氧化物/石墨烯纳米复合材料可控合成及其气敏与光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体金属氧化物是一类广泛研究的传统无机材料,广泛应用于空气污染物的降解与检测,即金属氧化物半导体气敏材料和光催化材料。气敏材料和气相光催化材料都涉及到材料表面与气体分子间的相互作用,或引起敏感材料的电学性能发生变化,而产生气敏信号;或使气体分子的结构破坏而降解,最终矿化为无污染的CO2和H_2O。这两个过程都涉及到材料与气体分子间的电荷转移。开发出新型材料,提高材料的气敏性能和光催化性能有迫切的现实意义。
     石墨烯是一种新发现的碳族材料,一经发现以其优良的物理、化学性能广泛用于与各种金属氧化物的复合,应用于光催化、气体敏感、能源等各个领域。金属氧化物半导体气体传感器和半导体光催化技术被认为是有效检测并降解常见空气污染物的有效手段。本论文围绕常见室内污染气体的检测与降解,开发出一系列石墨烯基的金属氧化物半导体材料,为新型石墨烯基材料的开发提供了新的视角。
     本文从石墨烯的制备出发,首先基于溶剂热的方法,采用廉价的糖类与高活性的碱金属反应,制备出一系列缺陷可控的石墨烯材料。SEM、XRD、IR、Raman、XPS等表征结果表明在合成过程中引入不同的糖类,会在石墨烯的表层产生不同量的缺陷。在加入蔗糖时,含氧基团的量可达24.7%。缺陷含量可调控的石墨烯样品对湿敏性能表现出差异性,其室温湿敏性能最高可提升4.5倍。
     通过简单的40°C低温水浴法合成了ZnO QDs修饰的石墨烯复合材料。通过调整反应参数,可以调节ZnO QDs在石墨烯表面的分布,实现了ZnO QDs/石墨烯复合材料的可控制备。SEM、TEM结果表明,ZnO QDs均匀分布在石墨烯表面,其粒径在5nm左右。ZnO QDs/石墨烯复合传感器表现出高的敏感性、快的响应/恢复特性、高的选择性和好的重复性;其对100ppm甲醛的敏感性是纯石墨烯器件的4倍。在气敏过程中石墨烯基体起着导电网络的作用,而修饰的ZnO QDs起到催化反应活性中心的作用。催化过程中亚稳态的中间产物对气敏过程至关重要。催化实验和DRIFTS实验结果从实验上证实提出的气敏响应机理。
     通过溶剂热的方法合成了一系列化学键结合的TiO2/graphene复合材料。XPS和TG-DTA测试结果证实了Ti-C键的存在。合成的TiO2/graphene复合光催化剂有很高的矿化效率、好的稳定性及高的催化活性。其降解效率是纯TiO2样品的2.6倍。化学键结合导致的界面电荷转移效应(chemical bonding interface charge transfer,CB-IFCT)能有效分离电荷,抑制光生电子-空穴对的复合,增加参与反应的电子/空穴数目,进而提高光催化活性。EIS测试和气相光电流测试有力的支持了上述机理解释。
     用简单的低温化学合成方法成功制备出片状的WO3/石墨烯复合光激发气敏材料。用XRD、Raman、SEM、TEM、XPS、EPR等方法详细表征所制备的所制备的WO3/石墨烯复合材料和纯的WO3材料,并测试了其在紫外、蓝光、白光三类光源下对不同浓度甲苯气体的响应。光激发气敏气敏测试结果表明,WO_3/石墨烯复合材料比纯的WO3材料有着更高的室温气敏响应,在蓝光下对100ppm甲苯的响应提高了3.2倍。其光激发气敏增强的机理主要是石墨烯能增加WO_3的氧空位。
Metal oxide semiconductor is a class of widely researched traditional inorganicmaterials, which are widely applied for the degradation and detection of air pollutants, i.e.,metal oxide semiconductor gas sensing materials and photocatalytic materials. Both gassensing materials and gaseous photocatalytic materials are all involved the interactionsbetween gas melocules and material surface. For gas sensing materials, the interactionsbetween the detected gas melocules and sensing materials cause the change of electronicperformance of sensing materials, which generates sensing signals. For gaseousphotocatalytic materials, the interactions between the photocatalyst and polluted gasmelocules cause the destructiveness and degradation of gas molecules, which are finallymineralized as nonpolluting CO2and H2O. The above two processes are all involved thecharge transfer between materials and gas melocules. It is urgent and practical to researchnew materials to enhance the gas sensing and photocatalytic performance.
     Graphene is a new found carbon material. Once it was found, it is widely hybridedwith all kinds of metal oxide for its excellent physical and chemical properties, andapplied in photocatalysis, gas sensing, energy and other fields. It is considered that metaloxide semiconductor gas sensor and semiconductor photocatalysis are effective methodsfor the detection and degradation of common air pollutant. This thesis is focused thedetection and degradation of common air pollutant, research a serials of graphene basedmetal oxide semiconductor materials, and provide new sight for the development of newgraphene based materials.
     This thesis starts from the fabrication of graphene. First based on solvothermalmethod, graphene with controlled defect was prepared with cheap sugar and high activealkali metal. The results of SEM, XRD, IR, Raman and XPS show that with different kinds of sugar, different mount of defect was generated at the surface of graphene. Withsucrose, the mount of oxygen-containing group is24.7%. The room temperature humiditysensing performance of graphene with different mount of defect shows difference. And thebest humidity performance enhanced by4.5times.
     ZnO QDs decorated graphene composites were prepared by a facilesolution-processed method under40°C. ZnO QDs/graphene composites were controlledby reaction parameter to adjust the distribution density of ZnO QDs on graphene surface.The results of SEM and TEM showed that ZnO QDs with a size ca.5nm are nucleatedand grown on the surface of the graphene template. ZnO QDs/graphene composites gassensor showed high sensitivity, fast response and recovery property, high selectivity andgood repeatability. The sensitivity to100ppm HCOH is4times to that of pure graphenesensor. During sensing process, the graphene substrate plays a role of conducting network;and the decorated ZnO QDs play a role of reaction center. The metastable intermediateproduct is crucial to gas sensing process. The proposed gas sensing mechanism isexperimentally supported by catalysis experiment and DRIFTS result.
     Chemically bonded TiO2/graphene composites were fabricated by solvothermalmethod. The results of XPS and TG-DTA confirmed the existence of Ti-C bond. the/graphene composites photocatalyst showed high mineralization efficiency, good stabilityand high catalytic reactivity. The degradation efficiency is2.6times to that of pure TiO2sample. Chemical bonding induced interface charge transfer can effectly separate charge,inhibit the recombination of electron-hole pairs, increase the mount of electron-hole pairsinvolved photocatalytic reaction, and enhance the photocatalytic reactivity. The results ofEIS and gaseous phase photocurrent effective support the above mechanism explanation.
     Photo-activated gas sensing WO3/graphene composites were fabricated by lowtemperature chemical synthesis. The WO3/graphene composites and pure WO3weredetailed characterized by XRD, Raman, SEM, TEM, XPS and EPR. The sensing performance to different concentration of toluene under UV, blue and white light weretested. The results showed that the WO3/graphene composites demonstrate higherperformance than pure WO3, and the sensitivity enhanced by3.2times to100ppm tolueneunder blue light. The main photo-activated gas sensing mechanisn is due to the increasingof oxygen vacanvy induced by graphene.
引文
[1] Yan Y H, Chan-Park M B and Zhang Q. Advances in carbon-nanotube assembly.Small,2007,3(1):24-42.
    [2] Helland A, Wick P, Koehler A, et al. Reviewing the environmental and humanhealth knowledge base of carbon nanotubes. Environmental Health Perspectives,2007,115(8):1125-1131.
    [3] Wang C C, Guo Z X, Fu S K, et al. Polymers containing fullerene or carbonnanotube structures. Progress in Polymer Science,2004,29(11):1079-1141.
    [4] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomicallythin carbon films. Science,2004,306(5696):666-669.
    [5] Katsnelson M and Novoselov K. Graphene: New bridge between condensed matterphysics and quantum electrodynamics. Solid State Communications,2007,143(1-2):3-13.
    [6] Seyller T, Bostwick A, Emtsev K V, et al. Epitaxial graphene: a new material.physica status solidi (b),2008,245(7):1436-1446.
    [7] Katsnelson M. Graphene: carbon in two dimensions. Materials Today,2007,10(1-2):20-27.
    [8] Park S and Ruoff R S. Chemical methods for the production of graphenes. NatureNanotechnology,2009,4(4):217-224.
    [9] Wei D and Liu Y. Controllable Synthesis of Graphene and Its Applications.Advanced Materials,2010,22(30):3225-3241.
    [10] Castro Neto A H, Peres N M R, Novoselov K S, et al. The electronic properties ofgraphene. Reviews of Modern Physics,2009,81(1):109-162.
    [11] Jang B Z and Zhamu A. Processing of nanographene platelets (NGPs) and NGPnanocomposites: a review. Journal of Materials Science,2008,43(15):5092-5101.
    [12] Brownson D A C and Banks C E. Graphene electrochemistry: an overview ofpotential applications. The Analyst,2010,135(11):2768-2778.
    [13] Choi W, Lahiri I, Seelaboyina R, et al. Synthesis of Graphene and Its Applications:A Review. Critical Reviews in Solid State and Materials Sciences,2010,35(1):52-71.
    [14] Rao C N R, Sood A K, Subrahmanyam K S, et al. Graphene: The NewTwo-Dimensional Nanomaterial. Angewandte Chemie International Edition,2009,48(42):7752-7777.
    [15] McAllister M J, Li J, Adamson D H, et al. Single Sheet Functionalized Graphene byOxidation and Thermal Expansion of Graphite. Chemistry of Materials,2007,19(18):4396-4404.
    [16] Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene byliquid-phase exfoliation of graphite. Nature Nanotechnology,2008,3(9):563-568.
    [17] Bourlinos A B, Georgakilas V, Zboril R, et al. Liquid-Phase Exfoliation of GraphiteTowards Solubilized Graphenes. Small,2009,5(16):1841-1845.
    [18] Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longitudinal unzipping ofcarbon nanotubes to form graphene nanoribbons. Nature,2009,458(7240):872-876.
    [19] Hirsch A. Unzipping Carbon Nanotubes: A Peeling Method for the Formation ofGraphene Nanoribbons. Angewandte Chemie International Edition,2009,48(36):6594-6596.
    [20] Shen J, Hu Y, Shi M, et al. Fast and Facile Preparation of Graphene Oxide andReduced Graphene Oxide Nanoplatelets. Chemistry of Materials,2009,21(15):3514-3520.
    [21] Peng-Gang R and et al. Temperature dependence of graphene oxide reduced byhydrazine hydrate. Nanotechnology,2011,22(5):055705.
    [22] Jernigan G G, VanMil B L, Tedesco J L, et al. Comparison of Epitaxial Grapheneon Si-face and C-face4H SiC Formed by Ultrahigh Vacuum and RF FurnaceProduction. Nano Letters,2009,9(7):2605-2609.
    [23] Guisinger N P, Rutter G M, Crain J N, et al. Exposure of Epitaxial Graphene onSiC(0001) to Atomic Hydrogen. Nano Letters,2009,9(4):1462-1466.
    [24] Chae S J, Günes F, Kim K K, et al. Synthesis of Large-Area Graphene Layers onPoly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation.Advanced Materials,2009,21(22):2328-2333.
    [25] Li X, Cai W, Colombo L, et al. Evolution of Graphene Growth on Ni and Cu byCarbon Isotope Labeling. Nano Letters,2009,9(12):4268-4272.
    [26] Choucair M, Thordarson P and Stride J A. Gram-scale production of graphenebased on solvothermal synthesis and sonication. Nature Nanotechnology,2008,4(1):30-33.
    [27] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based compositematerials. Nature,2006,442(7100):282-286.
    [28] Bai H, Li C and Shi G Q. Functional Composite Materials Based on ChemicallyConverted Graphene. Advanced Materials,2011,23(9):1089-1115.
    [29] Boukhvalov D W and Katsnelson M I. Chemical functionalization of graphene.Journal of Physics: Condensed Matter,2009,21(34):344205.
    [30] Denis P A, Faccio R and Mombru A W. Is It Possible to Dope Single-WalledCarbon Nanotubes and Graphene with Sulfur? ChemPhysChem,2009,10(4):715-722.
    [31] Chen D, Tang L and Li J. Graphene-based materials in electrochemistry. ChemicalSociety Reviews,2010,39(8):3157-3180.
    [32] Kim H and Macosko C W. Processing-property relationships ofpolycarbonate/graphene composites. Polymer,2009,50(15):3797-3809.
    [33] Vickery J L, Patil A J and Mann S. Fabrication of Graphene-PolymerNanocomposites With Higher-Order Three-Dimensional Architectures. AdvancedMaterials,2009,21(21):2180-2184.
    [34] Rafiee M A, Rafiee J, Srivastava I, et al. Fracture and Fatigue in GrapheneNanocomposites. Small,2010,6(2):179-183.
    [35] Ramanathan T, Abdala A A, Stankovich S, et al. Functionalized graphene sheets forpolymer nanocomposites. Nature Nanotechnology,2008,3(6):327-331.
    [36] Liu Z, Liu Q, Huang Y, et al. Organic Photovoltaic Devices Based on a NovelAcceptor Material: Graphene. Advanced Materials,2008,20(20):3924-3930.
    [37] Wang D-W, Li F, Zhao J, et al. Fabrication of Graphene/Polyaniline CompositePaperviaIn SituAnodic Electropolymerization for High-Performance FlexibleElectrode. ACS Nano,2009,3(7):1745-1752.
    [38] Eda G, Emrah Unalan H, Rupesinghe N, et al. Field emission from graphene basedcomposite thin films. Applied Physics Letters,2008,93(23):233502.
    [39] Xiong Z, Zhang L L, Ma J, et al. Photocatalytic degradation of dyes overgraphene-gold nanocomposites under visible light irradiation. ChemicalCommunications,2010,46(33):6099-6101.
    [40] Xu C and Wang X. Fabrication of Flexible Metal-Nanoparticle Films UsingGraphene Oxide Sheets as Substrates. Small,2009,5(19):2212-2217.
    [41] Pasricha R, Gupta S and Srivastava A K. A Facile and Novel Synthesis ofAga “Graphene-Based Nanocomposites. Small,2009,5(20):2253-2259.
    [42] Shafiei M, Spizzirri P G, Arsat R, et al. Platinum/Graphene Nanosheet/SiC Contactsand Their Application for Hydrogen Gas Sensing. The Journal of PhysicalChemistry C,2010,114(32):13796-13801.
    [43] Johnson J L, Behnam A, Pearton S J, et al. Hydrogen Sensing UsingPd-Functionalized Multi-Layer Graphene Nanoribbon Networks. AdvancedMaterials,2010,22(43):4877-4880.
    [44] Rakesh K and et al. Fast response and recovery of hydrogen sensing in Pd-Ptnanoparticle-graphene composite layers. Nanotechnology,2011,22(27):275719.
    [45] Dong L, Gari R R S, Li Z, et al. Graphene-supported platinum andplatinum-ruthenium nanoparticles with high electrocatalytic activity for methanoland ethanol oxidation. Carbon,2010,48(3):781-787.
    [46] Swart J, Steen E, Ciobíc I, et al. Interaction of graphene with FCC-Co (111).Physical Chemistry Chemical Physics,2009,11(5):803-807.
    [47] Lee J, Novoselov K S and Shin H S. Interaction between Metal and Graphene:Dependence on the Layer Number of Graphene. ACS Nano,2010,5(1):608-612.
    [48] Zhang Y H, Tang Z R, Fu X Z, et al. TiO2-Graphene Nanocomposites forGas-Phase Photocatalytic Degradation of Volatile Aromatic Pollutant: IsTiO2-Graphene Truly Different from Other TiO2-Carbon Composite Materials?ACS Nano,2010,4(12):7303-7314.
    [49] Zhang X Y, Li H P, Cui X L, et al. Graphene/TiO2nanocomposites: synthesis,characterization and application in hydrogen evolution from water photocatalyticsplitting. Journal of Materials Chemistry,2010,20(14):2801-2806.
    [50] Ng Y H, Lightcap I V, Goodwin K, et al. To What Extent Do Graphene ScaffoldsImprove the Photovoltaic and Photocatalytic Response of TiO2NanostructuredFilms? Journal of Physical Chemistry Letters,2010,1(15):2222-2227.
    [51] Liu J C, Bai H W, Wang Y J, et al. Self-Assembling TiO2Nanorods on LargeGraphene Oxide Sheets at a Two-Phase Interface and Their Anti-Recombination inPhotocatalytic Applications. Advanced Functional Materials,2010,20(23):4175-4181.
    [52] Liang Y Y, Wang H L, Casalongue H S, et al. TiO2Nanocrystals Grown onGraphene as Advanced Photocatalytic Hybrid Materials. Nano Research,2010,3(10):701-705.
    [53] Chen C, Cai W M, Long M C, et al. Synthesis of Visible-Light ResponsiveGraphene Oxide/TiO2Composites with p/n Heterojunction. ACS Nano,2010,4(11):6425-6432.
    [54] Akhavan O and Ghaderi E. Photocatalytic Reduction of Graphene OxideNanosheets on TiO2Thin Film for Photoinactivation of Bacteria in Solar LightIrradiation. Journal of Physical Chemistry C,2009,113(47):20214-20220.
    [55] Williams G, Seger B and Kamat P V. TiO2-graphene nanocomposites. UV-assistedphotocatalytic reduction of graphene oxide. ACS Nano,2008,2(7):1487-1491.
    [56] Wang D H, Choi D W, Li J, et al. Self-Assembled TiO2-Graphene HybridNanostructures for Enhanced Li-Ion Insertion. ACS Nano,2009,3(4):907-914.
    [57] Zhang L S, Jiang L Y, Yan H J, et al. Mono dispersed SnO2nanoparticles on bothsides of single layer graphene sheets as anode materials in Li-ion batteries. Journalof Materials Chemistry,2010,20(26):5462-5467.
    [58] Yao J, Shen X P, Wang B, et al. In situ chemical synthesis of SnO2-graphenenanocomposite as anode materials for lithium-ion batteries. ElectrochemistryCommunications,2009,11(10):1849-1852.
    [59] Wang X Y, Zhou X F, Yao K, et al. A SnO2/graphene composite as a high stabilityelectrode for lithium ion batteries. Carbon,2011,49(1):133-139.
    [60] Paek S M, Yoo E and Honma I. Enhanced Cyclic Performance and Lithium StorageCapacity of SnO2/Graphene Nanoporous Electrodes with Three-DimensionallyDelaminated Flexible Structure. Nano Letters,2009,9(1):72-75.
    [61] Lu T, Zhang Y P, Li H B, et al. Electrochemical behaviors of graphene-ZnO andgraphene-SnO2composite films for supercapacitors. Electrochimica Acta,2010,55(13):4170-4173.
    [62] Li Y M, Lv X J, Lu J, et al. Preparation of SnO2-Nanocrystal/Graphene-NanosheetsComposites and Their Lithium Storage Ability. Journal of Physical Chemistry C,2010,114(49):21770-21774.
    [63] Zhu J W, Zeng G Y, Nie F D, et al. Decorating graphene oxide with CuOnanoparticles in a water-isopropanol system. Nanoscale,2010,2(6):988-994.
    [64] Zhou J S, Ma L L, Song H H, et al. Durable high-rate performance of CuO hollownanoparticles/graphene-nanosheet composite anode material for lithium-ionbatteries. Electrochemistry Communications,2011,13(12):1357-1360.
    [65] Willander M, ul Hasan K, Nur O, et al. Recent progress on growth and devicedevelopment of ZnO and CuO nanostructures and graphene nanosheets. Journal ofMaterials Chemistry,2012,22(6):2337-2350.
    [66] Wang B, Wu X L, Shu C Y, et al. Synthesis of CuO/graphene nanocomposite as ahigh-performance anode material for lithium-ion batteries. Journal of MaterialsChemistry,2010,20(47):10661-10664.
    [67] Qi Y, Eskelsen J R, Mazur U, et al. Fabrication of Graphene with CuO Islands byChemical Vapor Deposition. Langmuir,2012,28(7):3489-3493.
    [68] Yu G H, Hu L B, Vosgueritchian M, et al. Solution-Processed Graphene/MnO2Nanostructured Textiles for High-Performance Electrochemical Capacitors. NanoLetters,2011,11(7):2905-2911.
    [69] Yu G H, Hu L B, Liu N A, et al. Enhancing the Supercapacitor Performance ofGraphene/MnO2Nanostructured Electrodes by Conductive Wrapping. Nano Letters,2011,11(10):4438-4442.
    [70] Yan J, Fan Z J, Wei T, et al. Fast and reversible surface redox reaction ofgraphene-MnO2composites as supercapacitor electrodes. Carbon,2010,48(13):3825-3833.
    [71] Wu Z S, Ren W C, Wang D W, et al. High-Energy MnO2Nanowire/Graphene andGraphene Asymmetric Electrochemical Capacitors. ACS Nano,2010,4(10):5835-5842.
    [72] Qian Y, Lu S B and Gao F L. Preparation of MnO2/graphene composite as electrodematerial for supercapacitors. Journal of Materials Science,2011,46(10):3517-3522.
    [73] Yang X Y, Zhang X Y, Ma Y F, et al. Superparamagnetic graphene oxide-Fe3O4nanoparticles hybrid for controlled targeted drug carriers. Journal of MaterialsChemistry,2009,19(18):2710-2714.
    [74] Wang J Z, Zhong C, Wexler D, et al. Graphene-Encapsulated Fe3O4Nanoparticleswith3D Laminated Structure as Superior Anode in Lithium Ion Batteries.Chemistry-A European Journal,2011,17(2):661-667.
    [75] Lian P C, Zhu X F, Xiang H F, et al. Enhanced cycling performance ofFe3O4-graphene nanocomposite as an anode material for lithium-ion batteries.Electrochimica Acta,2010,56(2):834-840.
    [76] Zhou G M, Wang D W, Li F, et al. Graphene-Wrapped Fe3O4Anode Material withImproved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries.Chemistry of Materials,2010,22(18):5306-5313.
    [77] Zhang Y P, Li H B, Pan L K, et al. Capacitive behavior of graphene-ZnO compositefilm for supercapacitors. Journal of Electroanalytical Chemistry,2009,634(1):68-71.
    [78] Yin Z Y, Wu S X, Zhou X Z, et al. Electrochemical Deposition of ZnO Nanorodson Transparent Reduced Graphene Oxide Electrodes for Hybrid Solar Cells. Small,2010,6(2):307-312.
    [79] Xu T G, Zhang L W, Cheng H Y, et al. Significantly enhanced photocatalyticperformance of ZnO via graphene hybridization and the mechanism study. AppliedCatalysis B: Environmental,2011,101(3-4):382-387.
    [80] Wu J L, Shen X P, Jiang L, et al. Solvothermal synthesis and characterization ofsandwich-like graphene/ZnO nanocomposites. Applied Surface Science,2010,256(9):2826-2830.
    [81] Williams G and Kamat P V. Graphene-Semiconductor Nanocomposites:Excited-State Interactions between ZnO Nanoparticles and Graphene Oxide.Langmuir,2009,25(24):13869-13873.
    [82] Lee J M, Pyun Y B, Yi J, et al. ZnO Nanorod-Graphene Hybrid Architectures forMultifunctional Conductors. Journal of Physical Chemistry C,2009,113(44):19134-19138.
    [83] Akhavan O. Photocatalytic reduction of graphene oxides hybridized by ZnOnanoparticles in ethanol. Carbon,2011,49(1):11-18.
    [84] Akhavan O. Graphene Nanomesh by ZnO Nanorod Photocatalysts. ACS Nano,2010,4(7):4174-4180.
    [85] Zhu G, Xu T, Lv T A, et al. Graphene-incorporated nanocrystalline TiO2films forCdS quantum dot-sensitized solar cells. Journal of Electroanalytical Chemistry,2011,650(2):248-251.
    [86] Wang P, Jiang T F, Zhu C Z, et al. One-Step, Solvothermal Synthesis ofGraphene-CdS and Graphene-ZnS Quantum Dot Nanocomposites and TheirInteresting Photovoltaic Properties. Nano Research,2010,3(11):794-799.
    [87] Jia L, Wang D H, Huang Y X, et al. Highly Durable N-Doped Graphene/CdSNanocomposites with Enhanced Photocatalytic Hydrogen Evolution from Waterunder Visible Light Irradiation. Journal of Physical Chemistry C,2011,115(23):11466-11473.
    [88] Wang K, Liu Q A, Wu X Y, et al. Graphene enhanced electrochemiluminescence ofCdS nanocrystal for H2O2sensing. Talanta,2010,82(1):372-376.
    [89] Li Y F, Liu Y Z, Shen W Z, et al. Graphene-ZnS quantum dot nanocompositesproduced by solvothermal route. Materials Letters,2011,65(15-16):2518-2521.
    [90] Zedan A F, Sappal S, Moussa S, et al. Ligand-Controlled Microwave Synthesis ofCubic and Hexagonal CdSe Nanocrystals Supported on Graphene.Photoluminescence Quenching by Graphene. Journal of Physical Chemistry C,2010,114(47):19920-19927.
    [91] Lin Y, Zhang K, Chen W F, et al. Dramatically Enhanced Photoresponse ofReduced Graphene Oxide with Linker-Free Anchored CdSe Nanoparticles. ACSNano,2010,4(6):3033-3038.
    [92] Kim Y T, Han J H, Hong B H, et al. Electrochemical Synthesis of CdSeQuantum-Dot Arrays on a Graphene Basal Plane Using Mesoporous SilicaThin-Film Templates. Advanced Materials,2009,22(4):515-518.
    [93] Hwang S, Shin D, Kim C, et al. Plasmon-Enhanced Ultraviolet Photoluminescencefrom Hybrid Structures of Graphene/ZnO Films. Physical Review Letters,2010,105(12):127403.
    [94] Lee J M, Pyun Y B, Yi J, et al. ZnO Nanorod Graphene Hybrid Architectures forMultifunctional Conductors. The Journal of Physical Chemistry C,2009,113(44):19134-19138.
    [95] Lin J, Penchev M, Wang G, et al. Heterogeneous Graphene Nanostructures: ZnONanostructures Grown on Large‐Area Graphene Layers. Small,2010,6(21):2448-2452.
    [96] Yin Z, Wu S, Zhou X, et al. Electrochemical Deposition of ZnO Nanorods onTransparent Reduced Graphene Oxide Electrodes for Hybrid Solar Cells. Small,2010,6(2):307-312.
    [97] Cao Y, Li X, Aksay I A, et al. Sandwich-type functionalized graphene sheet-sulfurnanocomposite for rechargeable lithium batteries. Physical Chemistry ChemicalPhysics,2011,13(17):7660-7665.
    [98] Zheng W T, Ho Y M, Tian H W, et al. Field Emission from a Composite ofGraphene Sheets and ZnO Nanowires. The Journal of Physical Chemistry C,2009,113(21):9164-9168.
    [99] Hwang J O, Lee D H, Kim J Y, et al. Vertical ZnO nanowires/graphene hybrids fortransparent and flexible field emission. Journal of Materials Chemistry,2011,21(10):3432-3437.
    [100] Chang H, Sun Z, Ho K Y, et al. A highly sensitive ultraviolet sensor based on afacile in situ solution-grown ZnO nanorod/graphene heterostructure. Nanoscale,2011,3(1):258-264.
    [101] Zhang Y, Li H, Pan L, et al. Capacitive behavior of graphene-ZnO composite filmfor supercapacitors. Journal of Electroanalytical Chemistry,2009,634(1):68-71.
    [102] Singh G, Choudhary A, Haranath D, et al. ZnO decorated luminescent graphene as apotential gas sensor at room temperature. Carbon,2012,50(2):385-394.
    [103] Li L M, Du Z F, Liu S A, et al. A novel nonenzymatic hydrogen peroxide sensorbased on MnO2/graphene oxide nanocomposite. Talanta,2010,82(5):1637-1641.
    [104] Cao A, Liu Z, Chu S, et al. A Facile One-step Method to Produce Graphene-CdSQuantum Dot Nanocomposites as Promising Optoelectronic Materials. AdvancedMaterials,2010,22(1):103-106.
    [105] Ding S J, Chen J S, Luan D Y, et al. Graphene-supported anatase TiO2nanosheetsfor fast lithium storage. Chemical Communications,2011,47(20):5780-5782.
    [106] Tao H C, Fan L Z, Yan X Q, et al. In situ synthesis of TiO2-graphene nanosheetscomposites as anode materials for high-power lithium ion batteries. ElectrochimicaActa,2012,69(4):328-333.
    [107] Shen L F, Zhang X G, Li H S, et al. Design and Tailoring of a Three-DimensionalTiO2-Graphene-Carbon Nanotube Nanocomposite for Fast Lithium Storage. Journalof Physical Chemistry Letters,2011,2(24):3096-3101.
    [108] Sun S R, Gao L and Liu Y Q. Enhanced dye-sensitized solar cell usinggraphene-TiO2photoanode prepared by heterogeneous coagulation. Applied PhysicsLetters,2010,96(8):083113.
    [109] Song J L, Yin Z Y, Yang Z J, et al. Enhancement of Photogenerated ElectronTransport in Dye-Sensitized Solar Cells with Introduction of a Reduced GrapheneOxide-TiO2Junction. Chemistry-A European Journal,2011,17(39):10832-10837.
    [110] Tsai T H, Chiou S C and Chen S M. Enhancement of Dye-Sensitized Solar Cells byusing Graphene-TiO2Composites as Photoelectrochemical Working Electrode.International Journal of Electrochemical Science,2011,6(8):3333-3343.
    [111] Yang N L, Zhang Y, Halpert J E, et al. Granum-Like Stacking Structures withTiO2-Graphene Nanosheets for Improving Photo-electric Conversion. Small,2012,8(11):1762-1770.
    [112] Zhang X Y, Li H P and Cui X L. Preparation and Photocatalytic Activity forHydrogen Evolution of TiO2/Graphene Sheets Composite. Chinese Journal ofInorganic Chemistry,2009,25(11):1903-1907.
    [113] Cheng P, Yang Z, Wang H, et al. TiO2-graphene nanocomposites for photocatalytichydrogen production from splitting water. International Journal of Hydrogen Energy,2012,37(3):2224-2230.
    [114] Fan W Q, Lai Q H, Zhang Q H, et al. Nanocomposites of TiO2and ReducedGraphene Oxide as Efficient Photocatalysts for Hydrogen Evolution. The Journal ofPhysical Chemistry C,2011,115(21):10694-10701.
    [115] Manga K K, Wang J Z, Lin M, et al. High-Performance Broadband PhotodetectorUsing Solution-Processible PbSe-TiO2-Graphene Hybrids. Advanced Materials,2012,24(13):1697-1702.
    [116] Wang K, Li H N, Wu J, et al. TiO2-decorated graphene nanohybrids for fabricatingan amperometric acetylcholinesterase biosensor. Analyst,2011,136(16):3349-3354.
    [117] Fan Y, Lu H T, Liu J H, et al. Hydrothermal preparation and electrochemicalsensing properties of TiO2-graphene nanocomposite. Colloids and SurfacesB-Biointerfaces,2011,83(1):78-82.
    [118] Fan Y, Huang K J, Niu D J, et al. TiO2-graphene nanocomposite for electrochemicalsensing of adenine and guanine. Electrochimica Acta,2011,56(12):4685-4690.
    [119] Du J, Lai X Y, Yang N L, et al. Hierarchically Ordered Macro-MesoporousTiO2-Graphene Composite Films: Improved Mass Transfer, Reduced ChargeRecombination, and Their Enhanced Photocatalytic Activities. ACS Nano,2011,5(1):590-596.
    [120] Jiang G D, Lin Z F, Chen C, et al. TiO2nanoparticles assembled on graphene oxidenanosheets with high photocatalytic activity for removal of pollutants. Carbon,2011,49(8):2693-2701.
    [121] Li H B, Zhang W, Zou L D, et al. Synthesis of TiO2-graphene composites viavisible-light photocatalytic reduction of graphene oxide. Journal of MaterialsResearch,2011,26(8):970-973.
    [122] Liu X J, Pan L K, Lv T, et al. Microwave-assisted synthesis of TiO2-reducedgraphene oxide composites for the photocatalytic reduction of Cr(VI). RscAdvances,2011,1(7):1245-1249.
    [123] Gao Y Y, Pu X P, Zhang D F, et al. Combustion synthesis of graphene oxide-TiO2hybrid materials for photodegradation of methyl orange. Carbon,2012,50(11):4093-4101.
    [124] Sun L, Zhao Z L, Zhou Y C, et al. Anatase TiO2nanocrystals with exposed {001}facets on graphene sheets via molecular grafting for enhanced photocatalyticactivity. Nanoscale,2012,4(2):613-620.
    [125] Qiu Y C, Yan K Y, Yang S H, et al. Synthesis of Size-Tunable Anatase TiO2Nanospindles and Their Assembly into Anatase@Titanium Oxynitride/TitaniumNitride-Graphene Nanocomposites for Rechargeable Lithium Ion Batteries withHigh Cycling Performance. ACS Nano,2010,4(11):6515-6526.
    [126] Wang G, Wang B, Park J, et al. Synthesis of enhanced hydrophilic and hydrophobicgraphene oxide nanosheets by a solvothermal method. Carbon,2009,47(1):68-72.
    [127] Zhang H, Lv X, Li Y, et al. P25-graphene composite as a high performancephotocatalyst. ACS Nano,2009,4(1):380-386.
    [128] Wang P, Zhai Y, Wang D, et al. Synthesis of reduced graphene oxide-anatase TiO2nanocomposite and its improved photo-induced charge transfer properties.Nanoscale,2011,3(4):1640-1645.
    [129] Liu S W, Liu C, Wang W G, et al. Unique photocatalytic oxidation reactivity andselectivity of TiO2-graphene nanocomposites. Nanoscale,2012,4(10):3193-3200.
    [130] Ghasemi S, Setayesh S R, Habibi-Yangjeh A, et al. Assembly of CeO2-TiO2nanoparticles prepared in room temperature ionic liquid on graphene nanosheets forphotocatalytic degradation of pollutants. Journal of Hazardous materials,2012,199(15):170-178.
    [131] Wang P, Han L, Zhu C Z, et al. Aqueous-phase synthesis of Ag-TiO2-reducedgraphene oxide and Pt-TiO2-reduced graphene oxide hybrid nanostructures and theircatalytic properties. Nano Research,2011,4(11):1153-1162.
    [132] Liang Y, Li Y, Wang H, et al. Co3O4nanocrystals on graphene as a synergisticcatalyst for oxygen reduction reaction. Nature Materials,2011,10(10):780-786.
    [133] Yang S, Cui G, Pang S, et al. Fabrication of Cobalt and Cobalt Oxide/GrapheneComposites: Towards High-Performance Anode Materials for Lithium Ion Batteries.ChemSusChem,2010,3(2):236-239.
    [134] Li F, Song J, Yang H, et al. One-step synthesis of graphene/SnO2nanocompositesand its application in electrochemical supercapacitors. Nanotechnology,2009,20(45):455602.
    [135] Yao J, Shen X, Wang B, et al. In situ chemical synthesis of SnO2-graphenenanocomposite as anode materials for lithium-ion batteries. ElectrochemistryCommunications,2009,11(10):1849-1852.
    [136] He F, Fan J, Ma D, et al. The attachment of Fe3O4nanoparticles to graphene oxideby covalent bonding. Carbon,2010,48(11):3139-3144.
    [137] Youn S C, Kim D W, Yang S B, et al. Vertical alignment of reduced grapheneoxide/Fe-oxide hybrids using the magneto-evaporation method. ChemicalCommunications,2011,47(18):5211-5213.
    [138] Koo H Y, Lee H, Go H, et al. Graphene-based multifunctional iron oxidenanosheets with tunable properties. Chemistry,2011,17(4):1214-1219.
    [139] Walker L S, Marotto V R, Rafiee M A, et al. Toughening in Graphene CeramicComposites. ACS Nano,2011,5(4):3182-3190.
    [140] Guo C X, Yang H B, Sheng Z M, et al. Layered Graphene/Quantum Dots forPhotovoltaic Devices. Angewandte Chemie International Edition,2010,49(17):3014-3017.
    [141] Geng X, Niu L, Xing Z, et al. Aqueous-Processable Noncovalent ChemicallyConverted Graphene-Quantum Dot Composites for Flexible and TransparentOptoelectronic Films. Advanced Materials,2010,22(5):638-642.
    [142] Wang H, Casalongue H S, Liang Y, et al. Ni(OH)2Nanoplates Grown on Grapheneas Advanced Electrochemical Pseudocapacitor Materials. Journal of the AmericanChemical Society,2010,132(21):7472-7477.
    [143] Tung V, Chen L, Allen M, et al. Low-Temperature Solution Processing ofGraphene-Carbon Nanotube Hybrid Materials for High-Performance TransparentConductors. Nano Letters,2009,9(5):1949-1955.
    [144] Lee D H, Kim J E, Han T H, et al. Versatile Carbon Hybrid Films Composed ofVertical Carbon Nanotubes Grown on Mechanically Compliant Graphene Films.Advanced Materials,2010,22(11):1247-1252.
    [145] Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas moleculesadsorbed on graphene. Nature Materials,2007,6(9):652-655.
    [146] Comini E, Baratto C, Faglia G, et al. Quasi-one dimensional metal oxidesemiconductors: Preparation, characterization and application as chemical sensors.Progress in Materials Science,2009,54(1):1-67.
    [147] Yang W, Ratinac K R, Ringer S P, et al. Carbon Nanomaterials in Biosensors:Should You Use Nanotubes or Graphene? Angewandte Chemie InternationalEdition,2010,49(12):2114-2138.
    [148] Bolotin K I, Sikes K J, Hone J, et al. Temperature-Dependent Transport inSuspended Graphene. Physical Review Letters,2008,101(9):096802.
    [149] Boukhvalov D W and Katsnelson M I. Modeling of Graphite Oxide. Journal of theAmerican Chemical Society,2008,130(32):10697-10701.
    [150] Ratinac K R, Yang W, Ringer S P, et al. Toward Ubiquitous Environmental GasSensors-Capitalizing on the Promise of Graphene. Environmental Science&Technology,2010,44(4):1167-1176.
    [151] Fan Z, Wang K, Wei T, et al. An environmentally friendly and efficient route for thereduction of graphene oxide by aluminum powder. Carbon,2010,48(5):1686-1689.
    [152] Jia X, Campos Delgado J, Terrones M, et al. Graphene edges: a review of theirfabrication and characterization. Nanoscale,2011,3(1):86-95.
    [153] Banhart F, Kotakoski J and Krasheninnikov A V. Structural defects in graphene.ACS Nano,2011,5(1):26-41.
    [154] Ao Z M, Yang J, Li S, et al. Enhancement of CO detection in Al doped graphene.Chemical Physics Letters,2008,461(4-6):276-279.
    [155] Ao Z M, Li S and Jiang Q. Thermal stability of interaction between the COmolecules and the Al doped graphene. Physical Chemistry Chemical Physics,2009,11(11):1683-1687.
    [156] Zhang Y H, Chen Y B, Zhou K G, et al. Improving gas sensing properties ofgraphene by introducing dopants and defects: a first-principles study.Nanotechnology,2009,20(18):185504.
    [157] Allouche A and Ferro Y. Dissociative adsorption of small molecules at vacancies onthe graphite (0001) surface. Carbon,2006,44(15):3320-3327.
    [158] Fowler J D, Allen M J, Tung V C, et al. Practical Chemical Sensors fromChemically Derived Graphene. ACS Nano,2009,3(2):301-306.
    [159] Ghosh A, Late D, Panchakarla L S, et al. NO2and humidity sensing characteristicsof few-layer graphenes. Journal of Experimental Nanoscience,2009,4(4):313-322.
    [160] Joshi R K, Gomez H, Alvi F, et al. Graphene Films and Ribbons for Sensing of O2,and100ppm of CO and NO2in Practical Conditions. The Journal of PhysicalChemistry C,2010,114(14):6610-6613.
    [161] Dan Y, Lu Y, Kybert N J, et al. Intrinsic Response of Graphene Vapor Sensors.Nano Letters,2009,9(4):1472-1475.
    [162] Zhang L S, Wang W D, Liang X Q, et al. Characterization of partially reducedgraphene oxide as room temperature sensor for H2. Nanoscale,2011,3(6):2458-2460.
    [163] Lu G, Ocola L E and Chen J. Reduced graphene oxide for room-temperature gassensors. Nanotechnology,2009,20(44):445502.
    [164] Yoon H J, Jun D H, Yang J H, et al. Carbon dioxide gas sensor using a graphenesheet. Sensors and Actuators B: Chemical,2011,157(1):310-313.
    [165] Moser J, Verdaguer A, Jiménez D, et al. The environment of graphene probed byelectrostatic force microscopy. Applied Physics Letters,2008,92(12):123507.
    [166] Nethravathi C and Rajamathi M. Chemically modified graphene sheets produced bythe solvothermal reduction of colloidal dispersions of graphite oxide. Carbon,2008,46(14):1994-1998.
    [167] Allen M J, Tung V C and Kaner R B. Honeycomb Carbon: A Review of Graphene.Chemical Reviews,2010,110(1):132-145.
    [168] Paredes J I, Martínez-Alonso A and Tascón J M D. Multiscale Imaging andTip-Scratch Studies Reveal Insight into the Plasma Oxidation of Graphite.Langmuir,2007,23(17):8932-8943.
    [169] Liao K H, Mittal A, Bose S, et al. Aqueous only route toward graphene fromgraphite oxide. ACS Nano,2011,5(2):1253-1258.
    [170] Mattevi C, Eda G, Agnoli S, et al. Evolution of Electrical, Chemical, and StructuralProperties of Transparent and Conducting Chemically Derived Graphene ThinFilms. Advanced Functional Materials,2009,19(16):2577-2583.
    [171] Ding Y H, Zhang P, Zhuo Q, et al. A green approach to the synthesis of reducedgraphene oxide nanosheets under UV irradiation. Nanotechnology,2011,22(21):215601.
    [172] Bai H, Li C and Shi G. Functional Composite Materials Based on ChemicallyConverted Graphene. Advanced Materials,2011,23(9):1089-1115.
    [173] Gao F, Zeng D, Huang Q, et al. Chemically Bonded Graphene/BiOClNanocomposites as a High-performance Photocatalyst. Physical ChemistryChemical Physics,2012,4(2):613-620.
    [174] Vayssieres L. Growth of arrayed nanorods and nanowires of ZnO from aqueoussolutions. Advanced Materials,2003,15(5):464-466.
    [175] Dorfman A, Kumar N and Hahm J. Nanoscale ZnO enhanced fluorescence detectionof protein interactions. Advanced Materials,2006,18(20):2685-2690.
    [176] Irimpan L, Nampoori V P N, Radhakrishnan P, et al. Size dependent fluorescencespectroscopy of nanocolloids of ZnO. Journal of Applied Physics,2007,102(6):063524.
    [177] Monticone S, Tufeu R and Kanaev A V. Complex nature of the UV and visiblefluorescence of Colloidal ZnO nanoparticles. Journal of Physical Chemistry B,1998,102(16):2854-2862.
    [178] Wang X, Zhi L and Mullen K. Transparent, Conductive Graphene Electrodes forDye-Sensitized Solar Cells. Nano Letters,2007,8(1):323-327.
    [179] Chi M and Zhao Y. Adsorption of formaldehyde molecule on the intrinsic andAl-doped graphene: A first principle study. Computational Materials Science,2009,46(4):1085-1090.
    [180] Yamazoe N, Sakai G and Shimanoe K. Oxide Semiconductor Gas Sensors.Catalysis Surveys from Asia,2003,7(1):63-75.
    [181] Forleo A, Francioso L, Capone S, et al. Synthesis and gas sensing properties of ZnOquantum dots. Sensors and Actuators B: Chemical,2010,146(1):111-115.
    [182] Lu G, Ocola L E and Chen J. Room-Temperature Gas Sensing Based on ElectronTransfer between Discrete Tin Oxide Nanocrystals and Multiwalled CarbonNanotubes. Advanced Materials,2009,21(24):2487-2491.
    [183] Deng L, Ding X, Zeng D, et al. Visible-light activate mesoporous WO3sensors withenhanced formaldehyde-sensing property at room temperature. Sensors andActuators B: Chemical,2012,163(1):260-266.
    [184] Zhao L, Choi M, Kim H S, et al. The effect of multiwalled carbon nanotube dopingon the CO gas sensitivity of SnO2-based nanomaterials. Nanotechnology,2007,18(44):445501.
    [185] Yang A, Tao X, Wang R, et al. Room temperature gas sensing properties ofSnO2/multiwall-carbon-nanotube composite nanofibers. Applied Physics Letters,2007,91(13):133110.
    [186] Zhang C, He H and Tanaka K i. Catalytic performance and mechanism of a Pt/TiO2catalyst for the oxidation of formaldehyde at room temperature. Applied Catalysis B:Environmental,2006,65(1-2):37-43.
    [187] Sun S, Ding J J, Bao J, et al. Photocatalytic Oxidation of Gaseous Formaldehyde onTiO2: An In Situ DRIFTS Study. Catalysis Letters,2010,137(3-4):239-246.
    [188] Rasko J, Kecskes T and Kiss J. Adsorption and reaction of formaldehyde onTiO2-supported Rh catalysts studied by FTIR and mass spectrometry. Journal ofCatalysis,2004,226(1):183-191.
    [189] Zhang C and He H. A comparative study of TiO2supported noble metal catalystsfor the oxidation of formaldehyde at room temperature. Catalysis Today,2007,126(3-4):345-350.
    [190] Kecskes T, Rasko J and Kiss J. FTIR and mass spectrometric study of HCOOHinteraction with TiO2supported Rh and Au catalysts. Applied Catalysis A: General,2004,268(1-2):9-16.
    [191] Kecskes T, Rasko J and Kiss J. FTIR and mass spectrometric studies on theinteraction of formaldehyde with TiO2supported Pt and Au catalysts. AppliedCatalysis A: General,2004,273(1-2):55-62.
    [192] Groff R P and Manogue W H. Batch reaction of methanol and oxygen over TiO2at400°C: Observing surface species by infrared spectroscopy, and gas species by massspectroscopy. Journal of Catalysis,1984,87(2):461-467.
    [193] Xu Y and Schoonen M. The absolute energy positions of conduction and valencebands of selected semiconducting minerals. American Mineralogist,2000,85(3-4):543-556.
    [194] Zheng L, Zheng Y, Chen C, et al. Network Structured SnO2/ZnO HeterojunctionNanocatalyst with High Photocatalytic Activity. Inorganic Chemistry,2009,48(5):1819-1825.
    [195] Linsebigler A, Lu G and Yates Jr J. Photocatalysis on TiO2surfaces: principles,mechanisms, and selected results. Chemical Reviews,1995,95(3):735-758.
    [196]Mohamed H H and Bahnemann D W. The role of electron transfer in photocatalysis:Fact and fictions. Applied Catalysis B: Environmental,2012,128(30):90-104.
    [197] Inagaki M, Kojin F, Tryba B, et al. Carbon-coated anatase: the role of the carbonlayer for photocatalytic performance. Carbon,2005,43(8):1652-1659.
    [198] Wang Z, Cai W, Hong X, et al. Photocatalytic degradation of phenol in aqueousnitrogen-doped TiO2suspensions with various light sources. Applied Catalysis B:Environmental,2005,57(3):223-231.
    [199] Divalentin C, Finazzi E, Pacchioni G, et al. N-doped TiO2: Theory and experiment.Chemical Physics,2007,339(1-3):44-56.
    [200] Mozia S, Toyoda M, Inagaki M, et al. Application of carbon-coated TiO2fordecomposition of methylene blue in a photocatalytic membrane reactor. Journal ofHazardous Materials,2007,140(1-2):369-375.
    [201] Byrappa K, Dayananda A S, Sajan C P, et al. Hydrothermal preparation ofZnO:CNT and TiO2:CNT composites and their photocatalytic applications. Journalof Materials Science,2008,43(7):2348-2355.
    [202] Kobayakawa K, Murakami Y and Sato Y. Visible-light active N-doped TiO2prepared by heating of titanium hydroxide and urea. Journal of Photochemistry andPhotobiology A: Chemistry,2005,170(2):177-179.
    [203] Sun L, Zhao Z, Zhou Y, et al. Anatase TiO2nanocrystals with exposed {001} facetson graphene sheets via molecular grafting for enhanced photocatalytic activity.Nanoscale,2012,4(2):613-620.
    [204] Lambert T N, Chavez C A, Bell N S, et al. Large area mosaic films ofgraphene-titania: self-assembly at the liquid-air interface and photo-responsivebehavior. Nanoscale,2011,3(1):188-191.
    [205] Chang K and Chen W. In situ synthesis of MoS2/graphene nanosheet compositeswith extraordinarily high electrochemical performance for lithium ion batteries.Chemical Communications,2011,47(14):4252-4254.
    [206] Makarova O V, Rajh T, Thurnauer M C, et al. Surface Modification of TiO2Nanoparticles For Photochemical Reduction of Nitrobenzene. EnvironmentalScience&Technology,2000,34(22):4797-4803.
    [207] Wang W, Germanenko I and El-Shall M S. Room-Temperature Synthesis andCharacterization of Nanocrystalline CdS, ZnS, and CdxZn1-xS. Chemistry ofMaterials,2002,14(7):3028-3033.
    [208] Murray C, Kagan C and Bawendi M. Synthesis and characterization ofmonodisperse nanocrystals and close-packed nanocrystal assemblies. AnnualReview of Materials Science,2000,30(1):545-610.
    [209] Huang Q, Zeng D, Li H, et al. Room temperature formaldehyde sensors withenhanced performance, fast response and recovery based on zinc oxide quantumdots/graphene nanocomposites. Nanoscale,2012,4(18):5651-5658.
    [210] Li N, Liu G, Zhen C, et al. Battery Performance and Photocatalytic Activity ofMesoporous Anatase TiO2Nanospheres/Graphene Composites by Template-FreeSelf-Assembly. Advanced Functional Materials,2011,21(9):1717-1722.
    [211] Liu G, Yang H G, Wang X, et al. Enhanced Photoactivity of Oxygen-DeficientAnatase TiO2Sheets with Dominant {001} Facets. The Journal of PhysicalChemistry C,2009,113(52):21784-21788.
    [212] Malard L M, Pimenta M A, Dresselhaus G, et al. Raman spectroscopy in graphene.Physics Reports,2009,473(5-6):51-87.
    [213] Wu Z, Dong F, Zhao W, et al. The fabrication and characterization of novel carbondoped TiO2nanotubes, nanowires and nanorods with high visible lightphotocatalytic activity. Nanotechnology,2009,20(23):235701.
    [214] Zhang L and Koka R V. A study on the oxidation and carbon diffusion of TiC inalumina-titanium carbide ceramics using XPS and Raman spectroscopy. MaterialsChemistry and Physics,1998,57(1):23-32.
    [215] Jiang G, Lin Z, Chen C, et al. TiO2nanoparticles assembled on graphene oxidenanosheets with high photocatalytic activity for removal of pollutants. Carbon,2011,49(8):2693-2701
    [216] Liu G, Wang L, Yang H G, et al. Titania-based photocatalysts-crystal growth,doping and heterostructuring. Journal of Materials Chemistry,2010,20(5):831-843.
    [217] Sakthivel S and Kisch H. Daylight photocatalysis by carbon‐modified titaniumdioxide. Angewandte Chemie International Edition,2003,42(40):4908-4911.
    [218] Zhang Y, Tang Z, Fu X, et al. Engineering the Unique2D Mat of Graphene toAchieve Graphene-TiO2Nanocomposite for Photocatalytic SelectiveTransformation: What Advantage does Graphene Have over Its Forebear CarbonNanotube? ACS Nano,2011,5(9):7426-7435.
    [219] Wang Y, Shi R, Lin J, et al. Significant photocatalytic enhancement in methyleneblue degradation of TiO2photocatalysts via graphene-like carbon in situhybridization. Applied Catalysis B: Environmental,2010,100(1-2):179-183.
    [220] Liang Y, Wang H, Sanchez Casalongue H, et al. TiO2nanocrystals grown ongraphene as advanced photocatalytic hybrid materials. Nano Research,2010,3(10):701-705.
    [221] Zong X, Yan H, Wu G, et al. Enhancement of Photocatalytic H2Evolution on CdSby Loading MoS2as Cocatalyst under Visible Light Irradiation. Journal of theAmerican Chemical Society,2008,130(23):7176-7177.
    [222] Zhou J, Gu Y, Hu Y, et al. Gigantic enhancement in response and reset time of ZnOUV nanosensor by utilizing Schottky contact and surface functionalization. AppliedPhysics Letters,2009,94(19):191103.
    [223] Muraoka Y, Takubo N and Hiroi Z. Photoinduced conductivity in tin dioxide thinfilms. Journal of Applied Physics,2009,105(10):103702-103702-103707.
    [224] Tang Y, Lee C, Xu J, et al. Incorporation of Graphenes in Nanostructured TiO2Films via Molecular Grafting for Dye-Sensitized Solar Cell Application. ACS Nano,2010,4(6):3482-3488.
    [225] Gao E, Wang W, Shang M, et al. Synthesis and enhanced photocatalyticperformance of graphene-Bi2WO6composite. Physical Chemistry ChemicalPhysics,2011,13(7):2887-2893.
    [226] Adachi M, Sakamoto M, Jiu J, et al. Determination of parameters of electrontransport in dye-sensitized solar cells using electrochemical impedancespectroscopy. The Journal of Physical Chemistry B,2006,110(28):13872-13880.
    [227] Ng Y H, Iwase A, Bell N J, et al. Semiconductor/reduced graphene oxidenanocomposites derived from photocatalytic reactions. Catalysis Today,2011,164(1):353-357.
    [228] Qin J W, Cao M H, Li N, et al. Graphene-wrapped WO3nanoparticles withimproved performances in electrical conductivity and gas sensing properties.Journal of Materials Chemistry,2011,21(43):17167-17174.
    [229] An X Q, Yu J M C, Wang Y, et al. WO3nanorods/graphene nanocomposites forhigh-efficiency visible-light-driven photocatalysis and NO2gas sensing. Journal ofMaterials Chemistry,2012,22(17):8525-8531.
    [230] Srivastava S, Jain K, Singh V N, et al. Faster response of NO2sensing ingraphene-WO3nanocomposites. Nanotechnology,2012,23(20):205501
    [231] Mathew S, Joseph B, Sekhar B, et al. X-ray photoelectron and Raman spectroscopicstudies of MeV proton irradiated graphite. Nuclear Instruments and Methods inPhysics Research Section B: Beam Interactions with Materials and Atoms,2008,266(14):3241-3246.
    [232] Dresselhaus M S, Dresselhaus G and Hofmann M. Raman spectroscopy as a probeof graphene and carbon nanotubes. Philosophical Transactions of the Royal SocietyA: Mathematical, Physical and Engineering Sciences,2008,366(1863):231-236.
    [233] Obraztsova E A, Osadchy A V, Obraztsova E D, et al. Statistical analysis of atomicforce microscopy and Raman spectroscopy data for estimation of graphene layernumbers. physica status solidi (b),2008,245(10):2055-2059.
    [234] Pimenta M A, Dresselhaus G, Dresselhaus M S, et al. Studying disorder ingraphite-based systems by Raman spectroscopy. Physical Chemistry ChemicalPhysics,2007,9(11):1276-1291.
    [235] Raman G and Aharon G. Synthesis of WO3nanoparticles using a biopolymer as atemplate for electrocatalytic hydrogen evolution. Nanotechnology,2008,19(2):025702.
    [236] Ha J-H, Muralidharan P and Kim D K. Hydrothermal synthesis and characterizationof self-assembled h-WO3nanowires/nanorods using EDTA salts. Journal of Alloysand Compounds,2009,475(1-2):446-451.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700