纳米功能材料的组装与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米科学的发展,人们已经可以控制纳米材料的基本性质,而制成能适合某种实际应用的特殊功能材料。通过一定的组装技术对纳米材料进行再设计,从而使得原子或者分子按照自己的意愿进行排列,构筑出特殊的结构体系和花样,使其具有其他材料所没有的特殊优越性能。因此,我们尝试不同的制备方法分别合成了不同维数的纳米材料,为后期的组装提供原料基础;同时,利用不同的组装技术对材料进行组装,形成特定结构并进行光、电、磁等性能的研究。
     首先,我们分别合成不同维数的纳米材料包括:零维的量子点,一维的钛酸盐纳米晶须和纳米棒,准二维结构的纳米片,还实现了一维多壁碳纳米管的表面修饰。其具体内容包括以下几点:
     (1)利用溶胶-凝胶法制备出氧化锌量子点,通过透射电镜分析,量子点具有良好的单分散性,大小均一约为4nm。(2)分别利用超声过程中,浓硝酸和臭氧氧化,对多壁碳纳米管进行管帽开口和表面改性处理。分别讨论硝酸浓度、回流时间、以及反应温度、臭氧溶剂以及氧化时间对碳纳米管修饰效果的影响。用FT-IR光谱分析了碳纳米管的表面修饰;用Raman光谱和TEM分析碳纳米管的结构形貌。另外,分析了碳纳米管在离子液体中的分散性、溶解性;并用电导率的变化,分析了碳纳米管对离子液体导电性能的影响。(3)以偏钛酸为钛源与无水碳酸钾以不同比例混合,利用高温固相法分别成功制备出六钛酸钾纳米晶须与四钛酸钾纳米棒,并通过不同的后续水热反应考察了晶须和纳米棒的水解物相转化过程。利用XRD、SEM等测试手段表征了水热反应过程中的物相转化与形貌变化,考察了其产物中的TiO2成分的光催化性能,发现其中锐钛矿纳米TiO2具有优异的可见光光催化性能。(4)采用插层剥离工艺,制备出了准二维TiO2纳米片(TNS)、MnO2纳米片(MNS)及TiTaO5纳米片溶胶。同时,利用本组发明的新型螺杆研磨机进行对层状化合物的机械剥离,制备了高浓度、高质量的Ti5NbO14、TiNbO5和TiTaO5纳米片。通过XRD、SEM、AFM、TEM、PL等测试方法表征了纳米片结构形貌与性能,并测试其Zeta电位,判断纳米片的带电性,结果表明纳米片均具有很薄的厚度,表面带负电荷,在分散介质中能稳定存在,具有明显的丁达尔现象。
     其次,我们对表面修饰后的多壁碳纳米管进行组装与性能测试
     利用一步原位水解法合成了Fe3O4包覆的磁性碳纳米管复合物,它对外加磁场有很强的感应性,是一种新型的优良软磁材料。
     对碳纳米管引入有机官能团修饰来合成纳米复合材料已经成为一种发展趋势。通过自组装技术,利用功能化多壁碳纳米管表面的巯基与ZnO量子点进行共价偶合,形成一种具有特殊序列的ZnOQDs/f-MWCNT异质结构。通过这种强的Zn-S键锚接形成的ZnO/MWCNT异质结构,非常稳定。通过TEM、SEM、FT-IR、EDS、UV-Vis和PL等表征技术分析测试了量子点与碳纳米管的异质结构的形貌、稳定性、光学、电学和光电转换性能,发现这是一种独特异质结构的负温度系数半导体材料,具有荧光猝灭和吸收光谱红移等特点。并将其应用在染料敏化太阳能电池上,并测试开路电压和闭路电流。最后得出结论:碳纳米管的引入,能提高电子传输速率,增强光电流和光电压。
     最后,我们对准二维结构的纳米片进行了组装与性能研究
     (1)通过静电层层自组装(LBL)方法实现纳米片自组装,形成纳米片与高分子正电性聚合物的均质薄膜以及异质薄膜。用UV-Vis吸收光谱原位表征了组装层数与吸光度的线性关系,复合薄膜还拓展了吸光范围。纳米片的LBL组装是连续、均一、可控的,也证明了纳米片在分散体系中的稳定性和高分散性。另外,还研究了锂离子在薄膜中的嵌入和脱出,说明LBL薄膜层状结构在锂离子电池方面的应用前景。
     (2)利用静电沉积组装方法(ESD)将TiTaO5纳米片溶胶与稀土金属离子沉降,得到高效发绿光和红光的纳米片固体发光材料复合物。通过XRD、TEM、EDS、UV-Vis、PL等分析方法对复合物的结构、形貌、能量传递和荧光性能进行研究。复合物为层状结构,主要依靠带正电的稀土金属离子与带负电的纳米片的静电吸引沉积而成。将稀土离子的溶液换成盐酸溶液时,纳米片溶胶同样发生了ESD沉积,形成絮状沉淀。通过BET测试和光催化降解染料实验可以说明沉积纳米片具有大的比表面积和良好的光催化性能。
     (3)利用电泳沉积组装法(EPD),以铜片为负极时,纳米片可以在正极的ITO上进行富集沉积,形成结构规整、表面平滑的层状结构,可允许锂离子的嵌入和脱出,在锂电池方面具有很大的应用前景。在相同条件下,当以ITO为负极时,得到了很漂亮规整的“纳米玫瑰”修饰的电极。这些工作为纳米片修饰电极的结构设计提供了新的信息。
With the development of nanoscience and nanotechnology, the functional materials with special property can be prepared to meet a certain need. Based on the needed performance, the functional composite can also be designed to form a special structure through arranging the atoms, which make the new product have superior property. Therefore, the attempts have been made to synthesize different samples as the raw material for the further study. Meanwhile, via a assemblly technique, the hybrids are shaped with particular morphology and optical, electronic, photoelectric and magnetic property.
     First of all, we have successfully synthesize different material including:0-D Quantum dots (QDs),1-D titanate nanowhiskers(nanorods), the quasi 2-D nanosheet and nanofilm. At the same time, the opening and modifying of muti-walled carbon nanotubes (MWCNTs) also have been investigated. The details are given as follows:(1) The ZnO QDs have been fabricated trough a sol-gel method, which is about 4nm in size and can be individually dispersed in the solution. (2) Different opening and modifying methods of MWCNTs are studied and compared in this paper, for example the fluxed HNO3 or O3 under ultrasoundic condition. The influence of temperature, concentration and holding time on the BET value of MWCNTs is studied in details. At the same time,1M HNO3 or 1M CF3COOH is elected as reactant medium and catalysis to prompt the reaction with O3 and MWCNT. Compared with the traditional ccHNO3, O3 can not only open the caps of MWCNT, but also cut the MWCNT from the sidewall at room temperature. The surface structure of MWCNTs treated by different processes is analyzed by FT-IR. The texture of MWNTs is tested by BET and confirmed by TEM. UV-Vis is employed to detect the solubility of modified MWCNT in ionic solution (IL), and the enhanced conductivity of IL has been tested. (3)Stating from H2Ti03 and K2CO3 with different mole ratio, potassium hexatitanate(K2Ti6O13) nanowhiskers and potassium teteratitanate (K2Ti4O9) nanorods are directly synthesized by one-pot solid state reaction. The novel phase transformation and structure changes behavior are investigated under a facile different hydrothermal condition with acidic or basic system in a series of steps. Specially, the photocatalytic activity of nano-structured TiO2 products are examined by the decomposition of the indigo carmine solution. The results indicate the as-synthesized nanopaticles of anatase TiO2 shows good photocatalytic property under the irradiation of visible light, compared with commercial photocatalyzer of P25. (4) A conventional process to prepare the nanosheet include the following steps, the solid-state reaction, then protonic procedure for several days with daily refreshed acid and the exfoliation by tetrabutylammonium hydroxide (TBAOH) for 10 days. Via the above process, the TiO2 nanosheets (TNS), MnO2 nanosheet (MNS) and TiTaO5 nanosheets can also be synthesized. However, on the basis of the above analysis, the traditional whole process to obtain the nanosheets has some drawbacks, such as complication, uncontrollability, time cost. An easier, lower cost and environment-friendly way was urgently required to produce the nanosheets. Therefore, a facile, innovative mechanical cleavage process with strong shear have been considered to exfoliate the layered structures. Through the novel mechanical cleavage technology, Ti5NbO14, TiNbO5 and TiTaO5 nansosheets solution with good quality and higher concentration have been formed. A series of methods with XRD, SEM, AFM, TEM, PL depict the super thin thickness of nanosheet and the optical property. At the same time, the negative properties of the nanosheets have been confirmed by Zeta potential, and the nanosheet solution also showes good Tyndall light scattering phenomena.
     Secondly, we have investigate the self-assembly behavior and the related performance of modified MWCNT.
     The Fe3O4@MWCNT composite have been fabricated by one-step procedure, which have good soft magnetic property and can immediately move to the added magnet.
     In order to obtain the stable MWCNT heterostucture, the functional MWCNT can be obtained by covalent reaction has become a trend. In this paper, we report the synthesis of ZnO QDs and the functionalized MWCNTs (f-MWCNTs) hybrid through Zn-S covalent bridge link to enhance the stability and reliability of heterojunction structure even under rough condition. The TEM, SEM, FT-IR, EDS UV-Vis, and PL results give us a lot of information such as, the morphology, optical, electric and photoelectric conversion property. It has been found the composite is an semiconductor material, which shows the negative temperature coefficient resistance, the PL quenching phenomena and the red-shifted UV-Vis absorption. At the same time, the dye-sensized solar cells (DSSCs) based on the composite of multi-walled carbon nanotubes (MWCNTs) anchoring with two different semiconductor, namely titannate dioxide and zinc oxide are studied. The photocurrent and photovoltage output can be easily detected. An increase of the open-circuit voltage (Voc) and the short-circuit photocurrent (Isc) can be explained by the increased surface area of the film, the enhancement of transformation ratio of electron with the help of MWCNT.
     Lastly, we have investigated the self-assembly behavior and the related performance of different nanosheets.
     (1) The individual or complexed nanosheet films are designed by LBL technique, and UV-vis absorption spectroscopy was used to monitor the consecutive buildup of the film, and the complexed film can be facile to absorb the visible light. It can be deduced that the as-prepared nanosheets have dispersed well and rather stable in the TBAOH system. In addition, the adsorption of the film with Li+ well confirmes that the film is better electrode material.
     (2)Lamellar aggregates with high efficient green and red emission of the TiTaO5 nanosheets dopped with rare earth ions of Tb3+ or Eu3+ have been fabricated by flocculation of colloidal solution with electrostatic self-assembly deposition(ESD) technique. The as-obtained composites are analyzed by a range of methods including XRD, TEM, EDS, UV-Vis, PL to discuss the structure, morphology, the energy transfer and the photoluminescent property. The results indicate that the re-stacking of the nanosheets could form a uniform layered structure, which was assembly formed by electrostatic interaction between the negatively charged nanosheets and positively charged RE ions. When the HCl is taken part of rare earth ions, the nanosheet solution also have been re-stacked to form the wool-like precipitation. By analysis the BET vale and the degradation of dye solution as photocatalyzer, the experiment detect they have the bigger specific surface area and exhibit the better photocatalysis property.
     (3)Via an electrophoretic deposition method (EPD) technology, When a piece of copper is considered as the counter electrode, the transparent and smooth film consisted of naosheets can be casted on the ITO. The as-prepared film can be widely applied in Li battery. In addition, when the ITO was used under the same condition, the beautiful "nanorose" was loaded onto the ITO. In a word, these works might open a new door for the design of the electrode, which could be modified with this new nanosized sheet.
引文
[1]张立德,牟季美.纳米材料和纳米结构[M].科学出版社.2002.
    [2]石士考.纳米材料的特性及其应用[J].大学化学.2001,16,39.
    [3]李良训.纳米材料的特性及应用[J].金山油化纤.2000,1,7.
    [4]余江龙,张志东,王慧兰等.零维纳米材料的特性及研究现状川.辽林工程技术大学学报.1999,18,173.
    [5]朱屯,壬福明,王习东.国外纳米材料技术进展与应用[M].北京.化学工业出版社,2002.
    [6]翟华嶂,李建保,黄勇.纳米材料和纳米科技的进展,应用及产业化现状[J].材料工程.2002,11,43.
    [7]C.B. Murray, D.J. Norris, M.G. Bawendi, J.Am. Chem. Soc.1993,115,8706.
    [8]C.K. Eui, O. Atsuhiko, K. Kazunori, et al. Chem. Lett.2004,33,840.
    [9]D.V. Talapin, A.L. Rogach, A. Kornowski, et al. Nano Lett.2001,1,207.
    [10]Qu Lianhua, Peng Xiaogang. J.Am. Chem. Soc.2002,124,2049.
    [11]D.V. Talapin, A.L. Rogach, A. Kornowski, M. Haase, H. Weller. Nano. Lett. 2001,1,207.
    [12]D. Battaglia, X. Peng, Nano. Lett.2002,2,1027.
    [13]W.W Yu, J.C. Falkner, B.S. Shih, V.L. Colvin. Chem. Mater.2004,16,3318.
    [14]L.S. Li, N. Pradhan, Y. Wang, X. Peng. Nano. Lett.2004,4,2261.
    [16]J. Jasieniak, C. Bullen, Van. Embden, J. Mulvaney, P.J. Phys. Chem. B.2005, 109,20665.
    [15]Z. Deng, L. Cao, F. Tang, B.J. Zou, J. Phys. Chem. B.2005,109,16671.
    [16]S. Asokan, K. Krueger, A. Alkhawaldeh, A. Carreon, Z. Mu, V. Colvin, N. Mantzaris, M. Wong, Nanotech.2005,16,2000.
    [17]D.Wu, M.E. Kordesch, P.G. Van Patten, Chem. Mater.2005,17,6436.
    [18]孙宝全,徐咏蓝,陈德朴等,分析化学,2002,30,1130.
    [19]M.A. Hines, P.J. G. Sionnest,J. Phys. Chem.1996,100,468.
    [20]G.P. Mitchell, C.A. Mirkin, RL.J. Letsinger, J. Am. Chem. Soc.1999,121,8122.
    [21]M. Jr. Bruchez, M. Moronne, P.Gin, A.P Alivisatos, et al. Science.1998,281,
    2013.
    [22]B. Dubertret, P. Skourides, D.J. Norris, et al. Science.2002,298,1759.
    [23]L. Spanhel, M. Haase, H. Weller, A.J. Henglein,J. Am. Chem. Soc.1987,109, 5649.
    [24]N. Gaponik, D.V. Talapin, A.L. Rogach, K. Hoppe, E.V. Shevchenko, A. Kornowski, A. Eychmulller, H.J. Weller,J. Phys. Chem. B.2002,106,7177.
    [25]M.Y. Gao, S. Kirstein, H. Mohwald, A.L. Rogach, A. Kornowski, A. Eychmuller; H. Weller. J. Phys.Chem. B.1998,102,8360.
    [26]L. Li, H.F. Qian, N.H. Fang, J.C. Ren, Journal of Luminescence.2006,116,59.
    [27]H.F. Qian, C.Q. Dong, J.F. Weng, J.C. Ren, Small.2006.
    [28]H.B. Bao, Y.J. Gong, Z. Li, M.Y. Gao, Chem. Mater.2004,16,3853.
    [29]D.Weng, et al. Inter. Sci.2006,299,225.
    [30]H. Zhang, Z. Zhou, B. Yang, M.Y. Gao. J. Phys. Chem. B.2003,107,8.
    [31]A.L. Rogach, L. Katsikas, A. Kornowski, D. Su, A. Eychmuller, H. Weller. Phys. Chem.1996,100,1772.
    [32]M.Y. Gao, S. Kirstein, H. Mohwald, A.L. Rogach, A. Kornowski, A. Eychmuller; H. Weller. J. Phys. Chem. B.1998,102,8360.
    [33]M.Y. Gao, H. Zhang, B. Yang, Z. Zhou. J. Phys. Chem. B.2003,107,8.
    [34]N. Gaponik, D.V. Talapin, A.L. Rogach, et al. J. Phys. Chem. B.2002,106, 7177.
    [35]刘舒曼,徐征,S. Wageh, et al.光电子·激光.2003,4,46.
    [36]徐力,郭轶,杨文胜等.功能材料与器件学报.2003,9,2001.
    [37]N.Gaponik, D.V.Talapin, A.L. Rogach, K. Hoppe, E.V. Shevchenko, A. Kornowski, A. Eychmulller, H. Weller. J. Phys. Chem. B.2002,106,7177.
    [38]汪乐余,周运友,王伦等.高等学校化学学报.2003,24,612.
    [39]X. Peng, M.C. Schlamp, A.P. Alivisatos, et al. J. Am. Chem. Soc.1997,119, 7019.
    [40]B.Q. Sun, W.Z. Xie, G.S. Yi, et al. J. Immuno. Methods.2001,249,85.
    [41]B.O. Dabbousi, V.J. Rodriguez, M.C. Bawendi, et al. J. Phys. Chem. B.1997, 101,9463.
    [42]李军,袁航,白玉白等.高等学校化学学报.2003,24,1293.
    [43]R. Yang, Y.X. Yan, Y. Mu, W. Ji, X.W. Li, W.Q. Zou, Q. Fei, Q.H. Jin, J. Nanosci. Nanotechnol.2006,6,215.
    [44]W.Y. Mao, J. Guo, W.L. Yang, C.C. Wang, J. He, J.Y. Chen, Nanotech.2007,18, 485611.
    [45]H. Zhang, L. Wang, H. Xiong, L. Hu, B. Yang, W. Li, Adv. Mater.2003,15, 1712.
    [46]J. Guo, W.L. Yang, C.C. Wang, J. Phys. Chem. B.2005,109,17467.
    [47]D.V. Talapin, A.L. Rogach, E.V. Shevchenko, A. Kornowski, M. Haase, H.Weller, J. Am. Chem. Soc.2002,124,5782.
    [48]M. Tabizawa, S. Bandow, M. Yudasaka, et al. Appl. Phys. Lett,2000,326,251.
    [49]A.C. Dilon, P. A. Parilla, J.D. Alleman, et al. Chem. Phys. Lett,2000,316,13.
    [50]陈萍,张鸿斌,林国栋等.高等学校化学学报,1998,19,765.
    [51]X.M. Sun, X. Chen, Y.D. Li, Inorganic Chemistry.2002,41,4996.
    [52]Y.X. Zhou, C. Liu, M. He, et al. J Mater Sci,2008,43,155.
    [53]B. L. Wang, Q. Chen, R. H Wang, L. M, Peng, Chemical Physics Letters,2003, 376,726.
    [54]魏明,王春波,乃学瑛,李中,李武,盐湖研究.2004,12,48.
    []55]M. Wei, C.B. Wang, X.Y. Nai, Z. Li, W. Li, Journal of Sale Lake Science,2004, 12,48.
    [56]A.V Gorokhovsky, G.J.I. Escalante, M.T. Sanchez, C. Gutierrez, Journal of the European Ceramic Society.2004,24,3541.
    [57]G.L. Li, Wang G H, J.M. Hong, Materials Research Bulletin,1999,34,2341.
    [58]Y.M. Liu, T. Qi, Y. Zhang, Mater. Res. Bull.2007,42,40.
    [59]J.W. Zhang, Y.A. Wang, J.J. Yang, J.M Chen, Z.J. Zhang, Materials Letters,2006, 60,3015.
    [60]龚安华,孙岳玲,化学工程师.2008,15,41.
    [61]C.C. Kok, L.C. Ghee, K.P. Chee, H.V. Li, H.S. Chorng, J.Y. Lin, J. Phys. Chem. C. 2007,111,9136.
    [62]H.X. Niua, Q. Yanga, F. Yu, K.B. Tanga, W. Zhou, Chinese journal of chemical physics.2006,19,4380.
    [63]李长江,尹衍升,人工晶体学报.2009,38,230.
    [64]T. Kida. Langmuir.2008,24,7648.
    [65]H. Wei, M.Y. Gao, Crystal Growth and Design.2008,8,1023.
    [66]H.S. Nalwa. Hand book of nano structured material and nano technology, Chap.1. Academic Press. SanDiego.1999.
    [67]何天白,胡汉杰,功能高分子与新技术.北京,化学工业出版社,2001.
    [68]D. Li, J. Yang, L.L. Zhang, et al. J. Mater. Chem.2002,12,1796.
    [69]J. Yang, Dan Li, X. Wang, et al. J. Mater. Sci.2003,38,2907.
    [70]J. Yang, D. Li, H.Z. Wang, et al. Mater. Lett.2001,50,230.
    [71]上官文峰.无机化学学报.2001,17,619.
    [72]郭宪吉,侯文华等.科学通报.2002,47,1681.
    [73]H. Borchert, M. Baerns. J. Cata.1997,168,315.
    [74]T. Matsuda. J.Cata.1997,168,26.
    [75]R. Lago, G. Bini, et al. J. Cata.1997,167,198.
    [76]H.G. Kim,et al. Chem. Commun.1999,1077.
    [77]T. Sato, Y. Yamamoto, Y. Fujishiro, et al. Chem Soc Faraday Trans.1996,92, 5089.
    [78]T. Sato, K. Masaki, K. Sato, et al. J. Chem. Tech. Biotechnol.1996,67,339.
    [79]T. Sato, K. Masaki, K. Sato, et al. Chem. Tech. Biotechnol.1996,67,345.
    [80]J.H. Wu, J.M. Lin, S. Yin, et al. J. Mater. Chem.2001,11,3343.
    [81]郭宪吉,侯文华等.无机化学学报.2003,19B,273.
    [82]张莉莉,陆路德,化工新型材料.2004,32,1.
    [83]M. Gateshki, S.J. Hwang, D.H. Park, etal. Chem. Mater.2004,16,5153
    [84]Y. Ebina, T. Sasaki, M.Watanabe, Solid State Ionics.2002,151,177.
    [85]Z. H. Liu, K. Ooi, H. Kanoh,et al. Langmuir,2000,16,4154.
    [86]G. Alberti, S. Cavalaglio, C. Dionigi, et al. Langmuir,2000,16,7663.
    [87]E. Benavente, M.A. Santaana, F. Mendizbal, et al. Chem. Rev.2002,224,87.
    [88]Z.H. Liu, Z.M. Wang, X.J. Yang, et al. Langmuir,2002,18,4926.
    [89]T. hibino, Chem. Mater.2004,16,5482.
    [90]P.M. Adachi, C. Forano, J.P. Besse, Chem. Commun,2000,91.
    [91]R.E. Peierls. Ann I H Poincare.1935,5,177.
    [92]K.S.Novoselov, A.K. Geim, S.V. Morozov, et al. Science.2004,306,666.
    [93]G.H. Chen, D.J. Wu, W.G. Weng, et al. Carbon.2003,41,619.
    [94]G.H. Chen, D.J. Wu, W.G. Weng, et al. Carbon.2004,42,753.
    [95]B.C. Brodie, Ann Chim Phys.1860,59,466.
    [96]W. Hummers, R. Offeman, J. Am. Chem. Soc.1958,80,1339.
    [97]L. Staudenmaier. Ber Dt sch Chem Ges.1898,31,1481.
    [98]张志煜等.纳米技术与纳米材料.2001,48
    [99]张立德等.纳米材料.2000,40.
    [100]李强等.96中国材料研讨会.1996,134.
    [101]T. Dannhauser, M. Niel, et al. J. Phys Chem.1986,90,6074
    [102]L. Spanhel, M.A. Anderson J. Am. Chem. Soc.1991,113,2826.
    [103]M.K. Nazeeruddin, A. Kay, I. Rodicio, R.H. Baker, E. Miiller, P. Liska, N.
    Vlachopoulos, M. Gratzel. J. Am. Chem. Soc.1993,115,6382.
    [104]B. Oregan, M. Gratzel. Nature.1991,32,407.
    [105]J. M. Nugent, K. S. V. Santhanam, A. Rubio, P. M. Ajayan, Nano. Lett.2001,1, 87.
    [106]I. Bedja, S. Hotehandani, P.V. Kamat, J.Phys.Chem.1994,98,4133.
    [107]G. Hodes, D.J. Howe, L. Peter, J. Eleetrochem. Sne.1992,139,3136.
    [108]P. HoHer, H.J. Welhr, Phy&Chem.1995,99,14096.
    [109]K. M. Lee, C. W. Hu, H. W. Chen, K. ChuanHo, Solar Energy Materials & Solar Cells.2008,92,1628.
    [110]S. R. Jang, R. Vittal, K. J. Kim, Langm.2004,20,9807.
    [111]T.Y. Lee, P.S. Alegaonkar, J. B. Yoo, Thin Solid Films.2007,515,5131.
    [112]S. Kim, S. R. Jang, R. Vittal, J. Lee, et al. J. Appl. Electrochem.2006,36,1433.
    [113]E. Ramasamy, W. J. Lee, D. Y. Lee, et al. Electrochem.Comm.2008,10,1087.
    [114]A. J. Miller, R. A. Hatton, S. R. P. Silva, App. Phy. Lett.2006,89,133117.
    [115]H.T. Yu, X. Quan, S. Chen, H.M. Zhao, J. Phys. Chem. C.2007,111,12987.
    [116]A. Zaban, O.I. Micic, B.A. Gregg, et al. Langmuir.1998,14,3153.
    [117]R. Plass, S. Pelet, J. Krueger, et al. J. Phys. Chem. B.2002,106,7578.
    [118]M. Gratzel, J. Photochem. Photobio. C.2003,4,145.
    [119]M. Gratzel, J. Photochem. Photobio. A.2004,164,3.
    [120]奇云,科技导报.1992,10,28
    [121]唐新村,肖元化,王志敏,李连兴,等.专利号:200910303601,2009-11-18.
    [122]三星电子株式会社,专利号:03145424,2008-09-24.
    [123]M. Konum, H. Curtina, Phil Mag,1987, B55,377.
    [124]马学鸣,热处理.1998,3,13.
    [125]J.A. Cowen, B. Stlzman, et al. J. Appl. Phy.1987,61,3317.
    [126]R. Biinge, Y. Herrand, H. Gleiter. Suppl. Trans. Jpn. Inst. Met.1986,27,43.
    [127]阎明朗等,物理.1994,23,335.
    [128]罗雁波,云南冶金.2000,30,33.
    [129]Z.K. Zhang, Z.L. Cui, K.Z. Chen, et al, Chinese Science Bulletin.1997,42, 1535.
    [130]L. Lu, M. L. Sui, K. Lu, Science.2000,286,1463.
    [131]刘忆,刘卫华,訾树燕,王彦芳沈阳工业大学学报.2000,22,21.
    [132]R.Z. Ma, B.Q. Wei, J. Mater. Sci.2006,33,5243.
    [133]白克江,王伟平,东营信义汽车配件有限公司科研所。
    [134]R.L. Coble, J. Appl. Phys,1963,34,1679.
    [135]E.O. Hall, Proc. Phys. Soc. London.1951, B64,747.
    [136]杨鼎宜,孙伟,纳米材料的结构特征与特殊性能,材料导报,2003,17,7.
    [137]A.N. Goldstein, M.C. Echer, et al. Science,1992,256,1425.
    [138]丁星兆等,材料导报.1997,11,1.
    [139]S. Iijima, Nature.1991,354,56.
    [140]R. F. Service, Science.1998,281,940.
    [141]C.H. Kiang, J.S. Choi, T. Todd. J. Phys. Chem. B.1999,103,449.
    [142]J. Mittal, Chemical Physical Letters.2001,339,311.
    [143]Y.K. Chen, Chem. Commun.1996,21,2489.
    [150]W.A. De Heer, et al. Science.1995,270,1179.
    [151]W.A. De Heer, A. Chatelain, Science.2000,289,94.
    [152]马淳安,王晓娟,毛信表,李国华,陈松,汤俊艳,浙江工业大学学报.2007,35,177.
    [153]Z. Liu, et al. Langmuir.2000,16,3469.
    [154]G. Ke, W.C. Guan, C.Y. Tang, W.J. Guan, D.L. Zeng, F. Deng, Biomacromolecules.2007,8,322.
    [155]J. Liu, A.G. Rinzler, H. Dai, et al. Science.1998,280,1253.
    [156]J. Chen, et al.Science.1998,282,95.
    [157]Q. Chen, L. Dai, Appl. Phys. Lett.2000,76,2719.
    [158]Q. Chen, L. Dai, M. Gao, et al. J.Phy. Chem. B.2001,105,618.
    [159]陈小华,王健雄等.新型炭材料,2000,15,39.
    [160]J.M. Planeix, J.N. Coustel, et al. J. Am. Chem. Soc.1994,116,7935.
    [161]Y.H.Li, Material research Bulletin.2002,37,313.
    [162]D.L Shi, Appl. Phys. Lett.2002,245.
    [163]M.L.H. Green, S. Tsang, United patent 5346683 1994,9,13.
    [164]Y.K. Chen, Chem. Commum.1996,21,2489.
    [165]M. Gao, S.M. Huang, L.M. Dai, G. Wallace, R.P. Gao, Z.L. Wang, Angew. Chem.2000,39,3664.
    [166]E. V. Barrera, J. Sims, D. L. Callahan, J. Mater. Res.1994,9,2662.
    [167]马仁志,朱艳秋,魏秉庆,复合材料.1997,14,92.
    [168]E.V. Barrera, J. Sims, D.L. Callahan, J. Mater. Res.1995,10,366.
    [169]董树荣,张孝彬,摩擦学学学报.1999,19,1.
    [170]R. George, K.T. Kashyap, R. Rahul, S.Yamdagni, Scipta. Mater.2005,53,1159.
    [171]C.L. Xu, B.Q. Wei, R.Z. Ma, J. Liang, X.K. Ma, D.H. Wu, Carbon,1999,37, 855.
    [172]M. Tomita, Y. Saito, T. Hayashi, Jap. App. Phys.1993,32,1280.
    [173]李圣海,李四年,张友善,等,铸造设备研究.2003,1,9.
    [174]S.M. Raghuveer, S. Agrawal, N. Bishop, and G. Ramanath. Chem. Mater.2006, 18,1390.
    [175]B. Wu, J. Zhang, Z. Wei, S.M. Cai, and Z.F. Liu, J. Phys. Chem. B.2001,105, 5077.
    [176]邹勇,刘吉平,贵州化工.2004,29,1.
    [177]王曙光,李延辉等,高等学校化学学报.2003,24,95.
    [178]彭峰,姜靖雯,无机化学学报.2004,20,231.
    [179]李茂刚,成荣明,徐学诚,陈奕卫,李相美,化学通报,2006,12,36.
    [180]W. Chen, X.L. Pan, X.H. Bao,J. Am. Chem. Soc.2007,129,7421.
    [181]B.P. Jia, L. Gao, J. Phys. Chem. B.2007,111,5337.
    [182]孟涛,李玲,董风云,中北大学学报.2006,200.
    [183]Z.X. Jin, X. Sun,G.Q. Xu, Chem. Phys. Lett.2000,318,505.
    [184]L. Liu, T. Wang, J. Li, et al. Chem. Phys. Letters.2003,367,747.
    [185]A.V. Ellis, K. Vijayamohanan, R. Goswami, et al. Nano. Lett,2003,3,279.
    [186]S. Arai, M. Endo, N. Kaneko, Carbon.2004,42,641.
    [187]A. Hamwi, H. Alvergnat, S. Bonnamy, F.B. Guin, Carbon.1997,35,723.
    [188]S.A. Curen, P. M. Ajayan, W.J. Blau, Adv. Mater.1998,10,1091.
    [189]沈曾民,杨子芹,赵东林,陈晓红,郝宁,复合材料导报.2003,20,28.
    [190]W.Q. Han, A. Zettl, Nano. Lett.2003,3,681
    [191]J.H. Shi, Y.J. Qin, W. Wu, Carbon.2004,42,455.
    [192]J.M.Haremza, M.A. Hahn, T.D.Krauss, Nano. Lett.2002,2,1253.
    [193]S. Banerjee, S.S. Wong, J. Am. Chem. Soc.2003,125,10342
    [194]S.W. Lee,W.M. Sigmund, Chem. Commun.2003,780.
    [195]B. Xue, P. Chen, Q. Hong, et al. J. Mater. Chem.2001,11,2378.
    [196]T. Seeger, T. Kohler, T. Frauenheim, N.Grober. Chem. Commun,2002,34.
    [197]T. Sasaki, Y. Ebina, M. Watanabe, G. Decher, Chem. Commun.2000,2163.
    [198]N. Sakai, K. Fukuda, T. Shibata, Y. Ebina, K. Takada, T. Sasaki, J. Phys. Chem. B.2006,110,6198.
    [199]刘旸,氧化钛纳米片复合薄膜的制备及其性能研究,北京化工大学,硕士学位论文
    [200]H.J. Zheng,, F.Q. Tang, Y. Jia, L.Z. Wang, Y.C. Chen, M. Lim, L. Zhang, Carbon.2009,47,1534.
    [201]R.Z. Ma, T. Sasaki, Y. Bando, J. Am. Chem. Soc.2004,126.
    [202]Y. Lvov, B. Munge, O. Giraldo, I. Ichinose, S.L. Suib, J.F. Rusling, Langmuir. 2000,16,8850.
    [203]L.Z. Wang, Y.Omomo, N. Sakai, et al. Chem. Mater.2003,15,2873.
    [204]L.Z. Wang, T. Sasaki, Y. Ebina, et al. Chem. Mater.2002,14,4827.
    [205]H. Hata, S. Kubo, Y. Kobayashi, J. Am. Chem. Soc.2007,129,3064.
    [206]H. Tetsuka, H. Takashima, K. Ikegami, et al. Chem. Mater.2009,21,21.
    [207]J.H. Choy, H.C Lee, H. Jung, H. Kim, H. Boo, Chem. Mater.2002,14,2486.
    [208]Y. Matsumoto, U. Unal, Y. Kimura, S. Ohashi, K. Izawa, J. Phys. Chem. B. 2005,109,12748.
    [209]S. Ida, U. Unal, K. Izawa, O. Altunasoglu, C. Ogata, T. Inoue, K. Shimogawa, Y. Matsumoto, J. Phys. Chem. B.2006,110,23881.
    [210]N. Sukpirom, M.M. Lerner, Chem. Mater.2001,13,2179.
    [211]Q.G. Wang, Q.M. Gao, J.L.Shi, Langmuir.2004,20,10231.
    [212]L. Li, R. Z. Ma, et al. J. Am. Chem. Soc.2007,129,8000.
    [213]J.H. Choy, H.C. Lee, H. Jung, H. Kim, et al. Chem. Mater.2002,14,2486.
    [214]A. Takagaki, M. Sugisawa, D. Lu, J.N. Kondo, et al. J. Am. Chem. Soc.2003, 125,5479.
    [215]K. Domen, S. Hayashi, J. Phys. Chem. B.2004,108,11549.
    [216]Y. Ebina, T. Sasaki, M. Harada, M. Watanabe, Chem. Mater.2002,14,4390.
    [217]Y. Ebina, N. Sakai, T. Sasaki, J. Phys. Chem. B.2005,109,17212.
    [218]L.Z. Wang, K. Takada, A. Kajiyama, et al. Chem. Mater.2003,15,4513.
    [219]张道礼,胡云香,黎步银,周东祥,现代技术陶瓷.1999,4,22.
    [220]S.R. Bull, M.O. Guler, R.E. Bras, T.J. Meade, S.R. Stupp, Nano. Lett.2005,5, 2.
    [221]S.G. Jia, S. Banerjee, I.P. Herman, J. Phys. Chem. C.2008,112,162.
    [222]A.L. Rogach, N.A. Kotov, D.S. Koktysh, J.W. Ostrander, G.A. Ragoisha., Chem. Mater.2000,12,2721.
    [223]M.A. Islam, I.P. Herman, Appl. Phys. Lett.2002,80,3823.
    [224]R.R. Bhat, J. Genzer, B.N. Chaney, H.W. Sugg, A.L. Vinson, Nanotechnology. 2003,14,1145.
    [1]S. Iijima, T. Ichihashi, Nature.1993,363,603.
    [2]L. Dai, A.W.H. Mau, Adv. Mater.2001,13,899.
    [3]S. Niyogi, M.A.H. Hamon, B. Zhao, P. Bhowmik, Acc. Chem. Res.2002,35,1105.
    [4]P.G. Collins, Ph. Avouris. Sci. Am.2000,38.
    W.A. De. Heer, Martel. Phys. World.2000,49.
    [5]S.M. Bose, S. N. Behera, et al. Phys. B.2004,351,129.
    [6]B.W. Clare, D.L. Kepert. Inorganica. Chemical. Acta.2003,343,1.
    [7]S.C. Tsang, Y.K. Chen, et al. Nature.1994,372,159.
    [8]黄祥平,吕海峰,黄新堂,物理化学学报.2004,20,1242.
    [9]王敏炜,姚彦红,查少华,蒋柏泉,南昌大学学报.2006,28,1.
    [10]杨占红,李新海,李晶等,中南工业大学学报.1999,30,389.
    [11]J. Chen, M.A. Hamon, H. Hui, Science.1998,282,95.
    [12]王敏炜,彭年才,李凤仪,江西科学.2002,20,203.
    [13]K. Hernadi, A. Siska, L. Thien-Nga, et al. Solid State lonics.2001,141,203.
    [14]S.H. Jeong, O.J. Lee, K.H. Lee, Chem. Mater.2002,14,1859.
    [15]Z.Y. Chen, J. Kirk, et al. J. Phys. Chem. B.2006,110,11624.
    [16]N. Zhang, J. Sun, M. Zhang, J.L. Yu, Q, Li, Key Engineering Materials.2008, 368-372,644
    [17]吴小利,岳涛,陆荣荣,朱德彰,朱志远,光谱学与光谱分析.2005,25,1595.
    [18]D.B. Mawhinney, V. Baynebjim, A. Jybetsivam, J.T.Jr. Yates, J. Am. Chem. Soc. 2000,122,2383.
    [19]X.S. Zhou, T.B. Wu, K.L Ding, B.J. Hu, M.Q.Hou and B.X. Han, Chem. Commun.2010,46,386.
    [20]Y.X. Zhou, C. Liu, M. He, X.H. Lu, X. Feng, Z.H. Yang, J. Mater. Sci.2008,43, 155.
    [21]H.Y. Zhu, X.P. Gao, Y. Lan, D.Y. Song, Y.X. Xi, J. C.Zhao, J. Am. Chem. Soc. 2004,126,8380.
    [22]R. Armstrong, G. Armstrong, J.Canales, P.G.Bruce, Angew. Chem., Int. Ed., 2004,43,22.
    [23]R. Armstrong, G. Armstrong, J. Canales, R. Garsia, P.G.Bruce, Adv. Mater.,2005, 17,862.
    [24]G. Armstrong, A.R. Armstron, G. J. Canale, P.G. Bruce, Chem. Commun.2005, 2454.
    [25]Z. Bao, X. Feng, Z.H. Yang, L.M. Shen, X.H. Lu, Environ Sci Technol.,2004,38, 2729.
    [26]S.J. Ramirez, E.Djurado, P. Fabry, J. Eur. Ceram. Soc.2004,24,2477.
    [27]S.C. Tjong, Y.Z. Meng, Polym.1998,39,5461.
    [28]J.R. Li, Z.L.Tang, Z.T. Zhang, Chem. Phys. Lett.2006,418,506.
    [29]J.R. Li, Z.L.Tang, Z.T. Zhang, Chem. Mater.2005,17,5848.
    [30]B.L.Wang, Q. Chen, J. Hu, Li H., Hu Y. F., Peng L. M, Chem. Phys. Lett.2005, 406,95.
    [31]冯新,吕家桢,陆小华,等.复合材料学报,1999,16,17.
    胡恒瑶,古宏晨、程存康,徐宏,中国有色金属学报.2004,14,363.
    [32]X.M. Sun, X. Chen, Y.D. Li, Inorganic Chemistry.2002,41,4996.
    [33]Y.X. Zhou, C. Liu, M. He, et al. J. Mater. Sci.,2008,43,155.
    [34]B.L. Wang, Q. Chen, R. H Wang, L. M, Peng, Chemical Physics Letters,2003, 376,726.
    [35]M. Wei, C.B. Wang, X.Y. Nai, Z. Li, W. Li, Journal of Sale Lake Science,2004, 12,48.
    [36]A.V. Gorokhovsky, G.J. Escalante I, M.T. Sanchez, C. Gutierrez, Journal of the European Ceramic Society.2004,24,3541.
    [37]G.L. Li, G.H. Wang, J.M. Hong, Materials Research Bulletin,1999,34,2341.
    [38]Y.M. Liu, T. Qi, Y. Zhang, Mater. Res. Bull.2007,42,40.
    [39]J.W. Zhang, Y.A. Wang, J.J. Yang, J.M Chen, Z.J. Zhang, Materials Letters.2006, 60,3015.
    [40]T.Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir.1998,14, 3160.
    [41]Q. Chen, W.Z. Zhou, G.H. Du, L.M. Peng, Adv. Mater.2002,14,1208.
    [42]X.D. Meng, D.Z. Wang, J.H. Liu, S.Y. Zhang, Mater. Res. Bull.2004,39,2163.
    [43]H.G. Yu, J.G. Yu, B. Cheng, M.H. Zhou, J. Solid State Chem.2006,179,349.
    [44]Y. Zhu, J.Wang, X.H. Lu, et al. Chinese J. Chem. Eng.2003,11,170.
    [45]J.W. Xie, X.H. Lu,Y. Zhu, C. Liu, N.Z. Bao, X. Feng, J. Mater. Sci.2003,38, 3641.
    [46]T. Endo, H. Nagayama, T. Sato, M. Shimada, J. Mater. Sci.1998,23,694.
    [47]C.T. Lee, M. H. Um, H. Kumazawa, J. Am. Ceram. Soc.2000,83,1098.
    [48]M. Tournoux, R. Marchand, L. Brohan, Prog. Solid. State. Chem.1986,17,33.
    [49]T.P. Feist, P.K. Davies, J. Solid. State. Chem.1992,101,275.
    [50]H. Harada, Y. Kudoh, Y. Inoue, H. Shima, J. Ceram. Soc. Jpn.1995,103,155.
    [51]Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater.2003,15,353.
    [52]W. Wang, B.H. Gu, L.Y. Liang, W.A. Hamilton, D.J. Wesolowski, J. Phys. Chem. B.2004,108,14789.
    [53]W.J. Li, E.W. Shi, Z.W. Yin, J. Crystal Growth.2000,208,546.
    [54]Y.F. Gao, M. Nagai, W.S. Seo, K. Koumoto, Langmuir.2007,23,4712.
    [55]A. Larbot, I. Laaziz, J. Marignan, J.F Quinson, J. Non Cryst. Solids.1992,147, 157.
    [56]T. Yamaguchi, T. Ji., K. Tanabe, J. Phys. Chem. 1986,90,3148.
    [57]Q.Yang, C. Xie, Z. Xu, Z. Gao, Y. Du, J. Phys. Chem.2005,109,5554.
    [58]R.Dominko, L.Dupont, M. Gaber, J. Jamnik, E. Baudrin, Journal of Power Sources.2007,174 1172.
    [59]J.R. Li, Z.L. Tang, and Z.T. Zhang, Chem. Mater.2005,17,5848.
    [60]J.R. Li, Z.L. Tang, and Z.T. Zhang, Chem.l Physics Letters.2006,418,506.
    [61]钱清华,柏扬,周雪锋,等.无机材料学报,2007,22,67.
    [62]年季强,俞斌,王海,等.硅酸盐通报,2008,27,606.
    [63]景晓明,卢佳美,马晨,等.西南民族大学学报(科学版),2008,34,540.
    [64]王昕,南京工业大学硕士学位论文,2005.
    [65]Y. Masaru, S. Tsugio, Solid State Ionics,2002,151,371.
    [66]谭砂砾,刘廷礼,亓宏文,等.硅酸盐通报.2005,24,267.
    [67]S.R Zheng, D.Q. Yin, W. Miao, et al. J. Photochem. Photobio. A:Chem.1998, 117,105.
    [68]T. Sasaki, M. Watanabe, Y. Komatsu, et al. Inorg. Chem. 1985,24,2265.
    [69]S. Yin, Y. Uchida, M. Fujishiro, et al. J. Mater. Chem. 1999,9,1191.
    [70]Y. Shu, S. Tsugio, Ind. Eng. Chem. Res.2000,39,4526.
    [71]T. Zaremba, A.S. Hadry, J. Mater. Sci.2004,39,4561.
    [72]N.Z. Bao, X.H. Lu, X.Y. Ji, et al. Fluid Phase Equilibria.2002,193,229.
    [73]何明,冯新,陆小华,等.南京工业大学学报.2003,25,27.
    [74]陈金民,汪奇林,黄志良,等.武汉工程大学学报.2007,29,54.
    [75]钱清华,陆小华,连云港职业技术学院,2007,20,10.
    [76]王福平,姜兆华,宋英,等.硅酸盐学报,1999,27,471.
    [77]许可,吕德义,葛忠华,周春晖.工业新型材料.2005,33,56.
    [78]杨娟,江苏大学学报(自然科学版).2003,24,53.
    [79]T. Hibino, W. Jones, J. Mater. Chem.2001,11,1321.
    [80]Y. Omomo, T. Sasaki, L.Z. Wang, et al. J. Am. Chem. Soc.2003,125,3568.
    [81]R.Z.Ma, T. Sasaki, Y. Bando, J. Am. Chem. Soc.2004,126,10382.
    [82]A.J. Jacobson, Mater. Sci. Forum.1994,152,1.
    [83]A.J. Jacobson, A.J. Alberti, G.T. Bein, Eds. Science.1996,7,315.
    [84]T. Sasaki, M. Watanabe, J. Am. Chem. Soc.1998,120,4682.
    [85]N. Sakai, Y. Ebina, K. Takada, T. Sasaki, J. Am. Chem. Soc.2004,126,5851.
    [86]M. Osada, Y. Ebina, K. Takada, T. Sasaki, Adv. Mater.2006,18,295.
    [87]K. Saruko, H. Sato, T. Kogure, T. Wakayama, M. Itake, K. Akatsuka, M. Haga, T.
    Sasaki, A Yalmagishi, Langmuir.2006,22,10066.
    [88]T. Sasaki, S. Nakano, S. Yamachi, M. Watanabe, Chem. Mater.1997,9,602.
    [89]N. Sakai, K. Fukuda, T. Shibata, Y. Ebina, K. Takada, T.Sasaki, Phys. Chem. B. 2006,11,6198.
    [90]T. Sasaki, M. Watanabe, J. Phys. Chem. B.1997,101,10159.
    [91]T. Sasaki, Y. Ebina, Y. Kitami, M. Watanabe, J. Phys. Chem. B.2001,105,6116.
    [92]C.C. Wang, J.Y. Ying, Chem. Mater.1999,11,3113.
    [93]K. Fukuda, T. Sasaki, M. Watanabe, I. Nakai, K. Inaba, K. Omote, Cryst. Growth. Des.2003,3,281.
    [94]K. Fukuda, Y. Ebina, T. Shibata, T. Aizawa, I. Nakai, T. Sasaki, J. Am. Chem. Soc.2007,129,202.
    [95]T. Tanaka, Y. Ebina, K. Takada, K. Kurashima, T. Sasaki, Chem. Mater.2003,15, 3564.
    [96]R.Z. Ma, Y. Bando, T. Sasaki, J. Phys. Chem. B.2004,108,2115.
    [97]R. Abe, K. Shinohara, A. Tanaka, M. Hara, J. N. Kondo, K. Domen, Chem. Mater. 1997,9,2179.
    [98]R. Abe, K. Shinohara, A. Tanaka, M. Hara, J. N. Kondo, K. Domen, Chem. Mater. 1998,10,329.
    [99]M. Kaschak, J. Lean, C. Waraksa, G. Saupe, H. Usami, T. E. Mallouk, J. Am. Chem. Soc.1999,121,3435.
    [100]G.B. Saupe, C.C. Waraksa, H.N. Kim, Y.J. Han, D.M. Kasachak, D.M. Skinner, T.E. Mallouk, Chem. Mater.2000,12,1556.
    [101]R.E. Schaak, T.E. Mallouk, Chem. Mater.2000,12,3427.
    [102]Y.S. Han, I. Park, J.H. Choy, J. Mater. Chem.2001,11,1277.
    [103]T. Sasaki, M. Watanabe, J. Phys. Chem. B.1997,10,10159.
    [1]C. Tsang, Y.K. Chen, P.J.F. Harris, M.L.H. Green,1994,372,159.
    [2]Rahul Sen, A. Govindaraj, C. N. R. Rao, Chem. Mater.1997,9,2078.
    [3]C. Mariane, M.M. Schnitzler, Chem. Phy. Lett.2003,381,541.
    [4]H.Q. Cao, M.F. Zhu, Y.G. Li, Journal of Solid State Chemistry.2006,179,1208.
    [5]曹慧群,魏波,梁讯.开发应用.2008,7,37.
    [6]李茂刚,成荣明,徐学诚等,化学通报2006,1,36.
    [7]彭峰,姜靖雯,王红娟等,无机化学学报.2004,20,231.
    [8]M. Aslam, A.E. Schultz, T. Sun, M.Thomas, P.V. Dravid, Crystal Growth and Design.2007,7,471.
    [9]B.P. Jia, L. Gao, J. Sun, Carbon.2007,45,1476.
    [10]丁冬,碳纳米管载体复合材料的制备及其电磁特性研究.硕士学位论文.2009.
    [11]吴小利,岳涛,陆荣荣,等,光谱学与光谱分析.2005,25,1595.
    [12]S. Iijima, Nature.1991,354,56.
    [13]T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber, Nature.1998,391,62.
    [14]J.W.G. Wildoer, L.C. Venema, A.G. Rinzler, et al. Nature.1998,391,59.
    [15]N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett.1992,68,1579.
    [16]R. Martel, T. Schmidt, H.R. Shea, T. Hertel, P.h. Avourisa, Appl. Phys. Lett. 1998,73,2447.
    [17]J.W. Jang, D.K. Lee, C.E. Lee, T.J. Lee, C.J. Lee, S.J. Noh, Solid. State. Comm. 2002,122,619.
    [18]D. Tekleab, R. Czerw, D.L. Carroll, Appl. Phys. Lett.2000,76,3594.
    [19]J.M. Haremza, M.A. Hahn, T.D. Krauss, Nano. Lett.2002,2,1253.
    [20]S. Banerjee, S.S. Wong, Nano. Lett.2002,2,195.
    [21]J. Du, L. Fu, Z.M. Liu, B.X. Han, Z.H. Li, Y.Q. Liu, et al. J. Phys. Chem. B.2005, 109,12772.
    [22]S. Ravindran, S. Chaudhary, B. Colburn, et al. Nano. Lett.2003,3,447.
    [23]M. Grzelczak, M.A. Correa-Duarte, V. Salgueirino-Maceira, et al. Adv Mater. 2006,18,415.
    [24]S. Banerjee, S.S. Wong, Adv. Mater.2004,16,34.
    [25]A.M. Rao, J. Chen, E. Richter, U. Schlecht, P.C. Eklund, R.C. Haddon, Phys. Rev. Lett.2001,86,3895.
    [26]S. Ravindran, K.N. Bozhilov, C.S. Ozkan, Carbon.2004,42,1537.
    [27]J. Goldberger, D.J. Sirbuly, M. Law, P. Yang, Phys. Chem. B.2005,109,9.
    [28]Q.H. Li, Y.X. Liang, Q. Wan, T.H. Wang, Appl. Phys. Lett.2004,85,6389.
    [29]S.H. Jo, D. Banerjee, Z.F. Ren, Appl. Phys. Lett.2004,85,1407.
    [30]Y.W. Zhu, H.I. Elim, Y.L. Foo, et al. Adv. Mater.2006,18,587.
    [31]L.Q. Jiang, L. Gao, Mater Chem. Phy.2005,91,313.
    [32]J.W. Liu, X.J. Li, L.M. Dai, Adv. Mater.2005,18,1740.
    [33]L. Spanhel, M.A. Anderson, J. Am. Chem. Soc.1991,113,2826.
    [34]K. Xiao, Y. Liu, P.G Hu, F.L. Yu, Appl. Phys. Lett.2003,83,4823.
    [35]X.R. Zhang, D.P. Cao, J.F. Chen, J. Phys. Chem. B.2003,107,4942.
    [36]M. Holzinger, O. Vostrowsky, A. Hirsch, et al. Chem. Int. Ed.2001,40,4002.
    [37]V. Georgakilas, K. Kordatos, M. Prato, et al. J. Am. Chem. Soc.2002,124,760.
    [38]刘粤惠,刘平安.[M]X射线衍射分析原理与应用.2003.
    [39]刘守新,刘鸿.[M]光催化及光电催化基础与应用.2006
    [40]万淼.硕士论文.华中师范大学2005.
    [41]J.G. Yu, H.G. Yu, B. Cheng, et al. J. Phys. Chem. B.2003,107,13871.
    [42]F. Vietmeyer, B. Seger, P.V. Kamat. Adv. Mater.2007,19,2935.
    [43]V. Subramanian, E.E. Wolf, P.V. Kamat, J. Phys. Chem. B.2003,107,7479.
    [44]K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade. J, Appl. Phys.1996,79,7983.
    [45]H.C. Choi, M. Shim, S. Bangsaruntip, H. Dai, J. Am. Chem. Soc.2002,124, 9058.
    [46]X. Zu, X.D. Bai, E.G Wang, Z.L. Wang, Appl. Phys. Lett.2005,87,163106.
    [47]J.A. Misewich, R. Martel, P. Avouris, J.C. Tsang, S. Heinze, J. Tersoff, Science. 2003,300,783.
    [48]Y. Huang, X.F. Duan, Y. Cui, C.M. Lieber, Nano. Lett.2002,2,101.
    [49]A. Kaiser, G. Dusberg, S. Roth, Phys. Rev. B.1998,57,1418.
    [50]张云怀,肖鹏,白玉峰,贺健,乔雷.材料导报.2007,21,124.
    [51]Y. Zhou, A. Gaur, S.H. Hur, Kocabas, M.A. Meitl, et al. Nano. Lett.2004,4, 2031.
    [52]E. Maria, Gracheva, V. Dmitriy, Melnikov, et al. Nano. Lett.2008,2,2349.
    [53]H.B. Juarez, C. Klinke, A. Kornowski, H. Weller, Nano. Lett.2007,7,3564.
    [54]S.P. Logvinenko, et al. Prib. Tekh. Eksp.1976,6,258.
    [55]S.P. Logvinenko, O. A. Rossoshanskii, Prib. Tekh. Eksp.1984,3,223.
    [56]张士晶.ZnO基稀释磁性半导体的制备和性能研究.吉林大学硕士学位论文.
    [57]胡陈果,叶翠兰,陈杨,重庆大学学报(自然科学版).2005,28,112.
    [58]A.J. McEvoy, M.K. Nazeeruddin, G. Rothenberger, M. Gratzel, Chem. Soc. Proc. 2001,10,69.
    [59]B. Oregan, M. Grzel, Nature (Lond.) 1991,353,737.
    [60]M.K. Nazeeruddin, A. Kay, I. Rodicio, R.H. Baker, E. Miiller, P. Liska, N. Vlachopoulos, M. Gratzel, J. Am. Chem. Soc.1993,115,6382.
    [61]H. Lindstrom, A. Holmberg, E. Magnusson, S.E. Lindquist, L. Malmqvist, A. Hagfeldt, Nano. Lett.2001,1,97.
    [62]M. Okuya, K. Nakade, D. Osa, T. Nakano, G.R. Asoka Kumara, S. Kaneko, J. Photochem. Photobiol. A.2004,164,167.
    [63]W.J. Lee, D.Y. Lee, I.S. Kim, S.J. Jeong, J. S. Song, Trans. Electrical Electronic. Mater.2005,6,140.
    [64]J. M. Nugent, K. S. V. Santhanam, A. Rubio, P. M. Ajayan, Nano. Lett.2001,1, 87.
    [65]K. Sayama, H. Sugihara, H. Arakawa, Chem. Mater.1998,10,3825.
    [66]B. Oregan, M. Gratzel, Nature.1991,32,407.
    [67]M. Gratzel, J. Photochem. A. Photobio. Chem.2004,164,3.
    [68]I. Bedja, S. Hotehandani, P.V. Kamat, J.Phys.Chem.1994,98,4133.
    [69]G. Hodes, D.J. Howeh, L. Peter. J. Eleetrochem. Sne.1992,139,3136.
    [70]P. HoHer, H.J. Welhr, Phy&Chem.1995,99,14096.
    [71]P.E. De JoSh, D. Vanmaekelbergh, Phys.Rev.Left.1996,77,3427.
    [72]M. Law, L.E. Greene, P.D. Yang, et al. Nat. Mater.2005,4,455.
    [73]E.J. Hoeono, S. Fujihara, H.S. Zhou, et al. Adv. Mater.2005,17,2091.
    [74]J.B. Baxter, E.S. Aydil, Appl. Phys. Lett.2005,86,053114.
    [75]J.B. Baxter, E.S. Aydil, Sol. Energy Mater. Sol. CeUa.2005,90,607.
    [76]M. Guo, P. Dice, X.D. Wang, et al. J. Solid State Chem.2005,178,3210.
    [77]M. Guo, P. Diao, S.M. CBi, Appl. Surf. Sci.2005,249,71.
    [78]J. Cembrero, A. Elmanouni, B. Mari, et al. Thin Solid Film.2004,451/452,198.
    [79]C.E. Banks, R.G. Compton, Analyst.2006,131,15.
    [80]C.Y. Yen,Y. F. Lin, S. H. Liao, C. C. Weng, C. C. Huang, et al. Nanotech.2008, 19,375305.
    [81]E. Kymakis, I. Alexandou, G.A.J. Amaratunga, Synth. Met.2002,127,59.
    [13]I. Musa, M. Baxendale, G.A.J. Amaratunga, W. Eccleston, Synth. Met.1999,102, 1250.
    [82]R. Haggenmueller, H.H. Gommans, A.G. Rinzler, et al. Chem. Phys. Lett.2000, 330,219
    [83]E. Flahaut, A. Peigney, Ch. Laurent, et al. Acta Mater.2000,48,3803.
    [84]H. Ago, K. Petrisch, M.S.P. Shaffer, A.H. Windle, et al. Adv. Mater.1999,11, 1281.
    [85]A.J. Miller, R. A. Hatton, S. R. P. Silva, App. Phy. Lett.2006,89,133117.
    [86]H.T. Yu, X. Quan, S. Chen, H.M. Zhao, J. Phys. Chem. C.2007,111,12987.
    [87]K.M. Lee, C. W. Hu, H. W. Chen, K. ChuanHo, Solar Energy Materials & Solar Cells.2008,92,1628.
    [88]S. R. Jang, R. Vittal, K. J. Kim, Langm.2004,20,9807.
    [89]T.Y. Lee, P.S. Alegaonkar, J. B. Yoo, Thin Solid Films.2007,515,5131.
    [90]S. Kim, S. R. Jang, R. Vittal, J. Lee, et al. J. Appl. Electrochem.2006,36,1433.
    [91]E. Ramasamy, W. J. Lee, D. Y. Lee, et al. Electrochem.Comm.2008,10,1087.
    [92]X.Z. Li, F.B. Li, C.L. Yang, W.K. Ge. J. Photochem. Photobiol. A. Chem.2001, 141,209.
    [93]H. Tang, K. Prasad, R. Sanjines, et al. J. Appl. Phys.1994,75,2042.
    [94]杨红军,徐卫林,沈小林.武汉科技学院学报.2007,20,153.
    [95]贾正东,滕月莉,潘孝仁,华东理工大学学报.1999,25,125.
    [1]J.H. He, I. Ichinose, T. Kunitake, A.Nakao, Y. Shiraishi, N.Toshima, J. Am. Chem. Soc.2003,125,11034.
    [2]J. H.He, I. Ichinose, S. Fujikawa, T. Kunitake, A. Nakao, Chem. Mater.2002,14, 3493.
    [3]J. F.Hund, M. F. Bertino, G. H. Zhang, C. Sotiriou-Leventis, et al. J. Phys. Chem. B 2003,107,465.
    [4]V. Hornebecq, M. Antonietti, T. Cardinal, M.Treguer-Delapierre, Chem. Mater. 2003,15,1993.
    [5]M. Klare, J. Scheen, K. Vogelsang, Chemosphere 2000,41,353.
    [6]S. Horikoshi, N. Watanabe, M. Mukae, H. Hidaka, New J. Chem. 2001,25,999.
    [7]T. Sasaki, M.J.Watanabe, Phys. Chem. B.1997,101,10159.
    [8]H. Nakano, T.Mitsuoka, M. Harada, et al. Angew. Chem. Int. Ed.2006,45,6303.
    [9]S. Ida, C. Ogata, U. Unal, et al. J. Am. Chem. Soc,2007,129,8956.
    [10]T.C. Ozawa, K.Fukuda, K. Akatsuka, et al. Chem. Mater.2007,19 6575-6580.
    [11]T.C. Ozawa, K. Fukuda, K. Akatsuka, et al. J. Phys. Chem. C,2008,112,1312.
    [12]S. Ida, C. Ogata, M. Eguchi, et al. J. Am. Chem. Soc,2008,130,7052.
    [13]H. Xin, R. Ma, L.Wang, et al. Appl. Phys. Lett.2004,85,4187.
    [14]H. Xin, Y. Ebina, R. Ma, et al. J. Phys. Chem. B,2006,110,9863.
    [15]T.C. Ozawa, K. Fukuda, K. Akt asuka, et al. J. Phys. Chem. C 2009,113,8735.
    [16]T. C. Ozawa, K. Fukuda, K. Akt asuka, et al. J. Phys. Chem. C 2008,112,17115.
    [17]Y. Matsumoto, U. Unal, Y. Kimura, J. Phys. Chem. B.2005,109,12748.
    [18]S. Ida, U. Unal, K. Izawa, et al. J. Phys. Chem. B.2006,110,23881.
    [19]S. Ida, K. Araki, U. Unal, et al. Chem. Commun.2006,3619.
    [20]L.H. Brixner, Mater. Chem. Phys.1987,16,277.
    [21]徐舒瑢、苏勉曾主编,发光学与发光材料化学工业出版社,材料科学与工程出版中心,北京,2004.
    [22]A. Takagaki, T. Yoshida, D. Lu, N. J. Kondo,M. Hara, K. Domen, S. Hayashi, J. Phys. Chem. B.2004,108,11549.
    [23]F. Kooli, T. Sasaki, and M. Watanabe, Chem. Commun. (Cambridge) 1999,211.
    [24]T. Sasaki, Y. Ebina, T. Tanaka, M. Harada, M. Watanabe, and G. Decher, Chem. Mater.2001,13,4661.
    [25]T. Sasaki, Y. Ebina, Y. Kitami, M. Watanabe, T. Oikawa, J. Phys. Chem. B 2001, 105,6116.
    [26]K. Fukuda, Y. Ebina, T. Shibata, T. Aizawa, I. Nakai, T. Sasaki, J. Am. Chem. Soc.2007,129,202.
    [27]Y. Omomo, T. Sasaki, L. Wang, M. Watanabe, J. Am. Chem. Soc.,2003,125, 3568.
    [28]R. Ma, Z. Liu, L. Li, N. Iyi, T. Sasaki, J. Mater. Chem.2006,16 3809-3813.
    [29]Z. Liu, R. Ma, M. Osada, N. Iyi, Y. Ebina, K. Takada, T.Sasaki, J. Am. Chem. Soc.2006,128,4872.
    [30]K. Fukuda, I. Nakai, Y. Ebina, R. Ma, T. Sasaki, Inorg. Chem.,2007,46,4787.
    [31]H. Xin, F. Y. Li, M. Shi, Z. Q. Bian, and C. H. Huang, J. Am. Chem. Soc.2003, 125,7166
    [32]Z. Lu, J. Wang, Y. Tang, Y. J. Li, Solid State Chem.2004,177,3075.
    [33]J. P.Rainho, L. D. Carlos, J. J.Rocha, Lumin.2000,87-89,1083.
    [34]J. L. Kropp, M. W Windsor, J. Chem. Phys.1965,42,1599.
    [35]D. Ananias, A. Ferreira, J. Rocha, P. Ferreira, J. P. Rainho, C. Morais, L. D. Carlos, J. Am. Chem. Soc.2001,123,5735.
    [36]G. Blasse, B.C. Grabmaier, Luminescent Material, Springer-Verlag, Berlin, 1994.
    [37]K. L. Frindell, M. H. Bartl, M. R. Robinson, G. C. Bazan, A. Popitsch, and G. D. Stucky, J. Solid State Chem.2003,81,172.
    [38]N. Zhang, C.L. Li, J. Chu, et al. Journal of alloy and compound, (in press)
    [39]N. Zhang, J. Chu, C.X. Li. et al. J. Am. Ceram. Soc.,2010,93,536.
    [40]T. Sasaki, M. Watanabe, H. Hashizume, H. Yamada, and H. Nakazawa, J. Am. Chem. Soc.1996,118,8329-35.
    [41]T. Sasaki and M. Watanabe, J. Am. Chem. Soc.,1998,120,4682.
    [42]Z. Liu, R. Ma, Y. Ebina,N. Iyi, K. Takada, and T. Sasaki, Langmuir.2007,23 861.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700