Drp-1基因参与高糖诱导胰岛β细胞凋亡的相关机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
β细胞功能衰竭是2型糖尿病晚期一个重要的特征,高糖诱导的细胞凋亡是胰岛β细胞功能衰竭一个重要原因。深入研究高糖诱导胰岛β细胞凋亡的分子机制对阐明2型糖尿病的发生和发展机制以及对糖尿病的防治都具有重要的意义。
     线粒体分裂蛋白(Dynamin-related protein 1, Drp-1)是参与线粒体分裂的主要分子,凋亡早期线粒体出现明显的分裂过程增强,高糖可上调Drp-1基因的表达,但Drp-1基因表达与高糖诱导的胰岛β细胞凋亡的关系尚未见报道。
     目的:研究线粒体分裂蛋白(Dynamin-related protein 1, Drp-1)的表达对高糖诱导胰岛β细胞凋亡的影响,探讨线粒体分裂与β细胞凋亡的分子机制。
     方法:
     1)构建Drp-1和Drp-1K38A质粒,.应用基因转染技术在大鼠胰岛β细胞(INS-1)构建表达Drp-1野生型(Drp-1WT)和Drp-1突变型(Drp-1K38A)基因的可诱导细胞系,并用细胞免疫荧光和实时定量PCR(Real-time polymerase chain reaction,Real-time PCR)方法证实转染基因的可诱导性.,采用免疫蛋白印迹(Western blot)分析Doxycycline(Dox)诱导后胰岛β细胞Drp-1表达的时-效关系和量-效关系,确定Dox的最佳作用剂量和作用时间。
     2)分析高糖条件下Drp-1基因的表达,.以及Drp-1的表达对胰岛β细胞增殖的影响;Real-time PCR和酶联免疫吸附试验(enzyme linked immunosorbentassy,ELISA)分析Drp-1表达对胰岛素mRNA的表达和胰岛素释放的影响。应用生物化学的方法分析Drp-1表达对胰岛β细胞能量代谢的影响。应用AnnexinⅤ-PI、Hochest33342-PI、TUNEL染色及DNA Ladder分析在高糖条件,.Dox诱导前后胰岛β细胞凋亡的情况。
     3)应用免疫蛋白印迹(Western blot)方法比较不同糖浓度时,Dox诱导前后Drp-1的表达和细胞色素c的释放相关性。应用微孔板式连续荧光光谱仪测定不同条件下细胞内凋亡蛋白酶Caspase3的活性。应用透射电子显微镜和激光共聚焦显微镜观察Dox诱导前后线粒体的形态变化并在共聚焦显微镜下分析细胞色素c在细胞内的分布。应用流式细胞术比较Dox诱导前后细胞线粒体膜电位的变化和细胞内活性氧(Reactive oxygen species, ROS)的产生。
     结果:
     1)Drp-1可诱导细胞系的鉴定:免疫荧光和Western blot的结果显示,Dox诱导后Drp-1基因表达在野生型(Drp-1WT)和突变型(Drp-1K38A)细胞系表达明显增加,并且Drp-1的表达与Dox之间存在明显的剂量—依赖和时间—依赖关系,500ng/ml Dox诱导24h后,Drp-1的表达即明显增加,96h达高峰。
     2)Drp-1表达对胰岛β细胞功能的影响:MTT结果显示:Dox诱导后,细胞增殖和胰岛素分泌能力在Drp-1WT细胞明显降低,而在Drp-1K38A细胞变化不大,这种现象在高糖培养条件时更明显。能量代谢的实验结果显示:在高糖条件下,Drp-1WT细胞在Dox诱导后的呼吸酶复合体活性明显升高,ATP含量减少。凋亡的分析结果表明:在高糖条件下,经Dox诱导后Drp-1WT细胞的凋亡明显多于Drp-1K38A细胞。
     3)Drp-1表达参与胰岛β细胞凋亡的机制:透射电镜和激光共聚焦显微镜观察发现:在高糖条件下,Dox诱导后的Drp-1WT细胞中的可见线粒体分裂和细胞色素c的释放。生物学分析结果表明:细胞中的线粒体膜电位降低、caspase3活性升高、ROS产生增加,而这些变化在Drp-1K38A细胞变化不明显。
     结论:Drp-1基因表达参与高糖诱导的胰岛β细胞凋亡。
The beta cell dysfunction is an important characteristic of the late stage ofType 2 diabetes. High glucose induced-beta cell apoptosis played a crucial role in theprocess of beta cell dysfunction. It is important for understanding the pathogenesisof type 2 diabetes development and for its prevention and treatment to furtherinvestigate the molecular mechanism of high glucose-induced isletβcell apoptosis.
     Dynamin-related protein1 (Drp-1) was a main factor in mitochondrial fission.Mitochondria underwent rapid, extensive fragmentation early in the apoptotic process.Drp-1 gene expression was up-regulated by high glucose. But the relation betweenexpression of Drp-1 gene and high glucose inducedβcell apoptosis was not wellunderstood.
     Objectives: To explore the effect of Dynamin-related protein 1(Drp-1) geneoverexpression on high glucose induced beta-cell dysfunction.
     Methods: The inducible wild-type Drp-1(Drp-1WT) and dominant-negative mutant ofDrp-1(Drp-1K38A) stable cell lines were respectively established using Tet-on Systemin INS-1 cells. The expression of Drp-1 induced by doxycycline in the both cell lineswas confirmed by immunofluorescence staining and western blot. The cell viability andinsulin secretion were analyzed when the both cell lines were cultured in standard orhigh glucose conditions with or without doxycycline. The activities of the fourcomplexes of the respiratory chain were assayed using biochemical methods.Theproduction of ATP in Drp-1WT and Drp-1K38A cells was estimated usingbioluminescent methods.The doxycycline induced cell apoptosis was detected byAnnexinⅤ-PI, Hochest33342-PI、TUNEL staining and DNA fragmentation, respectively. The mitochondrial morphology and membrane potential, the release ofcytochrome C, Caspase-3 activity and the reactive oxygen species (ROS) generationwere further investigated for understanding the relevant mechanisms of the cellapoptosis.
     Results: Drp-1 expression was significantly induced in the both inducible cell lines inresponse to doxycycline. After induction of doxycycline, the cell viability and insulinsecretion were reduced in Drp-1WT cells, but not in Drp-1K38A cells, especially inhigh glucose condition. It was found that the activities of the four complexes of therespiratory chain in the mitochondria of Drp-1WT cells and Drp-1K38A cells werealmost no change after Dox induction in standard glucose or high glucose condition.But the production of ATP in the mitochondria of Drp-1WT cells in high glucosecondition was decreased after Dox induction. The doxycycline induced cell apoptosiswas more in Drp-1WT cells and was less in Drp-1K38A cells in high glucose condition.Furthermore, the mitochondrial fission and the release of cytochrome C were observedin Drp-1WT cells by electron microscopy and confocal microscopy. The mitochondriamembrane potential was decreased and Caspase-3 activity and ROS generation weresignificantly increased in Drp-1WT cells, but were less in Drp-1K38A cells.
     Conclusions: Drp-1 expression may participate in high glucose induced beta celldysfunction.
引文
1. Masato Kasuga Insulin resistance and pancreatic b cell failure The Journal of Clinical Investigation 2006, 116 (7) , 1756-1760
    
    2. Daniel Porte, Jr., and Steven E. Kahn 8-Cell Dysfunction and Failure in Type 2 Diabetes Diabetes 2001, 50: S160-S163
    
    3. Cnop M, Welsh N, Jonas J-C, et al .Mechanism of pancreatic β-cell death in typel and type 2 diabetes Diabetes ,2005 ,54 :S97-S107.
    
    4. Donath M Y, Ehses J A, Maedler K, et al. Mechanism ofβ-cell death in type 2 diabetes Diabetes, 2005, 54:S108-S113.
    
    5. Pick A, Clark J, Kubstrup C, Levisetti M, Pugh W, Bonner-Weir S, Polonsky KS Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and b-cell defects in the male Zucker diabetic fatty rat. Diabetes 1998, 47:358 -364,
    
    6. Koyama M, Wada R, Sakuraba H, Mizukami H, Yagihashi S: Accelerated loss of islet beta cells in sucrose-fed Goto-Kakizaki rats, a genetic model of non-insulin-dependent diabetes mellitus. Am J Pathol 1998,153:537-545
    
    7. Fine EL, Horal M, Chang TI, Fortin G, Loeken MR: Evidence that elevated glucose causes altered gene expression, apoptosis, and neural tube defects in a mouse model of diabetic pregnancy. Diabetes 1999,48:2454 -2462
    
    8. Kim W-H, Lee J W, Suh Y H ,et al Exposure to Chronic High Glucose Induces 6-CellApoptosis Through Decreased Interaction of Glucokinase With Mitochondria Diabetes 2005, 54, 2602-2611
    
    9. Donath M. Y., Gross D.J., Cerasi E, and Nurit Kaiser Hyperglycemia-Induced cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes Diabetes, 1999, 48,738-744.
    
    10. Camarillo CO. Guzman-Grenfell A.M. Garcia-Macedo R et al. Hyperglycemia induce apoptosis and p53 mobilization to mitochondria in RINm5F cells. Molecular and Cellular Biochemistry. 2006, 281: 163-171.
    
    11. Federici M, Hribal M, Perego L, et al . High glucose causes apoptosis in cultured human pancreatic islets of langerhans. Diabetes , 2001, 50 :1290
    12. Liu K, Paterson AJ, Chin E , et al . Glucose stimulates protein modification by O-linked GlcNAc in pancreatic 6-cells: linkage of O-linked GlcNAc to β-cell death. Proc Natl Acad Sci USA, 2000,97 :2820-2825.
    
    13. Maedler K, Sergeev P, Ris F , et al . Glucose-induced beta-cell production of IL-16 contributes to glucotoxicity in human pancreatic islets. J Clin Invest, 2002 ,110 :851-860.
    
    14. Yu T, Robotham, J. L. and Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology PNAS 2006, 103 (8) : 2653-2658
    
    15. Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA and Pozzan T. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science.1998, 280: 1763-1766
    
    16. Bereiter-Hahn J and Voth M. Dynamics of mitochondria in living cells: Shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech. 1994, 27: 198-219
    
    17. Karbowski M and Youle RJ. Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death and Differentiation. 2003,10: 870-880
    
    18. Chen H and Chan DC. Mitochondrial dynamics in mammals. Curr Top Dev Biol. 2004, 59: 119-44
    
    19. Desagher S and Martinou JC. Mitochondria as the central control point of apoptosis. Trends Cell. Biol. 2000,10: 369-377
    
    20. Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F,Smith CL and Youle RJ The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell. 2001,1: 515-525
    
    21. Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG and Youle RJ Movement of Bax from the cytosol to mitochondria during apoptosis. J. Cell. Biol. 1997,139: 1281-1292
    22. Nechushtan A, Smith CL, Lamensdorf I, Yoon S-H and Youle RJ Bax and Bak coalesce into novel mitochondria-associated clusters during apoptosis. J. Cell. Biol. 2001,153: 1265-1276
    
    23. Kowaltowski AJ, Cosso RG, Campos CB and Fiskum G Effect of Bcl-2 overexpression on mitochondrial structure and function. J. Biol. Chem. 2002, 277:42802-42807
    
    24. Imoto, M, I. Tachibana, and R. Urrutia. Identification and functionalcharacterization of a novel human protein highly related to the yeast dynamin-like GTPase Vps1p. J. Cell Sci. 1998,111:1341-1349.
    
    25. Kamimoto, T., Y. Nagai, H. Onogi, Y. Muro, T. Wakabayashi, and M. Hagiwara. Dymple, a novel dynamin-like high molecular weight GTPase lacking a proline-rich carboxyl-terminal domain in mammalian cells. J. Biol. Chem. 1998,273:1044-1051.
    
    26. Shin, H.W., C. Shinotsuka, S. Torii, K. Murakami, and K. Nakayama. Identification and subcellular localization of a novel mammalian dynaminrelated protein homologous to yeast Vpslp and Dnm1p. J. Biochem. 1997.122:525-530.
    
    27. Yoon, Y., K.R. Pitts, S. Dahan, and M.A. McNiven. A novel dynamin-like protein associates with cytoplasmic vesicles and tubules of the endoplasmic reticulum in mammalian cells. J. Cell Biol. 1998,140:779-793.
    
    28. Zhu,P.P, Patterson A,stadler J, et al. Intra-and Intermolecular domain interactions of the C-terminal GTPase effector domain of the multimeric dynamoin-like GTPase Drp1. The Jounal of Biological Chemistry. 2004,279(34):35967-35974.
    
    29. Smirnova E, Shurland DL, Ryazantsev SN and van der Bliek AM. A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol. 1998, 143:351-358
    
    30. Breckenridge DG, Stojanovic M, Marcellus RC and Shore GC. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol. 2003, 160:1115-1127
    31. Sugioka R, Shimizu S and Tsujimoto Y. Fzol, a protein involved in mitochondrial fusion, inhibits apoptosis. J Biol Chem. 2004, 279: 52726-52734
    
    32. Karbowski M, Lee YJ, Gaume B, Jeong SY, Frank S, Nechushtan A, Santel A, Fuller M, Smith CL and Youle RJ. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol. 2002, 159: 931-938
    
    33. Leinninger GM, Backus C, Sastry AM., Yi Yun-Bo, Wang Chia-Wei, and Feldman E.L. Mitochondria in DRG neurons undergo hyperglycemic mediated injury through Bim, Bax and the fission protein Drp1. Neurobiology of Disease 2006,2311-22
    
    34. Benard G, Bellance N, James, Parrone P, Fernandez H, Letellier T and Rossignol R, Mitochondrial bioenergetics and structural network organization Journal of Cell Science 2007, 120(5): 838-848
    
    35. Marie, S., Diaz-Guerra, M.-J., Miquerol, L., Kahn, A. & Iynedjian, P. B. The pyruvate kinase gene as a model for studies of glucose-dependent regulation of gene expression in the endocrine pancreatic beta-cell type J. Biol. Chem. 1993, 268, 23881-23890.
    
    36. Kingston, R. E., Chen, C. A. & Okayama, H., Ausubel, F. M., Brent, R.,Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. &Struhl, K. (Wiley, New York), Current Protocols in Molecular Biology 1990,pp. 9.1.1
    
    37. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Lab. Press, Plainview, NY), 1989,2nd Ed.
    
    38. Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W. & Bujard, H. A Drosophila homolog of the yeast origin recognition complex Science 1995, 268, 1766-1769.
    
    39. Wang H, Kouri G and Wollheim C. B. ER stress and SREBP-1 activation are implicated inβ-cell glucolipotoxicity Journal of Cell Science 2005,118, 3905-3915
    
    40. Veitch K, Hombroeckx A, Caucheteux D, et al. Global ischaemia induces a biphasic response of the mitochondrial respiratory chain. Anoxic pre-perfusion protects against ischaemic damage. Biochem J. 1992 ,281 :709-721
    
    41 . Krahenbuhl S, Chang M, Brass EP, et al. Decreased activities of ubiquinol:ferricytochrome c oxidoreductase (complex III) and ferrocytochrome c:oxygen oxidoreductase (complex IV) in liver mitochondria from rats with hydroxycobalamin[c-lactam]-induced methylmalonic aciduria. J Biol Chem. 1991; 266(31):20998-21003
    
    42. Bogenhagen D, Clayton DA. The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. J Biol Chem. 1974; 249(24):7991-7995
    
    43. Veitch K, Hombroeckx A, Caucheteux D, et al. Global ischemia induces a biphasic response of the mitochondrial respiratory chain. Anoxic pre-perfusion protects against ischemic damage. Biochem J, 1992, 281:709-715
    
    44. Dunkley PR, Jarvie P, Heath JW. A rapid method for isolation of synaptosomes on percoll gradients. Brain Res, 1986,372:115
    
    45. Wang H, Maechler P, Hagenfeld K A. and Wollheim C B. Dominant-negative suppression of HNF-la function results in defective insulin gene transcription and impaired metabolism-secretion coupling in a pancreaticβ-cell line The EMBO Journal 1998,17(22):6701-6713,
    
    46. Chen Q, Chai Y-C, S Mazumder, Jiang C, Macklis RM, Chisolm GM and Almasan A, The late increase in intracellular free radical oxygen species during apoptosis is associated with cytochrome c release, caspase activation, and mitochondrial dysfunction Cell Death and Differentiation 2003,10: 323-334
    
    47. Heidi M. McBride, Margaret Neuspiel,and Sylwia Wasiak Mitochondria: More Than Just a Powerhouse Current Biology 2006, 16, R551-R560
    
    48. Green, K., Brand, M. D. & Murphy, M. P. Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes Diabetes 2004,53, Suppl. 1, S110-S118.
    
    49. Arnoult Damien Mitochondrial fragmentation in apoptosis Trends in cell biology 2007,17(1):6-12
    
    50. Zunino R, Schauss A, Rippstein P, Andrade-Navarro M, McBride HM. The SUMO protease SENP5 is required to maintain mitochondrial morphology and functionJournal of Cell Science 2007,120 (7): 1178-1188
    
    51. Perfettini,J.L., Roumier,T and Kroemer,G Mitochondrial fusion and fission in the control of apoptosis. Trends Cell Biol. 2005,15:179-183
    
    52. Baynes, J. W. & Thorpe, S. R. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm Diabetes 1999, 48,1-9.
    
    53. Brownlee, M. Biochemistry and molecular cell biology of diabetic complications Nature 2001,414,813-820.
    
    54. Nishikawa, T., Edelstein, D., Du, X. L., Yamagishi, S., Matsumura, T., Kaneda, Y., Yorek,M. A., Beebe, D., Oates, P. J., Hammes, H. P. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage Nature 2000, 404, 787-790.
    
    55. Zou H , Li Y, Liu X et al. An Apaf-1. cytochrome C multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem , 1999 ; 274 (17): 11549-56
    
    56. Hu Y, Benedict MA, Ding L et al. Role of cytochrome C and dATP/ ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis. EMBO J , 1999 ; 18 (13): 3586-95
    
    57. Saleh A, Srinivasula SM , Acharya S et al. Cytochrome C and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J Biol Chem , 1999 ; 274 (25) : 17941-5
    
    58. W-C Cheng, SB Berman, I Ivanovska, EA Jonas, SJ Lee, Y Chen, LK Kaczmarek,F Pineda and JM Hardwick, Mitochondrial factors with dual roles in death and survival Oncogene 2006, 25, 4697-4705
    59. Harris,M.H, and Thompson,C.B. The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ. 2000,7:1182-1191.
    
    60. Lee.YJ., jeong,S.Y.,Karbowski.M., Smith,C.L. and Youle,R.J. Roles of the mammalian mitochondrial fission and fusion mediators Fisl,Dip1and Opa1 in apoptosis. Mol. Biol. Cell.2004,15,5001-5011.
    
    61. Germain.M., Mathai.J.P., McBride.H.M. and Shore.G.C. Endoplasmic reticulum BIK initiates DRP-1-regulated remodeling of mitochondrial cristae during apoptosis. EMBO J. 2005,24,1546-1556.
    1. Benda, C. Ueber die Spermatogenese der Vertebraten und hoherer Evertebraten, II. Theil: Die Histiogenese der Spermien. Arch. Anat. Physiol. 1898, 73, 393-398.
    
    2. Bakeeva, L. E., Chentsov Yu, S. and Skulachev, V. P. Mitochondrial framework (reticulum mitochondriale) in rat diaphragm muscle. Biochim. Biophys. Acta 1978, 501, 349-369.
    
    3. Poliakova, I. A., Zorov, D. B. and Leikina, M. I. Polarographic study of cell respiration in a tissue culture. Tsitologiia 1983, 25,162-167.
    
    4. Newmeyer DD, Farschon DM, Reed JC. Cell-free apoptosis in Xenopus egg extracts: inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria Cell, 1994, 79(2): 353-64
    
    5. Hengartner MO. The biochemistry of apoptosis Nature, 2000, 407: 770-6
    
    6. Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA and Pozzan T. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science. 1998, 280: 1763-1766
    
    7. Bereiter-Hahn J and Voth M. Dynamics of mitochondria in living cells: Shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech. 1994, 27:198-219
    
    8. Chen H and Chan D. C. Emerging functions of mammalian mitochondrial fusion and fission. Human Molecular Genetics. 2005,14: R283-R289
    
    9. Niemann, A., Ruegg, M., La Padula, V., Schenone, A.&Suter, U. Ganglioside-induced differentiation associated protein 1 is a regulator of the mitochondrial network: new implications for Charcot-Marie-Tooth disease. J Cell Biol, 2005,170,1067-1078.
    
    10. Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A, Rodriguez M, Kellner U, Leo-Kottler B, Auburger G, Bhattacharya SS and Wissinger B. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet. 2000, 26: 211-215
    11. Delettre C, Lenaers G, Griffoin JM, Gigarel N, Lorenzo C, Belenguer P, Pelloquin L, Grosgeorge J, Turc-Carel C, Perret E, Astarie-Dequeker C, Lasquellec L, Arnaud B, Ducommun B, Kaplan J and Hamel CP. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet. 2000, 26: 207-210
    
    12. Zuchner, S., Mersiyanova, I. V.,Muglia, M, Bissar-Tadmouri, N., Rochelle, J., Dadali, E. L.,Zappia, M., Nelis, E., Patitucci, A., Senderek, J. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat. Genet. 2004, 36, 449-451.
    
    13. Karbowski M and Youle RJ. Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death and Differentiation. 2003,10: 870-880
    
    14. Chen H and Chan DC. Mitochondrial dynamics in mammals. Curr Top Dev Biol. 2004, 59:119-44
    
    15. Chen LB Mitochondrial membrane potential in living cells. Annu. Rev.Cell. Biol. 1992, 4:155-1813
    
    16. Frey TG and Mannella CA The internal structure of mitochondria. Trends Biochem. Sci. 2000, 25: 319-324
    
    17. De Giorgi F, Lartigue L and Ichas F Electrical coupling and plasticity of the mitochondrial network. Cell Calcium 2000, 28: 365-370
    
    18. Skulachev VP Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem. Sci. 2001,26: 23-29
    
    19. Barni S, Sciola L, Spano A and Pippia P. Static cytofluorometry and fluorescence morphology of mitochondria and DNA in proliferating fibroblasts. Biotech Histochem. 1996, 71: 66-70.
    
    20. Margineantu DH, Cox WG, Sundell L, Sherwood SW, Beechem JM and Capaldi RA. Cell cycle dependent morphology changes and associated mitochondrial DNA redistribution in mitochondria of human cell lines. Mitochondrion. 2002, 1: 425-435
    21. Bleazard W, McCaffery JM, King EJ, Bale S, Mozdy A, Tieu Q, Nunnari J and Shaw JM. The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat Cell Biol. 1999,1: 298-304
    
    22. Sesaki H and Jensen RE. Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. J Cell Biol. 1999, 147: 699-706
    
    23. Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, and Chan DC. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol. 2003,160:189-200
    
    24. Nakada K, Inoue K, Ono T, Isobe K, Ogura A, Goto YI, Nonaka I and Hayashi JI. Inter-mitochondrial complementation: mitochondria-specific system preventing mice from expression of disease phenotypes by mutant mtDNA. Nat Med. 2001, 7: 934-940
    
    25. Collins TJ, Berridge MJ, Lipp P and Bootman MD. Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J. 2002, 21: 1616-1627
    
    26. Smirnova E, Griparic L, Shurland DL and van Der Bliek AM. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell. 2001,12: 2245-2256
    
    27. Smirnova E, Shurland DL, Ryazantsev SN and van der Bliek AM. A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol. 1998, 143: 351-358
    
    28. Shin HW, Shinotsuka C, Torii S, Murakami K and Nakayama K. Identification and subcellular localization of a novel mammalian dynaminrelated protein homologous to yeast Vps1p and Dnmlp. J Biochem (Tokyo). 1997,122: 525-530
    
    29. Shin HW, Takatsu H, Mukai H, Munekata E, Murakami K and Nakayama K. Intermolecular and interdomain interactions of a dynamin-related GTP-binding protein, Dnm1p/Vps1p-like protein. J Biol Chem. 1999, 274: 2780-2785
    
    30. Pitts KR, Yoon Y, Krueger EW and McNiven MA. The dynamin-like protein DLP1 is essential for normal distribution and morphology of the endoplasmic reticulum and mitochondria in mammalian cells. Mol Biol Cell, 1999,10: 4403-4417
    
    31. Kamimoto T, Nagai Y, Onogi H, Muro Y, Wakabayashi T and Hagiwara M Dymple, a novel dynamin-like high molecular weight GTPase lacking a proline-rich carboxyl-terminal domain in mammalian cells. J. Biol. Chem. 1998, 273:1044-1051
    
    32. Yoon Y, Pitts KR, Dahan S and McNiven MA. A novel dynamin-like protein associates with cytoplasmic vesicles and tubules of the endoplasmic reticulum in mammalian cells. J Cell Biol. 1998,140: 779-793
    
    33. James DI, Parone PA, Mattenberger Y and Martinou JC. hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem. 2003, 278: 36373-36379
    
    34. Yoon Y, Krueger EW, Oswald BJ and McNiven MA. The mitochondrial protein hFisl regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol. 2003, 23: 5409-5420
    
    35.Mozdy AD, McCaffery JM and Shaw JM. Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J Cell Biol. 2000,151: 367-379
    
    36. Tieu Q and Nunnari J. Mdv1p is a WD repeat protein that interacts with the dynamin-related GTPase, Dnm1p, to trigger mitochondrial division. J Cell Biol. 2000,151: 353-365
    
    37. Fekkes P, Shepard KA and Yaffe MP. Gag3p, an outer membrane protein required for fission of mitochondrial tubules. J Cell Biol. 2000,151: 333-340
    
    38. Cerveny KL, McCaffery JM and Jensen RE. Division of mitochondria requires a novel DMN1-interacting protein, Net2p. Mol Biol Cell. 2001,12: 309-321
    
    39. Alto NM, Soderling J and Scott JD (2002) Rab32 is an A-kinase anchoring protein and participates in mitochondrial dynamics. J. Cell Biol. 158: 659-668
    
    40. Toncera D, Czauderna F, Paulick K, Schwarzer R. et al. The mitochondrial protein MTP18 contributes to mitochondrial fission in mammalian cells. J Cell Sci. 2005, 118(14): 3049-59
    
    41. Legros F, Lombes A, Frachon P and Rojo M. Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol Biol Cell. 2002,13: 4343-4354
    
    42. Santel A, Frank S, Gaume B, Herder, M, Youle RJ and Fuller MT. Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J Cell Sci. 2003, 116: 2763-2774
    
    43. Rojo M, Legros F, Chateau D and Lombes A. Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J Cell Sci. 2002,115: 1663-1674
    
    44. Santel A and Fuller MT. Control of mitochondrial morphology by a human mitofusin. J Cell Sci. 2001,114: 867-874
    
    45. Hermann GJ and Shaw JM. Mitochondrial dynamics in yeast. Annu Rev Cell Dev Biol. 1998,14: 265-303
    
    46. Rapaport D, Brunner M, Neupert W and Westermann B. Fzo1p is a mitochondrial outer membrane protein essential for the biogenesis of functional mitochondria in Saccharomyces cerevisiae. J Biol Chem. 1998, 273: 20150-20155
    
    47. Shepard KA and Yaffe MP. The yeast dynamin-like protein, Mgm1p, functions on the mitochondrial outer membrane to mediate mitochondrial inheritance. J Cell Biol. 1999,144: 711-720
    
    48. Wong ED, Wagner JA, Gorsich SW, McCaffery JM, Shaw JM and Nunnari J. The dynamin-related GTPase, Mgmlp, is an intermembrane space protein required for maintenance of fusion competent mitochondria. J Cell Biol. 2000, 151: 341-352
    
    49. Sesaki H and Jensen RE. UGO1 encodes an outer membrane protein required for mitochondrial fusion. J Cell Biol. 2001,152: 1123-1134
    
    50. Yaffe MP The machinery of mitochondrial inheritance and behavior. Science 1999, 283: 1493-1497
    51. Zhu,P.P, Patterson A,stadler J, et al. Intra-and Intermolecular domain interactions of the C-terminal GTPase effector domain of the multimeric dynamoin-like GTPase Drp1. The Jounal of Biological Chemistry. 2004,279 (34):35967-35974.
    
    52. Labrousse AM, Zappaterra MD, Rube DA and van der Bliek AM C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol. Cell 1999, 4: 815-826
    
    53. Fukushima NH, Brisch E, Keegan BR, Bleazard W and Shaw JM. The GTPase effector domain sequence of the Dnmlp GTPase regulates selfassembly and controls a rate-limiting step in mitochondrial fission. Mol. Biol.Cell. 2001, 12:2756-2766
    
    54. Szabadkai G, Simoni A.M, Chami M, et al.Drp-1-Dependent Division of the Mitochondrial Network Blocks Intraorganellar Ca2+Waves and Protects against Ca2+ Mediated Apoptosis. Molecular Cell, 2004 .16: 59-68
    
    55. Hales KG and Fuller MT Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell. 1997, 90: 121-129
    
    56. Hermann GJ, Thatcher JW, Mills JP, Hales KG, Fuller MT, Nunnari J and Shaw JM Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p.1998, J Cell Biol. 143(2):359-73,
    
    57. Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer P and Lenaers G. Loss of OPAl perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem. 2003, 278: 7743-7746
    
    58. Delettre C, Griffoin JM, Kaplan J, Dollfus H, Lorenz B, Faivre L, Lenaers G, Belenguer P and Hamel CP. Mutation spectrum and splicing variants in the OPA1 gene. Hum Genet. 2001, 109: 584-591
    
    59. Misaka T, Miyashita T and Kubo Y. Primary structure of a dynamin-related mouse mitochondrial GTPase and its distribution in brain, subcellular localization, and effect on mitochondrial morphology. J Biol Chem. 2002, 277:15834-15842
    
    60. Sesaki H, Southard SM, Yaffe MP and Jensen RE. Mgm1p, a dynamin-related GTPase, is essential for fusion of the mitochondrial outer membrane. Mol Biol Cell. 2003,14: 2342-2356
    
    61. Wong ED, Wagner JA, Scott SV, Okreglak V, Holewinske TJ, Cassidy-Stone A and Nunnari J. The intramitochondrial dynamin-related GTPase, Mgm1p, is a component of a protein complex that mediates mitochondrial fusion. J Cell Biol. 2003,160:303-311
    
    62. Chen,H.,Chomyn,A. and Chan, D.C. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J.Bio.Chem. 2005,280:26185-26192.
    
    63.Rie Sugioka, Shigeomi Shimizu, and Yoshihide Tsujimoto Fzol, a Protein Involved in Mitochondrial Fusion, Inhibits Apoptosis* J Biol Chem 2004, 279(50),52726-52734
    
    64.Kroemer G and Reed,J.C. Mitochondrial control of cell death. Nat.Med. 2000, 6:513-519
    
    65. Liu, X, Kim,C.N, Yang, J.et al. Induction of apoptotic program in cell-free extracts: requirement for d ATP and cytochrome c. Cell, 1996; 86:147-157.
    
    66. Li .K, Li Y, Shelton,J.M, et al. Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell, 101: 389-399
    
    67. Frank S, Gaume B, Bergmann-Leitner E.S. et al. The role of Dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Developmental Cell. 2001,1: 515-525.
    
    68. Mancini.M. et al. Mitochondrial proliferation and paradoxicall membrane depolarization during terminal differentiation and apoptosis in a human colon carcinoma cell line. J. Cell. Biol. 1997,138, 449-469.
    
    69. Desagher,S and Martinou. J.C. Mitochondria as the central control point of apoptosis. Trend Cell Biol. 2000,10,369-377.
    
    70. Pinton.P. et al. The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: Significance for the molecular mechanism of Bcl-2 action. EMBO J. 2001, 20, 2690-2701.
    
    71. Jagasia.R.,Grote.P.,Westermann. B.and Conradt. B. DRP-1-mediated mitochondrial fragmentation during EGL-1-induced cell death in C.elegan. Nature 2005,433,754-760.
    
    72. Capano.M.and Crompton.M. Biphasic translocation of Bax to mitochondria . Biochem .J. 2002, 367,169-178.
    
    73. Karbowski.M. et al. Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis. J. Cell. Biol. 2004,164, 493-499.
    
    74. Karbowski , M. et al. Spatial and temporal association of Bax with mitochondrial fission sites, Drpland MFN3 during apoptosis. J. Cell. Biol. 2002,159,931-938.
    
    75. Breckenridge, D. G., Stojanovic, M, Marcellus, R. C. & Shore, G. C. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J. Cell Biol. 2003,160,1115-1127.
    
    76. Sugioka.R., Shimizu.S and Tsujimoto. Y., Fzol, a protein involved in mitochondrial fusion, inhibits apoptosis. J.Biol. Chem. 2004, 279, 52726-52734.
    
    77. Lee.Y.J., jeong,S.Y.,Karbowski.M., Smith,C.L. and Youle,R.J. Roles of the mammalian mitochondrial fission and fusion mediators Fisl,Drpland Opal in apoptosis. Mol. Biol. Cell.2004,15, 5001-5011.
    
    78. James. D.I., Parone.P.A.,Mattenberger.Y., and Martinou.J. hFis1 ,a novel component of the mammalian mitochondrial fission machinery. J. Biol .Chem. 2003, 278, 36373-36379.
    
    79. Germain.M., Mathai.J.P., McBride.H.M. and Shore.G.C. Endoplasmic reticulum BIK initiates DRP-1-regulated remodeling of mitochondrial cristae during apoptosis. EMBO J. 2005, 24, 1546-1556.
    
    80. Pacher P and Hajnoczky G, Propagation of the apoptotic signal by mitochondrial waves EMBO J. 2001, 20, 4107-4121.
    
    81. Zamzami N, Marchetti P, Castedo M, Zanin C, Vayssiere JL, Petit PX and Kroemer G. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J. Exp. Med. 1995,181:1661-1672
    82. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S and Korsmeyer SJ Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell. 2002, 2:183-192
    
    83. Scorrano L, Ashiya M, Buttle K, Weiller S, Oakes SA, Mannella CA and Korsmeyer SJ A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev. Cell. 2002, 2: 55-67
    
    84. Epand RF, Martinou J-C, Fornallaz-Mulhauser M, Hughes DW and Epand RM The apoptotic protein tBid promotes leakage by altering membrane curvature. J. Biol. Chem. 2002, 277: 32632-32639
    
    85. Paumard P, Vaillier J, Coulary B, Schaeffer J, Soubannier V, Mueller DM,Brethes D, di Rago J-P and Velours J The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J. 2002, 21: 221-230
    
    86. Rapizzi E, Pinton P, Szabadkai G, Wieckowski MR, Vandecasteele G, Baird G,Tuft RA, Fogarty KE and Rizzuto R. Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria. J. Cell Biol. 2002,159: 613-624
    
    87. Chen W, Calvo PA, Malide D, Gibbs J, Schubert U, Bacik I, Basta S, O'Neill R, Schickli J, Palese P, Henklein P, Bennink JR and Yewdell JWA novelinfluenza A virus mitochondrial protein that induces cell death. Nat. Med. 2001, 7:1306-1312
    
    88. Nechushtan A, Smith CL, Lamensdorf I, Yoon S-H and Youle RJ Bax and Bak coalesce into novel mitochondria-associated clusters during apoptosis. J. Cell. Biol. 2001,153: 1265-1276
    1. Setup P, Madsen OD, Mandrup-Poulsen T. Islet and stem cell transplantation for treating diabetes. Br Med J, 2001, 322: 29-32.
    2.蒋业贵,李兆申。胰腺干细胞的研究进展。中华内科杂志,2003,42(9):665—667。
    3. Eduard Montanya. Islet- and stem-cell-based tissue engineering in diabetes. Current Opinion in Biotechnology. 2004, 15: 435-440.
    4. Soria B, Roche E, Berna G; et al. Insulin secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes, 2000, 49: 157-162.
    5. Assady S, Maor G, Amit M, et al. Insulin production by human embryonic stem cells. Diabetes, 2001, 50: 1691-1697.
    6. Schwitzgebel VM, Scheel DW, Conners JR, et al. Expression of neurogenin3 reveals an islet cell precursor population in the pancreass[J]. Development, 2000, 127: 3533-3542.
    7. Lumelsky N, Blondel O, Laeng P et al. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science. 2001; 292: 1389-1394.
    8. Hori Y, Rulifson I, Tsai BC, et al. Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc Natl Acad Sci USA.. 2002, 99: 16105-16110.
    9. Blyszczuk P, Czyz J, Kania G, et al. Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc Natl Acad Sci USA.. 2003, 100: 998-1003.
    10 Rajagopal J, Anderson WJ, Kume S, et al. Insulin staining of ES cell progeny from insulin uptake. Science. 2003, 299: 363.
    11. Zulewski H, Abraham EJ, Gerlach MJ, et al. Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes, 2001, 50: 521-533
    12. Ramiya VK, Maraist M, Arfors KE, et al. Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med, 2000, 6: 278-282.
    13.Bonner-Weir S, Taneja M, Weir GC, et al. In Vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA. 2000, 97 : 7999-8004.
    14.Gao R, Ustinov J, Pulkkinen MA, et al. Characterization of endocrine progenitor cells and critical factors for their differentiation in human adult pancreatic cell culture[J]. Diabetes, 2003, 52: 2007-2015.
    15.Yang LJ, Li SW, Hatch H, et al. In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc Natl Acad Sci USA, 2002,99:8078-8083.
    16.Suzuki A, Nakauchi H, Taniguchi H. Glucagon-likel(1-37) converts intestinal epithelial cells into insulin-producing cells. Proc Natl Acad Sci USA, 2003, 100(9): 5034-5039.
    17.Chen LB, Jiang XB, Yang L. Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells. World J Gastroenterol. 2004,10(20): 3016-3020.
    18.Shi CM, Cheng TM. Differentiation of dermis-derived multipotent cells into insulin-producing pancreatic cells in vitro. World J Gastroenterol. 2004, 10(17): 2550-2552.
    19.Hori YC, Gu XY, Xie XD,et al. Differentiation of insulin-producing cells from human neural progenitor cells. PLoS Medicine. 2005, 2(4): 0347-0356.
    20.Ruhnke M, Ungefroren H, Nussler A, et al. Differentiation of in vitro-modified human peripheral blood monocytes into hepatocyte-like and pancreatic islet-like cells. Gastroenterology. 2005; 128(7): 1774-86.
    21.Habener J F, Kemp D M, Thomas M K. Minireview: transcriptional regulation in pancreatic development. 2005; 146(3): 1025-1034.
    22.Gu G, Dubauskaite J, Melton D A. Direct evidence for the pancreatic lineage: NGN+cells are islet progenitors and are distinct from duct progenitors. Development. 2002, 129: 2447-2457.
    23.Docherty K. Growth and development of the islets of Langerhans: implications for the treatment of diabetes mellituss. Current Opinion Pharmacology. 2001; 1: 641-650.
    24.Edlund E. Factors controlling pancreatic cell differentiation and function. Diabetologia. 2001, 44: 1071-1079.
    25.Sander M, Sussel L, Conners J, et al. Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of Bcell formation in the pancreas. Development. 2000, 127: 5533-5540.
    26.Olbrot M, Rud J, Moss LG, et al. Identification of beta-cell-specific insulin gene transcription factor RIPE3bl as mammalian MafA. Proc Natl Acad Sci USA. 2002; 99(10): 6737-42.
    27.Kaneto H, Matsuoka T, Nakatani Y, et al. A crucial role of MafA as a novel therapeutic target for diabetes. The Journal of Biological Chemistry. 2005; 280(15): 15047-15052.
    28.Barrow J, Hay CW, Ferguson LA, et al. Transcription factor cycling on the insulin promoter. FEBS Lett. 2006; 580(2): 711-5.
    
    29.Buteau J, Roduit R, Susini S, et al. Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox genel(PDX-l)DNA binding activity inB(INS-1)-cells. Diabetologia. 1999; 42: 856-64.
    
    30.Tourrel C, Bailbe D, Lacorne M, et al. Persistent improvement of type 2 diabetes in the Goto-Kakizaki rat model by expansion of the B-cell mass during the prediabetic period with glucagon-like peptide-1 or exendin-4. Diabetes. 2002; 51: 1443-52.
    
    31.Xu G, Stoffers DA, Habener JF, et al. Exendin-4 stimulates both B-cell replication and neogenesis, resulting in increased B-cell mass and improved glucose tolerance in diabetic rats. Diabetes. 1999, 48: 2270-6.
    
    32.Hui H, Wright C, Perfetti R. Glucagon-like peptide-1 induces differentiation of islet duodenal homeobox-1-positive pancreatic ductal cells into insulin-secreting cells. Diabetes. 2001, 50: 785-96.
    
    33.Elghazi L, Cras-Meneur C, Czemichow P, et al. Role of FGF2IIIb-mediated signals in controlling pancreatic endocrine progenitor cells proliferation. Proc Natl Acad Sci USA. 2002,99:3884-9.
    
    34.Movassat J, Beattie GM, Lopez AD, et al. Keratinocyte growth factor and 6-cell differentiation in human fetal pancreatic endocrine precursor cells. Diabetologia. 2003, 46: 822-9.
    
    35.Banerjee M, Bhonde RR. Islet generation from intra islet precursor cells of diabetic panceas: in vitro studies depicting in vivo differentiation. Jop. 2003; 4: 137-45.
    
    36.Cras-Meneur C, Elghazi L, Czerrnichow P, et al. Epidermal growth factor increases undifferentiated pancreatic embryonic cells in vitro: a balance between proliferation and differentiation. Diabetes. 2001; 50:1571-9.
    
    37.Miyagawa J, Hanafusa O, Sasada R, et al. Immunohistochemical localization of betacellulin, a new member of the EGF family, in normal human pancreas and islet tumor cells. Endocr J. 1999; 46:755-64.
    
    38.Li L, Seno M, Yamada H, et al. Betacellulin improves glucose metabolism by promoting conversion of intraislet precursor cells to 6-cells in streptozotocin-treated mice.. Am J Physiol Endocrinol Metab. 2003; 285:E577-83.
    
    39.Wang R, Yashpal N, Bacchus F, et al. Hepatocyte growth factor regulates proliferation and differentiation of epithelial monolayers derived from islets of postnatal rat pancreas. J Endocrineol. 2004; 183:163-171.
    
    40.Demeterco C, Beattie GM, Dib SA, et al. A role of activin A and betacellulin in human fetal pancreatic cell differentiation and growth. J Clin Endocrinol Metab. 2000; 85:3892-7.
    41.Zhang YO, Cleary MM, Si Y, et al. Inhibition of activin signaling induces pancreatic epithetlial cell expression and diminishes terminal differentiation of pancreatic β-cells. Diabetes. 2004; 53:2024-33.
    
    42.Harmon EB, Apelqvist AA, Amart NG, et al. GDF11 modulates NGN3+islet progenitor cell number and promotes 6-cell differentiation in pancreas development. Development. 2004; 131:6163-74.
    
    43.Ogata T, Li L, Yamada S, et al. Promotion of 6-cell differentiation by conophylline in fetal and neonatal rat pancreas. Diabetes. 2004; 53: 2596-602.
    
    44.Stoffers DA, Kieffer TJ, Hussain MA,et al. Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes. 2000; 49:741-8.
    
    45.Zhou J, Pineyro MA, Wang X, et al. Exendin-4 differentiation of a human pancreatic duct cell line into endocrine cells: involvement of PDX-1 and HNF36 transcription factors. J Cell Physiol. 2002; 192:304-14.
    
    46.Sosa-Pineda B, Chowdhury K, Torres M, et al. Pax4 gene is essential for differentiation of insulin-producing 6cells in the mammalian pancreas. Nature. 1997; 386: 399-402.
    
    47.Apelqvist A, Li H, Sommer L, et al. Notch signaling control pancreatic cell differentiation. Nature. 1999; 400: 877-881.
    
    48.Movassat J, Beattie GM, Lopez AD, et al. Keratinocyte growth factor and β-cell differentiation in human fetal pancreatic endocrine precursor cells. Diabetologia. 2003; 46: 822-9.
    
    50.Ye DZ, Tai MH, Linning KD, et al. MafA expression and insulin promoter activity are induced by nicotinamide and related compounds in INS-1 pancreatic. Diabetes. 2006;55(3): 742-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700