratto S K, Investigation of polarization anisotropy in individual porous silicon nanoparticles[J], Microelectronics Journal, 2008, 39:1144–1148.
    [13] Yao,S.J.Chemical and biological sensors [M],Chemical Industry Press, Beijing,2006,p265-2666 [姚守掘,化学与生物传感器,化学工业出版社,北京,2006,p265-266.]
    
    [1] S.Y. Chen, Y.H. Huang, H.K. Lai, C. Li, J.Y. Wang, Investigation of passivation of porous silicon at room temperature[J], Solid State Communications, 2007, 142: 358–362.
    [2] A.F. Beloto, M. Ueda, E. Abramof, J.R. Senna, N.F. Leite, M.D. da Silva, H. Reuther, Porous silicon implanted with nitrogen by plasma immwersion ion implantation[J], Nuclear Instruments and Methods in Physics Research B, 2001, 175-177:224-228.
    [3] O. Bisi, Stefano Ossicini, L. Pavesi,Porous silicon: a quantum sponge structure for silicon based optoelectronics[J], Surface Science Reports, 2000, 38: 1-126.
    [4] J. Salonen, V.P. Lehto, Fabrication and chemical surface modification of mesoporous silicon for biomedical applications[J], Chemical Engineering Journal, 2008, 137: 162–172.
    [5] M. Arroyo-Hernandez, R.J. Martin-Palma, J. Perez-Rigueiro, J.P. Garcia-Ruiz, J.L. Garcia-Fierro, J.M. Martinez-Duart, Biofunctionalization of surfaces of nanostructured porous silicon[J], Materials Science and Engineering C , 2003, 23: 697–701.
    [6] I. Kleps, M. Danila, A. Angelescu, M. Miu, M. Simion, T. Ignat, A. Bragaru, L. Dumitru, G. Teodosiu, Gold and silver/Si nanocomposite layers[J], Materials Science and Engineering C, 2007, 27: 1439–1443.
    [7] R. Prabakaran, M. Peres, T. Monteiro, E. Fortunato, R. Martins, I. Ferreira, The effects of ZnO coating on the photoluminescence properties of porous silicon for the advanced optoelectronic devices[J], Journal of Non-Crystalline Solids, 2008, 354: 2181–2185.
    [8] R. Wang, H. Xu, L. Guo, J. Liang, Growth of single-walled carbon nanotubes on porous silicon[J], Applied Surface Science , 2006, 252: 7347–7351.
    [9] R.J. Martin-Palma, L. Pascual, A.R. Landa-Canovas, P. Herrero, J.M. Martinez-Duart, HRTEM analysis of the nanostructure of porous silicon[J], Materials Science and Engineering C, 2006, 26: 830– 834.
    [10] E. R.L. Loustau, A. A. Valladares, Crystalline and amorphous nanostructures in porous silicon[J], Journal of Non-Crystalline Solids, 2008, 354: 2200–2203.
    [11] F.Z. Tighilt, N. Gabouze, S. Sam, S. Belhousse, K. Beldjilali, Morphology and specific interaction of PMMA coating with the surface of porous silicon[J], Surface Science, 2007, 601: 4217–4221.
    [12] I. Rendina, I. Rea, L. Rotiroti, L. De Stefano, Porous silicon-based optical biosensors and biochips[J], Physica E, 2007, 38: 188–192.
    [13] Y. Shang, W. Zhao, E. Xu, C. Tong, J. Wu, FTRIFS biosensor based on double layer porous silicon as a LC detector for target molecule screening from complex samples[J], Biosensors and Bioelectronics, 2010, 25: 1056–1063.
    [14] R.W. Bogue, Novel porous silicon biosensor[J], Biosensors & Bioelectronics, 1997, 12(1): XXII-XXIII.
    [15] A.M. Rossi, L. Wang, V. Reipa, T.E. Murphy, Porous silicon biosensor for detection of viruses[J], Biosensors and Bioelectronics, 2007, 23: 741–745.
    [16] L.T. Canham, C.L. Reeves, A. Loni, M.R. Houlton, J.P. Newey, A.J. Simons, T. I. Cox, Calcium phosphate nucleation on porous silicon: factors influencing kinetics in acellular simulated body fluids[J], Thin Solid Films, 1997, 197:304-307.
    [17] H. Sakly, R. Mlika, H. Chaabane, L. Beji, H. Ben Ouada, Anodically oxidized porous silicon as a substrate for EIS sensors[J], Materials Science and Engineering C, 2006, 26: 232– 235.
    [18] M. Thust, M.J. Schoning, P. Schroth, U. Malkoc, C.I. Dicker, A. Steffen, P. Kordos, H. Luth, Enzyme immobilisation on planar and porous silicon substrates for biosensor applications[J], Journal of Molecular Catalysis B: Enzymatic, 1999, 7:77–83.
    [19] F.P. Mathew, E.C. Alocilja, Porous silicon-based biosensor [J], Biosensors and Bioelectronics, 2005, 20: 1656–1661.
    [20] J.H. Jin, N.K. Min, S.I. Hong, Poly(3-methylthiophene)-based porous silicon substrates as a urea-sensitive electrode[J], Applied Surface Science, 2006, 252: 7397–7406.
    [21] P.S. Chaudhari, A. Gokarna, M. Kulkarni, M.S. Karve, S.V. Bhoraskar, Porous silicon as an entrapping matrix for the immobilization of urease[J], Sensors and Actuators B, 2005, 107: 258–263.
    [22] M.de M. D. Maia, E.A.de Vasconcelos, P. F.C.de M.D. Maia, J. da C. Maciel, K.R.R. Cajueiro, M.da P.C.da Silva, E. F.da Silva Jr, R.A.F. Dutra, V.N. Freire, J.L.de L. Filho, Immobilization of urease on vapour phase stain etched porous silicon[J], Process Biochemistry, 2007, 42: 429–433.
    [23] Y.J. He, H.X. Li, C.H. Guo, G.r. Liu, Y.S. Chen, S.Z. Duan, Photoluminescence, properties of porous silicon, based on FZ(H) Si wafer[J], Rare Metals, 2001, 20(1): 38-42.
    [24] H.X. Li, C.S. Xue, H. Zhang, C.H. Guo, C.B. Li, L.S. Chen, Z.Y. Diao, Electrophoretic assembly of porous silicon[J], International J. Modern Phys. B, 2002, 28&29:4306-4309.
    [25] L. Yu, H.X. Li, H. Tian and S.S. Chen, Photoluminescence Enhancement of Porous Silicon by Adding Titanium Sol during Electrochemically Etching[J], Journal of Materials Science and Engineering , 2010, 4(4):78-84.
    [26] J. Rappich, H.J. Lewerenz, Photo- and potential-controlled nanoporous silicon formation on n-Si(111) [J], Thin Solid Films, 1996, 276: 25-28.
    [27] O. Meskini, A. Abdelghani, A. Tlili, R. Mgaieth, N. Jaffrezic-Renault, C. Martelet, Porous silicon as functionalized material for immunosensor application[J], Talanta, 2007, 71: 1430–1433.
    [28] E. Mery, S.A. Alekseev, V.N. Zaitsev, D. Barbier, Covalent grafting of ion-exchanging groups on porous silicon for microsystem applications[J], Sensors and Actuators B, 2007, 126: 120–125.
    [29] D. Dattilo, L. Armelao, M. Maggini, G. Fois, and G. Mistura, Wetting Behavior of Porous Silicon Surfaces Functionalized with a Fulleropyrrolidine[J], Langmuir 2006, 22: 8764-8769.
    [30] J. Chao, H.M. Han, B. Xia, L. Ba, H.B. Liu, S.J. Xiao, Poly-benzyl domains grown on porous silicon and their I–V rectification[J], Applied Surface Science, 2007, 253: 9130–9136.
    [1] LIAO K C, HOGEN-ESCH T, RICHMOND F J, et al. Percutaneous fiber-optic sensor for chronic glucose monitoring in vivo[J]. Biosens Bioelectron., 2008, 23: 1458–1465.
    [2] MA R N, WAng B, LI Y, et al. Direct electrochemistry of glucose oxidase on the hydroxyapatite/Nafion composite film modified electrode and its application for glucose biosensing[J],Sci China Ser B-Chem. 2009, 52(11): 2013-2019.
    [3] WANG M D, DENG C Y, NIE Z, et al. The direct electrochemistry of glucose oxidase based on the synergic effect of amino acid ionic liquid and carbon nanotubes[J]. Sci China Ser B-Chem. 2009 , 52(11): 1991-1998.
    [4] ZUO S, TENG Y, YUAN H, et al. Direct electrochemistry of glucose oxidase on screen-printed electrodes through one-step enzyme immobilization process with silica sol–gel/polyvinyl alcohol hybrid film[J]. Sens. Actu-B, 2008, 133: 555–560.
    [5] WANG Z, LIU S, WU P, et al. Detection of Glucose Based on Direct Electron Transfer Reaction of Glucose Oxidase Immobilized on Highly Ordered Polyaniline Nanotubes[J]. Anal. Chem. 2009, 81: 1638–1645.
    [6] LI F, Song J, LI F, et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on carbon nanotubes SnO2-Au composite[J]. Biosens. Bioelectron., 2009, 25: 883–888.
    [7] SRIPALAKIT P, NEAMHOM P, SARAPHANCHOTIWITTHAYA A. High-performance liquid chromatographic method for the determination of pioglitazone in human plasma using ultraviolet detection and its application to apharmacokinetic study[J]. J. Chromat. B, 2006, 843: 164–169.
    [8]李珍,唐世新,张晋萍,田元春,胡晋红.固相萃取一高效液相色谱法测定人血浆中吡格列酮浓度及其药动学[J].中国医院药学杂志,2003,23(11):653—655.
    [9] WU X, ZHAO F, VARCOE J R, et al. Direct electron transfer of glucose oxidase immobilized in an ionic liquid reconstituted cellulose–carbon nanotube matrix[J]. Bioelectrochem., 2009, 77: 64–68.
    [10] SANTHOSH P, MANESH K M, UTHAYAKUMAR S, et al. Fabrication of enzymatic glucose biosensor based on palladium nanoparticles dispersed onto poly(3,4-ethylenedioxythiophene) nanofibers[J]. Bioelectrochem., 2009, 75: 61–66.
    [11] CHEN X J, XUAN J, JIANG L P, et al. Preparation of the glucose sensor based on three-dimensional ordered macroporous gold film and room temperature ionic liquid[J]. Sci China Ser B-Chem. 2009, 52(11): 1999-2005.
    [12] CHAUDHARIP S, GOKARNA A, KULKARNI M, et al. Porous silicon as an entrapping matrix for the mmobilization of urease[J]. Sens. Actu. B, 2005, 107: 258–263.
    [13] WANG G, THAI N M, Yau S T. Preserved enzymatic activity of glucose oxidase immobilized on unmodified electrodes for glucose detection, Biosens. Bioelectron., 2007, 22: 2158–2164.
    [14] THUST M, SCHONING M J, SCHROTH P, et al. Enzyme immobilisation on planar and porous silicon substrates for biosensor applications[J]. J. Mole. Catal. B: Enzymatic, 1999, 7: 77–83.
    [15] LOPEZ-GARCIA J, MARTIN-PALMA R J , MANSO M, et al. Porous silicon based structures for the electrical biosensing of glucose[J]. Sens. Actu. B, 2007, 126: 82–85.
    [16] ROSSI A M, WANG L, REIPA V, et al. Porous silicon biosensor for detection of viruses[J]. Biosens. Bioelectron., 2007, 23: 741–745.
    [17] MESKINI O, ABDELGHANI A, TLILI A, et al. Porous silicon as functionalized material for immunosensor application[J]. Talanta, 2007, 71:1430–1433.
    [18] ARROYO-HERNANDEZ M, PEREZ-RIGUEIRO J, MANSO-SILVAN M, et al. Bioactivity test for amine-based functionalized meso- and macro-porous silicon substrates[J]. Mater. Sci. Eng. C, 2007, 27: 1211–1214.
    [19] SALONEN J, LEHTO V P. Fabrication and chemical surface modification of mesoporous silicon for biomedical applications[J]. Chem. Eng. J., 2008, 137: 162–172.
    [20] ANGLIN E J, CHENG L, FREEMAN W R, et al. Porous silicon in drug delivery devices and materials[J]. Adv. Drug Deliv. Rev., 2008, 60: 1266–1277.
    [21] CULLIS A G, CANHAM L T, CALCOTT P D J. The structural and luminescence properties of porous silicon[J]. J. Appl. Phys., 1997, 82: 909-965.
    [22] LAURELL T, DROTT J, ROSENGREN L, et al. Enhanced enzyme activity in silicon integrated enzyme reactors utilizing porous silicon as the coupling matrix[J]. Sensors and Actuators B ,1996, 31: 161-166.
    [23] LIN V S Y, MOTESHAREI K, DANCIL K P S, et al. A Porous Silicon-Based Optical Interferometric Biosensor[J]. science, 1997, 278:840-843.
    [24] PIECHOTTA G, ALBERS J, HINTSCHE R. Novel micromachined silicon sensor for continuous glucose monitoring[J]. Biosens. Bioelectron., 2005, 21: 802–808.
    [25]薛涛,吕小毅,贾振红,等.一种多孔硅生物免疫传感器的研究[J].光电子.激光, 2008, 19:1607-1609.
    [26]陈真诚,李凌云,邓振生.一种葡萄糖氧化酶安培传感器研究[J].光电子.激光, 2007, 20: 743-750.
    [27]张彦,南彩凤,冯丽,等.壳聚糖固定化葡萄糖氧化酶生物传感器测定葡萄糖含量[J].光电子.激光, 2009, 37:1049-1052.
    [28] DANCIL K P S, GREINER D P, SAILOR M J. A Porous Silicon Optical Biosensor: Detection of Reversible Binding of IgG to a Protein A-Modified Surface[J]. J. Am. Chem. Soc. 1999, 121: 7925-7930.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700