含羧基配体的稀土配位聚合物的合成、结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要从事含羧基配体的稀土配位聚合物的合成、结构与性能研究。选用不同的反应体系,合成了四个系列共二十个含羧基配体的稀土配位聚合物,其中十八个为新化合物。对其进行了结构分析和多种谱学表征,并考察了有机配体、反应体系的酸碱度以及反应温度等因素在水热(溶剂热)条件下对反应产物的影响。
     1.合成了五个稀土柠檬酸系列配位聚合物1-5,其中同构的化合物1和2是三维的,具有扭曲的BN拓扑结构;同构的化合物3-5是二维的,在二维层中存在两种十三元环。
     2.合成了五个稀土5-磺基水杨酸系列配位聚合物6-10,在这类同构的三维化合物中存在一维孔道,且具有较少报道的4664拓扑网络结构。
     3.合成了五个稀土间苯二甲酸系列配位聚合物11-15。在同构的三维化合物11-14中,存在三种螺旋孔道,质子化的咪唑作为平衡阳离子填充在其中两种孔道中。化合物15具有二维结构,在该结构中存在两种不同的四螺旋链。
     4.合成了由吡啶二甲酸构筑的五个稀土配位聚合物。其中两个是由3,5-吡啶二甲酸和草酸构筑的三维稀土配位聚合物16和17,它们的拓扑网络由(4,5)-连接的节点构成,草酸是反应过程中3,5-吡啶二甲酸发生原位分解反应产生的。另外三个化合物是由2,6-吡啶二甲酸和哌嗪构筑的稀土配合物18-20。它们具有分立结构,氢键将其连接成三维超分子网络,并且,在三维超分子结构中存在二维水层。
     5.除对所合成化合物的结构进行了详细分析外,还对其进行了多种谱学表征,对其荧光性能、可能的反应机理及磁学性能等进行了初步研究,并探讨了合成条件对合成结果的影响。所有这些,对丰富和发展稀土配位聚合物化学具有重要意义。
Recently, the construction of coordination polymers with carboxyl ligands has been a field of rapid growth not only for their intriguing architectures and topologies but also for their applications in areas of catalysis, sorption, separation, luminescence, magnetism, nonlinear optical property etc., In particular, rare-earth carboxylates coordination polymers have been of more great interests due to: (1) the atoms of rare-earth elements can act as hard acids being strongly coordinated by oxygen atoms behaved as hard bases. (2) The rare-earth elements possessing high coordination numbers and variable coordination geometry might be fruitfully utilized to generate interesting topological nets. (3) The 4f obitals being very efficiently shielded by the fully occupied 5s and 5p oribitals may give unique properties. In this paper, different reaction systems have been selected to synthesize four series of coordination polymers in order to study on the effect factors influencing the structure of the coordination polymers, such as solvent, pH and temperature etc. of the final products at hydrothermal conditions. The assembly reactions of ligands containing carboxyl and rare earth elements have yielded 20 coordination polymers. The IR, UV-Vis-NIR, XRD, TG-DTA, fluorescence spectra and magnetism have also been studied, which would take an important role in the explorations of structures and functions for coordination polymers.
     1. Five rare earth coordination polymers with citric acid, [Ln(Hcit)(H2O)]n (Ln = Ce(1), Pr(2), Sm(3), Dy(4) and Er(5)), have been synthesized and characterized by elemental analysis, IR, TGA and single-crystal X-ray diffraction. X-ray structural analysis reveals that compounds 1 and 2 are isomorphous and feature 3D networks showing five-connected distorted BN topology, while the isostructural 3-5 display 2D layer structures with two kinds of 13-membered rings. The comparison of Ln–O average bond lengths in compounds 1-5 and other Ln–citrate compounds containing one only ligand reported in the literatures shows that the Ln–O average bond lengths decrease as atomic numbers of Ln increase (except Nd). This trend is in agreement with lanthanide contraction rule. Variable-temperature magnetic susceptibility measurements for compounds 1 and 5 indicate there are antiferromagnetic interactions between magnetic centers. Compound 5 presents Er(III) characteristic emission in the NIR region.
     2. Five 3D lanthanide(III) compounds with 5-sulfosalicylic acid (H3SSA) as bridging ligands, [Ln(SSA)(H2O)2]n [Ln = Ce(6), Pr(7), Nd(8), Dy(9) and Pr0.5+Nd0.5 (10)], have been synthesized and characterized by elemental analysis, IR, XRD and single-crystal X-ray diffraction. X-ray structural analysis reveals that isostructral compounds 6-10 possess 3D structures with 4664 topology. H3SSA exhibits a new coordination mode. Complexes 6-10 exhibit broad intraligand fluorescent emission bands. Complexe 8 also presents Nd(III) characteristic emission in the near-IR region and complexe 9 presents sensitized luminescence of Dy(III) ions in the visible region. There are weak antiferromagnetic interactions between the Pr(III) ions in 7, between the Nd(III) ions in 8. There exists ferromagnetic interaction between the Dy(III) ions in 9.
     3. Five rare earth coordination polymers, [(Him)Ln(ip)2(H2O)]n [Ln = La(11), Pr(12), Nd(13) and Dy (14)] and [Y2(ip)3(H2O)2]n·nH2O (15) [H2ip = isophthalic acid, im = imidazole], have been synthesized and characterized by elemental analyses, IR, UV-NIR and single-crystal X-ray diffraction analyses. The isostructural compounds 11-14 possess 3-D structures with three different kinds of channels. Compound 15 features a 2-D network making of two different kinds of quadruple-helical chains. Compounds 12 and 13 present the characteristic emissions of Pr(III) and Nd(III) ions in NIR region, respectively. Compound 14 shows sensitized luminescence of Dy(III) ions in visible region. There are weak antiferromagnetic interactions between the Pr(III) ions in 12, between the Nd(III) ions in 13, between the Dy(III) ions in 14.
     4. Two rare earth coordination polymers, [Ln(ox)0.5(pdc)(H2O)2]n·nH2O [Ln = Pr(16) and Dy(17), H2ox = oxalic acid,H2pdc = Pyridine-3,5-dicarboxylic acid] and three rare earth compounds, (H2pip)3Ln2(pdc)6(H2O)20 [Ln = Pr(18), Nd(19) and Dy(20), H2pdc = Pyridine-2,6-dicarboxylic acid, pip = piperazine], have been in detail described. There exists 1D channel in the 3D structure. The crystal water fills in the 1D channel. The isostructural compounds 16 and 17 possess 3D structures with interesting topological networks. The compounds 18-20 display an interesting 3D supramolecular network through hydrogen bonding. Interestingly, there exists a 2D water layer in the 3D supramolecular network. Complexes 18-20 exhibit broad intraligand fluorescent emission bands.
引文
[1] M. Eddaoudi, D. B. Moler, H. L. Li, B. L. Chen, T. M. Reineke, M. O’Keeffe, O. M. Yaghi, “Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks”, Acc. Chem. Res., 2001, 34, 319-330.
    [2] D. Gatteschi, “Molecular Magnetism: A basis for new materials”, Adv. Mater., 1994, 6, 635-645.
    [3] M. Ohba, N. Maruono, H. Okawa, T. Enokl, J. M. Latour, “A New Bimetallic Ferromagnet, [Ni(en)2]3[Fe(CN)6]2.cntdot.2H2O, with a Rare Rope-Ladder Chain Structure”, J. Am. Chem. Soc., 1994, 116, 11566-11567.
    [4] M. Ohba, N. Fukita, H. Okawa, “Magnetic characteristics of bimetallic assemblies, [Ni(en)2]3[M(CN)6]2·2H2O (en = H2NCH2CH2NH2; M = Fe, Mn, Cr or Co), with a one-dimensional rope-ladder chain structure”, J. Chem. Soc., Dalton Trans., 1997, 1733-1738.
    [5] M. Ohba, H. Okawa, T. Ito, A. Ohto, “A two-dimensional bimetallic assembly, [Ni(pn)2]2[Fe(CN)6]ClO4·2H2O, with a square structure”, J. Chem. Soc., Chem. Commun., 1995, 1545-1546.
    [6] M. Ohba, H. Okawa, N. Fujita, Y. Hashimoto, “Bimetallic Magnetic Material [Ni(diamine)2]2[Fe(CN)6]X with Two-Dimensional Network Extended by Fe(III)-CN-Ni(II) Linkages”, J. Am. Chem. Soc., 1997, 119, 1011-1019.
    [7] A. F. Wells, “Three Dimensional Nets and Polyhedra”, New York, 1977.
    [8] A. F. Wells, “Structrual Inorganic Chemistry”, 5th ed., Oxford Univ. Press, 1983.
    [9] F. Hoskins, R. Robson, “Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments”, J. Am. Chem. Soc., 1989, 111, 5962-5964.
    [10] M. Fujita, Y. J. Kwon, M. Miyazawa, K. Ogura, “One-dimensional coordinatepolymer involving heptacoordinate cadmium(II) ions”, Chem. Commun., 1994, 1977-1978.
    [11] G. B. Gardner, D. Venkaraman, J. S. Moore, S. Lee, “Spontaneous assembly of a hinged coordination network”, Nature, 1995, 374, 792-794.
    [12] O. M. Yaghi, G. M. Li, H. L. Li, “Selective binding and removal of guests in a microporous metal-organic framework”, Nature, 1995, 378, 703-706.
    [13] H. Li, M. Eddaoudi, M. O’keeffe, O. M. Yaghi, “Design and synthesis of an exceptionally stable and highly porous metal-organic framework”, Nature, 1999, 402, 276-279.
    [14] O. M. Yaghi, H. Li, T. L. Groy, “A Molecular Railroad with Large Pores: Synthesis and Structure of Ni(4,4’-bpy)2.5(H2O)2(ClO4)2·1.5(4,4’-bpy)·2H2O”, Inorg. Chem., 1997, 36, 4292-4293.
    [15] L. Carlucci, G. Ciani, D. M. Proserpio, “A new type of supramolecular entanglement in the silver (I) coordination polymer [Ag2(bpethy)5](BF4)2 [bpethy = 1,2-bis(4-pyridyl)ethyne]”, Chem. Commun., 1999, 449-450.
    [16] P. Losier, M. J. Zaworotko, “A Noninterpenetrated Molecular Ladder with Hydrophobic Cavities”, Angew. Chem. Int. Ed. Engl., 1996, 35, 2779-2782
    [17] A. J. Blake, N. R. Champness, A. Khlobystov, D. A. Lemenovskii, W. S. Li and M. Schroder, “Polycatenated copper(I) molecular ladders: a new structural motif in inorganic coordination polymers”, Chem. Commun., 1997, 2027-2028.
    [18] M. Fujita, Y. J. Kwon, O. Sasaki, K. Yamaguchi, K. Ogura, “Interpenetrating Molecular Ladders and Bricks”, J. Am. Chem. Soc., 1995, 117, 7287-7288.
    [19] D. Venkataraman, S. Lee, J. S. Moore, P. Zhang, K .A. Hirsch, G. B. Gradner, A. C. Covey, C. L. Prentice, “Coordination Networks Based on Multitopic Ligands and Silver(I) Salts: A Study of Network Connectivity and Topology as a Function of Counterion”, Chem. Mater., 1996, 8, 2030-2043.
    [20] M. Fujita, Y. J. Kwon, M. Miyazawa and K. Ogura, “One-dimensional coordinate polymer involving heptacoordinate cadmium(II) ions”, J. Chem. Soc., Chem. Commun., 1994, 1977-1978.
    [21] K. V. Domasevitch, G. D. Enright, B. Moulton, M. J. Zaworotko, “A Neutral “Molecular Railroad” Coordination Polymer That Incorporates Polycyclic Aromatic Molecules: Synthesis and Single-Crystal X-Ray Structure of [Co(4,4′-bipyridine)2.5(NO3)2]·2Phenanthrene”, J. Solid State Chem., 2000, 152, 280-285.
    [22] R. W. Gable, B. F. Hoskins and R. Robson, “A new type of interpenetration involving enmeshed independent square grid sheets. The structure of diaquabis-(4,4 -bipyridine)zinc hexafluorosilicate”, J. Chem. Soc., Chem. Commun., 1990, 1677-1678.
    [23] M. Fujita, Y. J. Kwon, S. Washizu and K. Ogura, “Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4’-Bipyridine”, J. Am. Chem. Soc., 1994, 116, 1151-1152.
    [24] T. Soma, T. Iwamoto, “Supramolecular Structure of a Cadmium-Silver Complex Forming a Two-Dimensional Network Embracing One-Dimensional Chains in a Layered Crystal Structure”, Acta Crystallogr., C52, 1996, 1200-1203.
    [25] L. Carlucci, G. Ciani, D. M. Proserpio, “Three-dimensional architectures of intertwined planar coordination polymers: the first case of interpenetration involving two different bidimensional polymeric motifs”, New J. Chem., 1998, 1319-1321.
    [26] L. R. MacGillivray, R. H. Groeneman, J. L. Atwood, “Design and Self-Assembly of Cavity-Containing Rectangular Grids”, J. Am. Chem. Soc., 1998, 120, 2676-2677.
    [27] J. Lu, T. Paliwala, S. C. Lim, C. Yu, T. Y. Niu, A. J. Jacobson, “Coordination Polymers of Co(NCS)2 with Pyrazine and 4,4'-Bipyridine: Syntheses and Structures”, Inorg. Chem., 1997, 36, 923-929.
    [28] D. Hagrman, R. P. Hammond, R. Haushalter, J. Zubieta, “Organic/Inorganic Composite Materials: Hydrothermal Syntheses and Structures of the One-,Two-, and Three-Dimensional Copper(II) Sulfate-Organodiamine Phases [Cu(H2O)3(4,4’-bipyridine)(SO4)]·2H2O, [Cu(bpe)2][Cu(bpe)(H2O)2 (SO4)2]·2H2O, and [Cu(bpe)(H2O)(SO4)] (bpe = trans-1,2-Bis (4-pyridyl) ethylene)”, Chem. Mater., 1998, 10, 2091-2100.
    [29] C. B. Aakeroy, A. M. Beatty, D. S. Leinen, “A Versatile Route to Porous Solids: Organic-Inorganic Hybrid Materials Assembled through Hydrogen Bonds”, Angew. Chem. Int. Ed., 1999, 38, 1815-1819.
    [30] H. J. Choi, M. P. Sub, “Self-Assembly of Molecular Brick Wall and Molecular Honeycomb from Nickel(II) Macrocycle and 1,3,5-Benzenetricarboxylate: Guest-Dependent Host Structures”, J. Am. Chem. Soc., 1998, 120, 10622-10628.
    [31] K. N. Power, T. L. Hennigar, M. J. Zaworotko, “Polymeric two- and three-dimensional transition-metal complexes comprising supramolecular host-guest systems”, New J. Chem., 1998, 177-181.
    [32] M. A. Withersby, A. J. Blake, N. R. Champness, P. A. Cooke, P. Hubberstey, M. Schroder, “Parallel interpenetration in novel herringbone sheets formed by Co(II) and Cd(II) complexes with trans-4,4 -azobis(pyridine)”, New J. Chem., 1999, 573-575.
    [33] Y. B. Dong, R. C. Layland, N. G. Pschirer, M. D. Smith, U. H. F. Bunz, H. C. zur Loye, “New Crystalline Frameworks Formed from 1,2-Bis(4-pyridyl)ethyne and Co(NO3)2: Interpenetrating Molecular Ladders and an Unexpected Molecular Parquet Pattern from T-Shaped Building Blocks”, Chem. Mater., 1999, 11, 1413-1415.
    [34] R. Masse, J. F. Nicoud, M. B. Beucher, C. Bourgogne, “ Sodium 3-methyl-4-nitrophenolate dihydrate: a crystal engineering route towards new herringbone structures for quadratic non-linear optics”, Chem. Phys., 1999, 245, 365-375.
    [35] L. Carlucci, G. Ciani, D. M. Proserpio, “Self-assembly of novel co-ordination polymers containing polycatenated molecular ladders and intertwinedtwo-dimensional tilings”, J. Chem. Soc., Dalton Trans., 1999, 1799-1804.
    [36] O. M. Yaghi, G. Li, “Mutually Interpenetrating Sheets and Channels in the Extended Structure of [Cu(4,4’-bpy)Cl]”, Angew Chem., Int. Ed. Engl., 1995, 34, 207-209.
    [37] T. Soma, T. Iwamoto, “Supramolecular Structures in Solid State AgCN–Cd(CN)2–(4-Picoline) Complexes. An Interwoven Double Network of [Cd{Ag(CN)2}2]n in [trans-Cd(4-Mepy)2{Ag(CN)2}2]·(4-Mepy) and a Linear Chain of [–Cd–NC–Ag(CN)Ag–CN–]n in [Cd(4-Mepy)4{Ag2(CN)3}] [Ag(CN)2]”, Chem. Lett., 1994, 821.
    [38] H. L. Li, C. E. D. Thomas, L. Groy, D. G. Kelley, O. M. Yaghi, “Establishing Microporosity in Open Metal-Organic Frameworks: Gas Sorption Isotherms for Zn(BDC) (BDC = 1,4-Benzenedicarboxylate)”, J. Am. Chem. Soc., 1998, 120, 8571-8572.
    [39] O. M. Yaghi, C. E. Davis, G. M. Li, H. L. Li, “Selective Guest Binding by Tailored Channels in a 3-D Porous Zinc(II)-Benzenetricarboxylate Network”, J. Am. Chem. Soc., 1997, 119, 2861-2868.
    [40] C. J. Kerpet, M. J. Rosseinsky, “A porous chiral framework of coordinated 1, 3, 5-benzenetricarboxylate: quadruple interpenetration of the (10, 3)-a network”, Chem. Commun., 1998, 31-32.
    [41] C. J. Kerpet, T. J. Prior, M. J. Rosseinsky, “A Versatile Family of Interconvertible Microporous Chiral Molecular Frameworks: The First Example of Ligand Control of Network Chirality”, J. Am. Chem. Soc., 2000, 122, 5158-5168.
    [42] B. F. Abrahams, S. R. Batten, H. Hamit, B. F. Hoskins, R. Robson, “A wellsian ‘three-dimensional’ racemate: eight interpenetrating, enantiomorphic (10,3)-a nets, four right- and four left-handed”, Chem. Commun., 1996, 1313-1314.
    [43] O. M. Yaghi, H. L. Li, “Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels”, J. Am. Chem. Soc., 1995, 117, 10401-10402.
    [44] L. Carlucci, G. Ciani, D. M. Proserpio, A. Sironi, “1-, 2-, and 3-Dimensional Polymeric Frames in the Coordination Chemistry of AgBF4 with Pyrazine. The First Example of Three Interpenetrating 3-Dimensional Triconnected Nets”, J. Am. Chem. Soc., 1995, 117, 4562-4569.
    [45] F. Robinson, M. J. Zaworotko, “Triple interpenetration in [Ag(4,4’-bipyridine)][NO3], a cationic polymer with a three-dimensional motif generated by self-assembly of ‘T-shaped’ building blocks”, Chem. Commun., 1995, 2413-2414.
    [46] O. M. Yaghi, H. L. Li, “T-Shaped Molecular Building Units in the Porous Structure of Ag(4,4'-bpy)·NO”, J. Am. Chem. Soc., 1996, 118, 295-296.
    [47] G. B. Gardner, D. Verkataraman, J. S. Moore, S. Lee, “Spontaneous assembly of a hinged coordination network”, Nature, 1995, 374, 792-795.
    [48] G. B. Gardner, Y. H. Kiang, S. Lee, A. Asgaonkar, D. Venkataraman, “Exchange Properties of the Three-Dimensional Coordination Compound 1,3,5-Tris(4-ethynylbenzonitrile)benzene·AgO3SCF3”, J. Am. Chem. Soc., 1996, 118, 6946-6953.
    [49] G. Saito, H. Yamochi, T. Nakamura, T. Lomatsu, N. Matsukawa, T. Inoue, H. Ito, T. Ishiguro, M. Kusunoki, K. Sakaguchi, T. Mori, Synth. Met., 1993, 55-57, 2883.
    [50] O. M. Yaghi, H. L. Li, T. L. Groy, “Construction of Porous Solids from Hydrogen-Bonded Metal Complexes of 1, 3, 5-Benzenetricarboxylic Acid”, J. Am. Chem. Soc., 1996, 118, 9096-9101.
    [51] B. F. Hoskins, R. Robson, D. A. Slizys, “The Structure of [Zn(bix)2(NO3)2]?.5 H2O (bix = 1, 4-Bis(imidazol-1-ylmethyl)benzene): A New Type of Two-Dimensional Polyrotaxane”, Angew. Chem. Int. Ed., 1997, 36, 2336-2338.
    [52] M. Schwarten, J. Chomic, J. Cernak, D. Babe, “Ag/CuI-Mischbesetzung in den Kristallstrukturen der Kupfer(II)-cyanoargentate Cu(NH3)(py)Ag3-xCux (CN)5·py”, Z. Anorg. Allg. Chem., 1996, 622, 1449-1456.
    [53] B. F. Abrahams, J. Coleiro, B. F. Hoskins, R. Robson, “Gas hydrate-likepentagonal dodecahedral M2(H2O)18 cages (M = lanthanide or Y) in 2,5-dihydroxybenzoquinone-derived coordination polymers”, Chem. Commun., 1996, 603-604.
    [54] H. F. Hsu, Y. H. Dong, L. J. Shu, V. G. Young, L. Que, “Crystal structure of a synthetic high-valent complex with an Fe-2(μ-O)(2) diamond core. Implications for the core structures of methane monooxygenase intermediate Q and ribonucleotide reductase intermediate X”, J. Am. Chem. Soc., 1999, 121, 5230-5231.
    [55] R. Riedel, G. Greiner, G. Miehe, W. Dressler, H. Guess, J. Bill, F. Aldinger, “The First Crystalline Solids in the Ternary Si-C-N System”, Angew. Chem. Int. Ed., 1997, 36, 603-606.
    [56] T. Vossmeyer, G. Reck, L. Katsikas, E. T. K. Haupt, B. Schulz, H. Weller, “ A "Double-Diamond Superlattice" Built Up of Cd17S4(SCH2CH2OH)26 Clusters”, Science, 1995, 267, 1476-1479.
    [57] A. Michaelides, V. Kiritsis, S. Skoulika, A. Bubry, “Tetranuclear Silver(I) Clusters Linked by Bridging Succinate Anions in a Three-Dimensional Network: Crystal Structure of Succinatodisilver(I)”, Angew. Chem. Int. Ed., 1993, 32, 1495-1495.
    [58] A. J. Blake, N. R. Champness, S. M. Chung, W. S. Li, M. Schroder, “Control of interpenetrating copper (I) adamantoid networks: synthesis and structure of {[Cu(bpe)2]BF4}n”, Chem. Commun., 1997, 1005-1006.
    [59] T. Kuroda-Sowa, M. Yamamoto, M. Munakata, M. Seto, M. Maekawa, “Three-fold Interpenetrating Diamondoid Frameworks with π–π Stacking of Alternate Coordinated and Uncoordinated Ligands: Crystal Structures of Copper(I) Coordination Compounds, [Cu(DMTPN)2]X(DMTPN)(thf) (DMTPN = 2,5-Dimethylterephthalonitrile; X = BF4,ClO4)”, Chem. Lett., 1996, 349.
    [60] P. R. Wei, B. M. Wu, W. P. Leung, T. C. W. Mak, “Interpenetrating network structure of a polymeric complex of zinc (II) perchlorate with 1,4-diazoniobicyclo[2.2.2]octane-1,4-dipropionate”, Polyhedron, 1996, 15, 4041-4046.
    [61] M. Kurmoo, H. Kumagai, K. W. Chapman, C. J. Kepert, “Reversible ferromagnetic-antiferromagnetic transformation upon dehydration-hydration of the nanoporous coordination framework, [Co3(OH)2(C4O4)2]·3H2O”, Chem. Commun., 2005, 3012-3014.
    [62] O. R. Evans, R. G. Xiong, Z. Y. Wang, G.. K. Wong, W. B. Lin, “Crystal Engineering of Acentric Diamondoid Metal-Organic Coordination Networks”, Angew. Chem. Int. Ed., 1999, 38, 536-538.
    [63] B. F. Abrahams, B. F. Hoskins, D. M. Michail, R. Robson, “Assembly of porphyrin building blocks into network structures with large channels”, Nature, 1994, 369, 727-729.
    [64] F. Shields, “Aqueous solutions. Part 2.-The compressibility and acoustic relaxations of water”, J. Chem. Soc., Faraday Trans., 1985, 81, 1-10.
    [65] B. L. Chen, M. Eddaoudi, T. M. Reineke, J. W. Kampf, M. O'Keeffe, O. M. Yaghi, “Cu2(ATC)·6H2O: Design of Open Metal Sites in Porous Metal-Organic Crystals (ATC: 1,3,5,7-Adamantane Tetracarboxylate)”, J. Am. Chem. Soc., 2000, 122, 11559-11560.
    [66] J. Kim, B. L. Chen, T. M. Reineke, H. L. Li, M. Eddaoudi, D. B. Moler, M. O'Keeffe, O. M. Yaghi, “Assembly of Metal-Organic Frameworks from Large Organic and Inorganic Secondary Building Units: New Examples and Simplifying Principles for Complex Structures”, J. Am. Chem. Soc., 2001, 123, 8239-8247.
    [67] J. Y. Sun, L. H. Weng, Y. M. Zhou, J. X. Chen, Z. X. Chen, Z. C. Liu, D. Y. Zhao, “QMOF-1 and QMOF-2: Three-Dimensional Metal-Organic Open Frameworks with a Quartzlike Topology”, Angew. Chem. Int. Ed., 2002, 41, 4471-4473.
    [68] B. F. Hoskins, R. Robson, N. V. Y. Scarlett, “Six Interpenetrating Quartz-Like Nets in the Structure of ZnAu2(CN)4”, Angew. Chem. Int. Ed., 1995, 34,1203-1204.
    [69] S. C. Abrahams, L. E. Zyontz, J. L. Bernstein, “Cobalt cyanoaurate: Crystal structure of a component from cobalt-hardened gold electroplating baths”, J. Chem. Phys., 1982, 76, 5458-5462.
    [70] B. L. Chen, M. Eddaoudi, S. T. Hyde, M. O'Keeffe, O. M. Yaghi, “Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores”, Science, 2001, 291, 1021-1023.
    [71] H. L. Li, M. Eddaoudi, M. O’Keeffe, O. M.Yaghi, “Design and synthesis of an exceptionally stable and highly porous metal-organic framework”, Nature, 1999, 402, 276-279.
    [72] B. F. Hoskins, R. Robson, D. A. Silzys, “A Hexaimidazole Ligand Binding Six Octahedral Metal Ions To Give an Infinite 3D α-Po-Like Network Through Which Two Independent 2D Hydrogen-Bonded Networks Interweave”, Angew. Chem. Int. Ed., 1997, 36, 2752-2755.
    [73] Reinked, T. M.; Eddaoudi, M.; Moler, B.; O'Keeffe, M.; Yaghi, O. M. “Large Free Volume in Maximally Interpenetrating Networks: The Role of Secondary Building Units Exemplified by Tb2(ADB)3[(CH3)2SO]4·16[(CH3)2SO]”, J. Am. Chem. Soc., 2000, 122, 4843-4844.
    [74] S. Chui, Lo, S. Lo, J. Charmant, A. Orpen, I. Williams, “A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n”, Science, 1999, 283, 1148-1150.
    [75] B. F. Abrahams, M. G. Haywood, R. Robson, D. A. Sizys, “New Tricks for an Old Dog: The Carbonate Ion as a Building Block for Networks Including Examples of Composition [Cu6(CO3)12{C(NH2)3}8]4- with the Sodalite Topology”, Angew. Chem. Int. Ed., 2003, 42, 1112-1115.
    [76] Q. Fang, G. Zhu, M. Xue, J. Sun, Y. Wei, S. Qiu, R. Xu, “A Metal-Organic Framework with the Zeolite MTN Topology Containing Large Cages of Volume 2.5 nm3”, Angew. Chem. Int. Ed., 2005, 44, 3845-3848.
    [77] S. R. Batten, B. F. Hoskins, R. Robson, “Synthesis and Rutilelike Structure of[Cd(tcm)(hmt)(H2O)](tcm) (tcm- = Tricyanomethanide, C(CN)3-; hmt = Hexamethylenetetramine)”, Inorg. Chem., 1998, 37, 3432-3434.
    [78] W. Klaui, N. Mocigemba, A. Weber-Schuster, R. Bell, W. Frank, D. Mootz, W. Poll, H. Winderlich, “[(C5H5)Co{P(O)(OH)2}3H]: a novel organometallic tris-phosphonic acid that dissolves glass to form a six-coordinate silicon complex”, Chem. Eur. J., 2002, 8, 2335-2340.
    [79] X. Xue, X. S. Wang, R. G. Xiong, X. Z. You, B. F. Abrahams, C. M. Che, H. X. Ju, “A cluster rearrangement of an open cubane (Cu4Br4) to a prismane (Cu6Br6) in a copper(I)-olefin network”, Angew. Chem. Int. Ed., 2002, 41, 2944-2946.
    [80] K. Kobayashi, A. Sato, S. Sakamoto, K. Yamaguchi, “Solvent-Induced Polymorphism of Three-Dimensional Hydrogen-Bonded Networks of Hexakis(4-carbamoylphenyl)benzene”, J. Am. Chem. Soc., 2003, 125, 3035-3045.
    [81] M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, “Reticular synthesis and the design of new materials”, Nature, 2003, 423, 705-714.
    [82] G. Swarnabala, M. V. rajasekharan, “[Ca(dipicH2)(OH2)3][Ce(dipic)3]·5H2O: A One-Dimensional Coordination Polymer with Alternating CeN3O6 and CaNO7 Polyhedra (dipicH2 = Pyridine-2,6-dicarboxylic Acid)”, Inorg. Chem., 1998, 37, 1483-1485.
    [83] F. A, A. Paz, J. Klinowski, “Hydrothermal synthesis of a novel thermally stable three-dimensional ytterbium–organic framework Electronic supplementary information (ESI) available: SEM images, experimental and simulated PXRD patterns, thermal analysis plots and FT-IR spectra for CUmof-9”, Chem. Comm., 2003, 1484-1485.
    [84] J. Spandl, I. Brüdgam, H. Hartl, “Solvothermal synthesis of a 24-nuclear, cube-shaped squarato-oxovanadium(IV) framework: [N(nBu)4]8[V24O24 (C4O4)12(OCH3)32]”, Angew. Chem. Int. Ed., 2001, 4018-4020.
    [85] M. Kondo, T. Yoshitomi, K. Seki, H. Matsuzaka, S. Kitagawa, “Three-Dimensional Framework with Channeling Cavities for Small Molecules: {[M2(4,4’-bpy)3(NO3)4]·xH2O}n (M = Co, Ni, Zn)”, Angew. Chem. Int. Ed., 1997, 36, 1725-1727.
    [86] M. O’Keeffe, M. Eddaoudi, H. Li, T. Reineke, O. M. Yaghi, “SECTION 1: TUTORIAL Frameworks for Extended Solids: Geometrical Design Principles”, J. Solid State Chem., 2000, 152, 3-20.
    [87] S. R. Batten. R. Robson, “Interpenetrating Nets: Ordered, Periodic Entanglement”, Angew. Chem. Int. Ed., 1998, 37, 1460-1494.
    [88] S. R. Batten, B. F. Hoskins, B. Moubaraki, K. S. Murray, R. Robson, “Crystal structures and magnetic properties of the interpenetratingrutile-related compounds M(tcm)2 [M = octahedral, divalent metal; tcm- = tricyanomethanide, C(CN)3-] and the sheet structures of [M(tcm)2(EtOH)2] (M = Co or Ni)”, J. Chem. Soc., Dalton Trans., 1999, 2977-2986.
    [89] M. J. Plater, M. R. St. J. Foreman, T. Gelbrich, M. B. Hursthouse, “Synthesis and characterisation of infinite di- and tri-nuclear zinc co-ordination networks with flexible dipyridyl ligands”, J. Chem. Soc., Dalton Trans., 2000, 1995-2000.
    [90] J. L. C. Rowsell, O. M. Yaghi, “Metal–organic frameworks: a new class of porous materials”, Micro. Meso. Mater., 2004, 73, 3-14.
    [91] M. Munakata, L. P. Wu, T. K. Sowa, “Advances in Inorganic Chemistry”, Academic Press, New York, USA, ed. A. G. Sykes, 1999, vol. 46, 173-303.
    [92] H. L. Gao, L. Y. B. Zhao, X. Q. Zhao, P. Cheng, D. Z. Liao, S. P. Yan, “Synthesis and Characterization of Metal-Organic Frameworks Based on 4-Hydroxypyridine-2,6-dicarboxylic Acid and Pyridine-2,6-dicarboxylic Acid Ligands”, Inorg. Chem., 2006, 45, 5980-5988.
    [93] M. Du, Z. H. Zhang, L. F. Tang, X. G. Wang, X. J. Zhao, S. R. Batten, “Molecular Tectonics of Metal–Organic Frameworks (MOFs): A RationalDesign Strategy for Unusual Mixed-Connected Network Topologies”, Chem. Eur. J., 2007, 13, 2578-2586
    [94] S. R. Batten, “Topology of interpenetration”, CrystEngComm, 2001, 18, 1-7.
    [95] T. Ayyappan, O. R. Evans, and W. B. Lin, “A Novel Coordination Polymer Containing Both Interdigitated ID Chains and Interpenetrated 2D Grids”, Inorg. Chem., 2002, 41, 3328-3330.
    [96] H. Y. Wang, S. Gao, L. H. Huo, S. W. Ng, J. G. Zhao, “Three Interpenetrated Frameworks Assembly from a Long Multicarboxylate Ligand and Transition Metal”, Cryst. Growth Des., 2008, 8, 665-670.
    [97] T. Wu, M. Li, D. Li, X. C. Huang, “Anionic CunIn Cluster-Based Architectures Induced by In Situ Generated N-Alkylated Cationic Triazolium Salts”, Cryst. Growth Des., 2008, 8, 568-574.
    [98] L. Pan, T. Frydel, M. B. Sander, X. Y Huang, J. Li, “The Efect of pH on the Dimensionality of Coordination Polymers”, Inorg. Chem., 2001, 40, 1271-1283.
    [99] N. Guillou, C. Livage, W. Beek, M. Nogu, and G. Ferey, “A Layered Nickel Succinate with Unprecedented Hexanickel Units: Structure Elucidation fromPowder-Diffraction Data, and Magnetic and Sorption Properties”, Angew. Chem. Int. Ed., 2003, 42, 643-647.
    [100] N. Guillou, C. Livage, M. Drillon, G. Férey, “The Chirality, Porosity, and Ferromagnetism of a 3D Nickel Glutarate with Intersecting 20-Membered Ring Channels”, Angew. Chem. Int. Ed., 2003, 42, 5314-5317.
    [101] F. Abrahams, M. Moylan, S. D. Orchard, R. Robson, “Excess electron transport through DNA: A single electron repairs more than one UV-induced lesion”, Angew. Chem. Int. Ed., 2003, 42, 1848-1851.
    [102] D. N. Dybtsev, H. Chun, S. H. Yoon, D. Kim, and K. Kim, “Microporous Manganese Formate: A Simple Metal-Organic Porous Material with High Framework Stability and Highly Selective Gas Sorption Properties”, J. Am. Chem. Soc., 2004, 126, 32-33.
    [103] J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, “A homochiral metal-organic porous material for enantioselective separation and catalysis”, Nature, 2000, 404, 982-986.
    [104] 谢凤桐,“过渡金属-羟基多羧酸配位聚合物的合成、结构与性能研究”,吉林大学博士学位论文,2005。
    [105] 卢静,“含氮、氧及卤素配体的过渡金属配合物的合成、结构与性能”, 吉林大学博士学位论文,2006。
    [106] 刘剑,“过渡金属-脂肪族羟基多羧酸配位聚合物及钨钒金属氧簇的合成与表征”,吉林大学硕士学位论文,2007。
    [107] N. Hao, E. Shen, Y. Li, E. Wang, C. Hu, L. Xu, “A novel metal–organic supramolecular framework constructed by benzene-1,2,4-tricarboxylate: {[Fe(phen)(btc)(H2O)]2·CH3CH2OH}n (btc = benzene-1,2,4-tricarboxylate)”, Inorg. Chem. Commun., 2004, 7, 131-135.
    [108] X. Y. Wang, S. C. Sevov, “Synthesis, Structures, and Magnetic Properties of Metal-Coordination Polymers with Benzenepentacarboxylate Linkers”, Inorg. Chem., 2008, 47, 1037-1043.
    [109] Y. Yan, C. Wu, C. Lu, “Hydrothermal Synthesis of Two New Transition Metal Coordination Polymers with Mixed Ligands”, Z. Anorg. Allg. Chem., 2003, 629, 1991-1995.
    [110] P. Zheng, L. Long, R. Huang, L. Zheng, “Crystallographic report: A three-dimensional coordination polymer: [Zn6(btc)4(4,4-bipy)5]n (btc = 1,2,4-benzenetricarboxylate; 4,4-bipy = 4,4-bipyridine)”, Appl. Organometal. Chem., 2003, 17, 739-740.
    [111] C. Qin, X. Wang, E. Wang, C. Hu, L. Xu, “Synthesis and characterization of a novel three-dimensional photoluminescent coordination polymer generated from unsymmetrically bridging ligand”, Inorg Chim Acta., 2004, 357, 3683-3688.
    [112] C. Qin, X. Wang, E. Wang, C. Hu, L. Xu, “[Cu2(HBTC)2(H2O)2(μ2-H2O)]·2H2O: a new arm-shaped two-dimensional copper coordination polymer having both rhombic cavities and helical-like channels”, Inorg. Chem. Comm., 2004, 7, 788-197.
    [113] L. Wang, Z. Shi, G. Li, Y. Fan, W. Fu, S. Feng, “Solvothermal synthesis and structural characterization of a three-dimensional metal–organic polymer [NaZn(1,2,4-BTC)] (1,2,4-BTC = 1,2,4-benzenetricarboxylate)”, Solid State Sci., 2004, 6, 85-90.
    [114] S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams, “A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n”, Science, 1999, 283, 1148-1150.
    [115] X. Zhang, S. S. Y. Chui, I. D. Williams, “Cooperative magnetic behavior in the coordination polymers [Cu3(TMA)2L3] (L = H2O, pyridine)”, J. Appl. Phys., 2000, 87, 6007-6009.
    [116] M. Eddaoudi, J. Kim, J. B. Wachter, H. K. Chae, M. O’Keeffe, O.M. Yaghi, “Porous Metal-Organic Polyhedra: 25 ? Cuboctahedron Constructed from 12 Cu2(CO2)4 Paddle-Wheel Building Blocks”, J. Am. Chem. Soc., 2001, 123, 4368-4369.
    [117] M. Eddaoudi, H. Li, O. M. Yaghi, “Highly Porous and Stable Metal-Organic Frameworks: Structure Design and Sorption Properties”, J. Am. Chem. Soc., 2000, 122, 1391-1397.
    [118] H. Li, M. Eddaoudi, T. L. Groy, O.M. Yaghi, “Establishing Microporosity in Open Metal-Organic Frameworks: Gas Sorption Isotherms for Zn(BDC) (BDC = 1,4-Benzenedicarboxylate)”, J. Am. Chem. Soc., 1998, 120, 8571-8572.
    [119] P. Mahata, S. Natarajan, “A New Series of Three-Dimensional Metal-Organic Framework, [M2(H2O)][C5N1H3(COO)2]3·2H2O, M = La, Pr, and Nd: Synthesis, Structure, and Properties”, Inorg. Chem., 2007, 46, 1250-1258.
    [120] Y. G. Huang, B. L. Wu, D. G. Yuan, Y. Q. Xu, F. L. Jiang, M. C. Hong,“New Lanthanide Hybrid as Clustered Infinite Nanotunnel with 3D Ln-O-Ln Framework and (3,4)-Connected Net”, Inorg. Chem., 2007, 46, 1171-1176.
    [121] Y. Q. Sun, J. Zhang, G. Y. Yang, “A series of luminescent lanthanide–cadmium–organic frameworks with helical channels and tubes”, Chem. Commun., 2006, 4700-4702.
    [122] 储德清,“过渡金属配位聚合物的合成、结构与性能研究”,吉林大学博士学位论文,2001。
    [123] 张丽娟,“多羧酸-过渡金属配位聚合物的合成、结构与性能的研究”,吉林大学博士学位论文,2003。
    [124] S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, L. D. Williams, “A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n”, Science, 1999, 283, 1148-1150.
    [125] H. L. Li, M. Eddaoudi, M. O'Keeffe, O. M.Yaghi, “Design and synthesis of an exceptionally stable and highly porous metal-organic framework”, Nature, 1999, 402, 276-279.
    [126] M. Eddaoudi, J. Kim, N. Rsi, D. Vodak, J. Wachter, M. O'Keeffe, O. M. Yaghi, “Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage”, Science, 2002, 295, 469-472.
    [127] H. K. Chae, D. Y. Siberio-perez, J. Kim. Y. Go, M. Eddaoudi, A. J. Matzger, M. O’Keeffe, O. M. Yaghi, “A route to high surface area, porosity and inclusion of large molecules in crystals”, Nature, 2004, 427, 523-527.
    [128] A. C. Sudik, A. R. Millward, N. W. Ockwig, A. P. C?té, J. Kim, O. M. Yaghi, “Design, Synthesis, Structure, and Gas (N2, Ar, CO2, CH4, and H2) -Sorption Properties of Porous Metal-Organic Tetrahedral and Heterocuboidal Polyhedra”, J. Am. Chem. Soc., 2005, 127, 7110-7118.
    [129] Y. Q. Sun, J. Zhang, Y. M. Chen, G. Y. Yang, “Porous Lanthanide–Organic Open Frameworks with Helical Tubes Constructed fromInterweaving Triple-Helical and Double-Helical Chains”, Angew. Chem. Int. Ed., 2005, 44, 5814-5817.
    [130] Y. G. Huang, B. L Wu, D. Q. Yuan, Y. Q. Xu, F. L. Jiang, M. C. Hong, “New Lanthanide Hybrid as Clustered Infinite Nanotunnel with 3D Ln-O-Ln Framework and (3,4)-Connected Net”, Inorg. Chem., 2007, 46, 1171-1176.
    [131] B. Zhao, P. Cheng, Y. Dai, C. Cheng, D. Z. Liao, S. P. Yuan, Z. H. Jiang, G. L. Wang, “A Nanotubular 3D Coordination Polymer Based on a 3d-4f Heterometallic Assembly”, Angew. Chem. Int. Ed., 2003, 42, 934-934.
    [132] B. Zhao, P. Cheng, Y. Dai, C. Cheng, W. Shi, D. Liao, S. Yan, Z. Jiang, “Design and Synthesis of 3d-4f Metal-Based Zeolite-type Materials with a 3D Nanotubular Structure Encapsulated “Water” Pipe”, J. Am. Chem. Soc., 2004, 126, 3012-3013.
    [133] B. Zhao, X. Y. Chen, P. Cheng, D. Z. Liao, S. P. Yan, Z. H. Jiang, “Coordination Polymers Containing 1D Channels as Selective Luminescent Probes”, J. Am. Chem. Soc., 2004, 126, 15394-15395.
    [134] B. Zhao, H. L. Gao, X. Y. Chen, P. Cheng, W. Shi, D. Z. Liao, S. P. Yan, Z. H. Jiang, “A promising Mg-II-ion-selective luminescent probe: Structures and properties of Dy-Mn polymers with high symmetry”, Chem. Eur. J., 2006, 12, 149-158.
    [135] O. R. Evans, W. Lin, “Crystal Engineering of NLO Materials Based on Metal-Organic Coordination Networks”, Acc. Chem. Res., 2002, 35, 511.
    [136] O. R. Evans, R. G. Xiong, Z. Wang, G. K. Wong, W. Lin, “Crystal Engineering of Acentric Diamondoid Metal-Organic Coordination Networks”, Angew. Chem. Int. Ed., 1999, 38, 536-538.
    [137] W. Lin, O. R. Evans, R. Xiong, Z. Wang, “Supramolecular Engineering of Chiral and Acentric 2D Networks. Synthesis, Structures, and Second-Order Nonlinear Optical Properties of Bis(nicotinato)zinc and Bis{3-[2-(4-pyridyl) ethenyl]benzoato}cadmium”, J. Am. Chem. Soc., 1998, 120, 13272-13273.
    [138] W. Lin, L. Ma, O. R. Evans, “NLO-active zinc(II) and cadmium(II)coordination networks with 8-fold diamondoid structures”, Chem. Commun., 2000, 2263-2266.
    [139] O. R. Evans, W. Lin, “Rational Design of Nonlinear Optical Materials Based on 2D Coordination Networks”, Chem. Mater., 2001, 13, 3009-3017.
    [140] 苏砚溪,杨纪清,“2-硝基苯胺-4-磺酸对合成研究”,燃料工业,2001,38, 43-44。
    [141] A. P. C?té, G. K. H. Shimizu, “The supramolecular chemistry of the sulfonate group in extended solids”, Coord. Chem. Rev., 2003, 245, 49-64.
    [142] S. A. Dalrymple, G. K. H. Shimizu, “An open channel coordination framework sustained by cooperative primary and secondary sphere interactions”, chem. commun., 2002, 2224-2225.
    [143] B. D. Chandler, D. T. Cramb, and G. K. H. Shimizu, “Microporous Metal-Organic Frameworks Formed in a Stepwise Manner from Luminescent Building Blocks”, J. Am. Chem. Soc., 2006, 128, 10403-10412.
    [144] J. W. Cai, “Structural chemistry and properties of metal arenesulfonates”, Coord. Chem. Rev., 2004, 248, 1061-1083.
    [145] K. T. Holman, A. M. Pivovar, J. A. Swift, M. D. Ward, “Metric Engineering of Soft Molecular Host Frameworks”, Acc. Chem. Res., 2001, 2, 107-118.
    [146] S. Horike, R. Matsuda, D. Tanaka, M. Mizuno, K. Endo, and S. Kitagawa, “Immobilization of Sodium Ions on the Pore Surface of a Porous Coordination Polymer”, J. Am. Chem. Soc., 2006, 128, 4222-4223.
    [147] J. F. Song, Y. Chen, Z. G. Li, R. S. Zhou, X. Y. Xu, J. Q. Xu, T. G. Wang, “Syntheses, supramolecular structures and properties of six coordination complexes based on 5-sulfosalicylic acid and bipyridyl-like chelates”, Polyhedron, 2007, 26, 4397-4410.
    [148] L. R. MacGillivray, S. Subramanian, M. J. Zaworotko, “Interwoven two- and three-dimensional coordination polymers through self-assembly of CuIcations with linear bidentate ligands”, Chem. Commun., 1994, 1325-1326.
    [149] F. Lloret, G. DeMunno, M. Julve, J. Cano, R. Ruiz, A. Caneschi, “Spin polarization and ferromagnetism in two-simensional sheetlike cobalt(II) polymers: [Co(L)2(NCS)2] (L = Pyrimidine or Pyrazine)”, Angew. Chem. Int. Ed., 1998, 37, 135-138.
    [150] O. M. Yaghi, H. Li, “Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels”, J. Am. Chem. Soc., 1995, 117, 10401-10402.
    [151] O. M. Yaghi, G. M. Li, “Mutually Interpenetrating Sheets and Channels in the Extended Structure of [Cu(4,4’-bpy)Cl]”, Angew. Chem. Int. Ed., 1995, 34, 207-209.
    [152] P. Losier, M. J. Zaworotko, “A Noninterpenetrated Molecular Ladder with Hydrophobic Cavities”, Angew. Chem. Int. Ed., 1996, 35, 2779-2782.
    [153] E. Gao, Y. Yue, S. Bai, Z. He, C. Yan, “From Achiral Ligands to Chiral Coordination Polymers: Spontaneous Resolution, Weak Ferromagnetism, and Topological Ferrimagnetism”, J. Am. Chem. Soc., 2004, 126, 1419-1429.
    [154] E. Gao, S. Bai, Z. Wang, C. Yan, “Two-Dimensional Homochiral Manganese(II)-Azido Frameworks Incorporating an Achiral Ligand: Partial Spontaneous Resolution and Weak Ferromagnetism”, J. Am. Chem. Soc., 2003, 125, 4984-4985.
    [155] Y. Q. Tian, C. X. Cai, Y. Ji, X. Z. You, S. M. Peng, and G. H. Lee, “[Co5(im)10·2MB]∞: A Metal-Organic Open-Framework with Zeolite-Like Topology”, Angew. Chem. Int. Ed., 2002, 41, 1384-1386.
    [156] J. P. Zhang, Y. Y. Lin, X. C. Huang, X. M. Chen, “Copper(I) 1,2,4-Triazolates and Related Complexes: Studies of the Solvothermal Ligand Reactions, Network Topologies, and Photoluminescence Properties”, J. Am. Chem. Soc., 2005, 127, 5495-5560.
    [157] X. C. Huang, Y. Y. Lin, J. P. Zhang, X. M.Chen, “Ligand-Directed Strategy for Zeolite-Type Metal-Organic Frameworks: Zinc(II) Imidazolateswith Unusual Zeolitic Topologies”, Angew. Chem. Int. Ed., 2006, 45, 1557-1559.
    [158] R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe, O. M. Yaghi, “High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture”, Science, 2008, 319, 939-943.
    [159] R. G. Xiong, X. Xue, H. Zhao, X. Z. You, B. F. Abrahams, Z. L. Xue, “Novel, acentric metal-organic coordination polymers from hydrothermal reactions involving in Situ ligand synthesis”, Angew. Chem. Int. Ed., 2002, 41, 3800-3803.
    [160] N. L. Rosi, M. Eddaoudi, J. Kim, M. O’keefe, O. M. Yaghi, “Infinite Secondary Building Units and Forbidden Catenation in Metal-Organic Frameworks”, Angew Chem. Int. Ed., 2002, 41, 284-287.
    [161] G. B. Deacon, R. J. Phillips, “Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination”, Coord. Chem. Rev., 1980, 33, 227-250.
    [162] 黄春晖,“稀土配位化学”,科学出版社,1997,95。
    [163] E. Hannson, “Structural Studies on the Rare Earth Carboxylates. 5. Crystal and Molecular Structure of Neodymium(III) Oxalate 10.5-Hydrate”, Acta. Chem. Scand., 1970, 24, 2969-2982.
    [164] C. Piguet, G. Bernardinelli, G. Hopfgartner, “Helicates as Versatile Supramolecular Complexes”, Chem. Rev., 1997, 97, 2005-2062.
    [165] T. M. Reineke, M. Eddaoudi, M. O’Keeffe, O. M. Yaghi, “A Microporous Lanthanide-Organic Framework”, Angew. Chem. Int. Ed., 1999, 38, 2590-2594.
    [166] W. S. Liu, T. Q. Jiao, Y. Z. Li, Q. Z. Liu, M. Y. Tan, H. Wang, L.F. Wang, “Lanthanide Coordination Polymers and Their Ag+-Modulated Fluorescence”, J. Am. Chem. Soc., 2004, 126, 2280-2281.
    [167] L. Z. Zhang, W. Gu, B. Li, X. Liu, D. Z. Liao, “{[Nd4(ox)4(NO3)2(OH)2 (H2O)2]·5H2O}n: A Porous 3D Lanthanide-Based Coordination Polymers witha Special Luminescent Property”, Inorg. Chem., 2007, 46, 622-624.
    [168] 徐如人,庞文琴,“无机合成与制备化学”,高等教育出版社,2001,128-163。
    [169] G. M. Sheldrick, SHELXS 97, Program for Crystal Structure Refinement; University of G?ttingen: G?ttingen, Germany, 1998.
    [170] J. P. Glusker, “Citrate conformation and chelation: enzymic implications”, Acc. Chem. Res. 1980, 13, 345-352.
    [171] H. A. Krebs, W. A. Johnson, “The role of citric acid in intermediate metabolism in animal tissues”, Enzymologia, 1937, 4,148-156.
    [172] D. C. Crans, “Metal ions in biological systems”, eds. H. Sigel, A. Sigel, 1995, vol 31, Dekker, New York, 147-209.
    [173] M. Matzapetakis, C. P. Raptopoulou, A. Tsohos. V. Papaefthymiou, N. Moon, A. Salifoglou, “Synthesis, Spectroscopic and Structural Characterization of the First Mononuclear, Water Soluble Iron-Citrate Complex, (NH4)5Fe(C6H4O7)2·2H2O”, J. Am. Chem. Soc., 1998, 120, 13266-13267.
    [174] J. Q. Xu, X. H. Zhou, L. M. Zhou, T. G. Wang, X. Y. Huang, B. A. Averill, “The First binuclear Mo-S cluster compound containing citrate ligands, K2(NH4)[Mo2O2(μ-S)2(C6H4O7)2]·CH3OH·5H2O, characterized by X-ray single crystal structure determination”, Inorg. Chim. Acta., 1999, 285, 152-154.
    [175] D. M. Li, Y. H. Xing, Z. C. Li, J. Q. Xu, W. B. Song, T.G. Wang, G. D. Yang, N. H. Hu, H. Q. Jia, H. M. Zhang, “Synthesis and characterization of binuclear molybdenum–polycarboxylate complexes with sulfur bridges”, J. Inorg. Biochem., 2005, 99, 1602-1610.
    [176] M. Murrie, H. Stoeckli-Evans, H. U. Güdel, “Assembly of Ni7 and Ni21 Molecular Clusters by Using Citric Acid”, Angew. Chem. Int. Ed., 2001, 40, 1957-1960.
    [177] M. Murrie, S. J. Teat, H. Stoeckli-Evans, H. U. Güdel, “Synthesis andCharacterization of a Cobalt(II) Single-Molecule Magnet”, Angew. Chem. Int. Ed., 2003, 42, 4653-4656.
    [178] M. Dakanali, E. T. Kefalas, C. P. Raptopoulou, A. Terzis, T. Mavromoustakos, A. Salifoglou, “Synthesis and Spectroscopic and Structural Studies of a New Cadmium(II)-Citrate Aqueous Complex. Potential Relevance to Cadmium(II)-Citrate Speciation and Links to Cadmium Toxicity”, Inorg. Chem., 2003, 42, 2531-2537.
    [179] F. T. Xie, L. M. Duan, J. Q. Xu, L. Ye, Y. B. Liu, X. X. Hu, J. F. Song, “Solvothermal Syntheses and Structural Characterisation of Three Isostructural 3D Metal-Malate Coordination Polymers: {[M(C4H4O5)(H2O)]·H2O}n (M = CoII, NiII, CoII/NiII)”, Eur. J. Inorg. Chem., 2004, 4375-4379.
    [180] G. Q. Zhang, G. Q. Yang, J. S. Ma, “Versatile Framework Solids Constructed from Divalent Transition Metals and Citric Acid: Syntheses, Crystal Structures, and Thermal Behaviors”, Cryst. Growth Des., 2006, 6, 375-381.
    [181] M. Kourgiantakis, M. Matzapetakis, C. P. Raptopoulou, A. Terzis, A. Salifoglou, “Lead–citrate chemistry. Synthesis, spectroscopic and structural studies of a novel lead(II)–citrate aqueous complex”, Inorg. Chim. Acta., 2000, 297, 134-138.
    [182] W. Li, L. Jin, N. Y. Zhu, X. M. Hou, F. Deng, H. Z. Sun, “Structure of Colloidal Bismuth Subcitrate (CBS) in Dilute HCl: Unique Assembly of Bismuth Citrate Dinuclear Units ([Bi(cit)2Bi]2-)”, J. Am. Chem. Soc., 2003, 125, 12408-12409.
    [183] R. Baggio, R. Calvo, M. T. Garland, O. Pe?a, M. Perec, A. Rizzi, “Gadolinium and Neodymium Citrates: Evidence for Weak Ferromagnetic Exchange between Gadolinium(III) Cations”, Inorg. Chem., 2005, 44, 8979-8987.
    [184] S. G. Liu, W. Liu, J. L. Zuo, Y. Z. Li, X. Z. You, “Synthesis, structure and luminescent properties of lanthanide(III) polymeric complexes constructed bycitric acid”, Inorg. Chem. Commun., 2005, 8, 328-330.
    [185] F. Y. Li, L. Xu, G. G. Gao, L. H. Fan, B. Bi, “Unusual Magnetic Behavior of a 2D Citrate-Bridged Dysprosium(III) Coordination Polymer”, Eur. J. Inorg. Chem., 2007, 3405-3409.
    [186] R. Baggio, M. Perec, “Isolation and Characterization of a Polymeric Lanthanum Citrate”, Inorg. Chem., 2004, 43, 6965-6968.
    [187] Y. Q. Yuan, Y. Q. Xu, M. Y. Wu, M. C. Hong, “Poly[[aquaneodymium (III)]-μ5-citrato]”, Acta Crystallogr., 2005, E61, m108-m109.
    [188] P. Thuéry, “Neodymium(III) D(–)-citramalate: a chiral three-dimensional framework with water-filled channels”, CrystEngComm, 2007, 9, 460-462.
    [189] A. L. Spek, PLATON, Molecular Geometry Program; University of Utrecht: The Netherlands, 1999.
    [190] H. F. Zhu, J. Fan, T. Okamura, Z. H. Zhang, G. X. Liu, K. B. Yu, W. Y. Sun, N. Ueyama, “Metal-Organic Architectures of Silver(I), Cadmium(II), and Copper(II) with a Flexible Tricarboxylate Ligand”, Inorg. Chem., 2006, 45, 3941-3948.
    [191] D. Brown, D. Altermatt, “Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database”, Acta Cryst. 1985, B41, 244-247.
    [192] R. D. Fischer, “Fundamental and Technological Aspects of Organo-f-Element Chemistry”, ed. T. J. Marks, I. L. Fragala, D. Reidel, Dordrecht, The Netherlands, 1985, 277.
    [193] H. D. Amberger, H. Reddmann, H. Schultze, S. Jank, B. Kanellakopulos, C. Apostolidis, “Electronic structures of organometallic complexes of f elements. Part 54. Electronic Raman and f-f transitions in the low temperature vibrational spectra of Cp3Ce(NCCH3)2 ”, Spectrochim. Acta, Part A, 2003, 59, 2527-2539.
    [194] S. B. Jagtap, R. C. Chikate, O. S. Yemul, R. S. Ghadage, B. A. Kulkarni, “THERMAL, SPECTRAL AND MAGNETIC PROPERTIES OF2-HYDROXY-1,4-NAPHTHOQUINONE MONOXIMATES OF Ho(III), Er(III) AND Yb(III)”, J. Therm. Anal. Cal., 2004, 78, 251-262.
    [195] K. T. Holman, A.M. Pivovar, J. A. Swift, M. D. Ward, “Metric Engineering of Soft Molecular Host Frameworks”, Acc. Chem. Res., 2001, 2, 107-118.
    [196] V. A. Russell, C. C. Evans, W. J. Li, M. D. Ward, “Nanoporous Molecular Sandwiches: Pillared Two-Dimensional Hydrogen-Bonded Networks with Adjustable Porosity”, Science, 1997, 276, 575-579.
    [197] J. A. Swift and M. D. Ward, “Cooperative Polar Ordering of Acentric Guest Molecu les in Topologically Controlled Host Frameworks”, Chem. Mater., 2000, 12, 1501 -1504.
    [198] K. T. Holman, M. D. Ward, “Metric Engineering of Crystalline Inclusion Compounds by Structural Mimicry”, Angew. Chem. Int. Ed. Engl., 2000, 9, 1653-1656.
    [199] J. A. Swift, A. M. Reynolds, and M. D. Ward, “Cooperative Host-Guest Recognition in Crystalline Ciathrates: Steric Guest Ordering by Molecular Gears”, Chem. Mater., 1998, 10, 4159-4168.
    [200] S. A. Dalrymple, M. Parvez, G. K. H.Shimizu, “Intra- and Intermolecular Second-Sphere Coordination Chemistry: Formation of Capsules, Halt-Capsuled, and Extended Structures with Hexaaquo- and Hexaamminemetal Ions”, Inorg. Chem., 2002, 41, 6986-6996.
    [201] S. R. Fan, L. G. Zhu, “Aqua (1,10-phenanthroline) [1,1,1-trifluoro-3- (2-thenoyl)acetonato] copper(II) (1,10-phenanthroline) (5-sulfonatosalicylato) [1,1,1-trifluoro-3-(2-thenoyl)acetonato]cuprate(II)”, Acta Crystallogr., 2005, E61, m2480-m2482.
    [202] S. R. Fan, L. G. Zhu, H. P. Xiao, S. W. Ng, “Aquabis(2,2'-bipyridine) (3-carboxylato-4-hydroxybenzenesulfonato)manganese(II) dehydrate”, Acta Crystallogr., 2005, E61, m377-378.
    [203] B. Liu, Z. J. Wang, S. P. Huang, B. S. Yang, “Bis(ethylenediamine-κ2N,N')(2-oxido-5-sulfonatobenzoato-κ2O1,O2)chromium(III) dihydrate”, Acta Crystallogr., 2006, E62, m608-m610.
    [204] J. F. Li, Y. J. Zhao, X. H. Li, M. L. Hu, “Bis(μ-hydrogen 5-sulfosalicylate)bis[aqua(1,10-phenanthroline)lead(II)]”, Acta Crystallogr., 2004, E60, m1210-m1212.
    [205] S. R. Fan, G. Q. Cai, L. G. Zhu, H. P. Xiao, “A mixed-valence CuII/CuI anion-cation complex: bis[-5-sulfosalicylato(3-)]bis[(di-2-pyridylamine) copper(II)]bis[bis(di-2-pyridylamine)copper(I)] dihydrate”, Acta Crystallogr., 2005, C61, m177-m179.
    [206] S. R. Rong, L. G. Zhu, “Syntheses, supramolecular structures and properties of six coordination complexes based on 5-sulfosalicylic acid and bipyridyl-like chelates”, Chin. J. Chem., 2005, 23, 1292.
    [207] S. R. Fan, H. P. Xiao, L. G. Zhu, “Bis(-5-sulfonatosalicylato)bis[bis (1,10-phenanthroline)cadmium(II)] monohydrate”, Acta Crystallogr., 2006, E62, m18-m20.
    [208] W. X. Ma, B. H. Qian, J. Gao, X. Y. Xu, L. D. Lu, X. J. Yang, X. Wang, H. B. Song, Chin. J. Inorg. Chem., 2005, 21, 612.
    [209] S. R. Rong, L. G. Zhu, “Syntheses, Structures, and Characterizations of Four New Lead(II) 5-Sulfosalicylate Complexes with Both Chelating and Bridging Neutral Ligands”, Inorg. Chem., 2007, 46, 6785-6793.
    [210] S. R. Rong, L. G. Zhu, “Structural diversity and fluorescent properties of copper(II) complexes constructed by 5-sulfosalicylate and 2,2’-bipyridine”, J. Mol. Struct., 2007, 827, 188-194.
    [211] Z. F. Chen, S. M. Shi, R. X. Hu, M. Zhang, H. Liang, Z. Y. Zhou, “Synthesis, Crystal Structure, Fluorescence Property and Antibacterial Activity of Two Unprecedented One-dimensional Chain Metal-organic Coordination Polymers: Zn(H2SSA)(Phen)(H2O)2 and Cu(H2SSA)(Phen)(H2O)2”, Chin. J. Chem., 2003, 21, 1059-1065.
    [212] E. Hecht, “catena-Poly[[tetraaquazinc(II)]-5-sulfosalicylato-?2O:O']”, ActaCrystallogr., 2004, E60, m1286-m1288.
    [213] W. G. Wang, J. Zhang, L. J. Song, J. F. Ju, “Ferromagnetic linear trinuclear copper (II) complex bridged by sulfosalicylate ligand”, Inorg. Chem. Commun., 2004, 7, 858-860.
    [214] S. R. Fan, L. G. Zhu, “catena-Poly[[hexakis(1H-benzimidazole) bis(2-5-sulfonatosalicylato)tricopper(II)] octahydrate]”, Acta Crystallogr., 2005, E61, m2080-m2082.
    [215] S. R. Fan, L. G. Zhu, H. P. Xiao, “catena-Poly[[cis-diaqua(2,2’-bipyridine) zinc(II)]μ-5-sulfonatosalicylato]”, Acta Crystallogr., 2005, E61, m804-m806.
    [216] G. Smith, U. D. Wermuth, D. J. Young, J. M. White, “Polymeric structures in the metal complexes of 5-sulfosalicylic acid: The rubidium(I), caesium(I) and lead(II) analogues”, Polyhedron, 2007, 26, 3645-3652.
    [217] F. F. Li, J. F. Ma, S. Y. Song, J. Yang, “Syntheses, Structures, and Characterizations of Four New Silver(I) Sulfonate Coordination Polymers with Neutral Ligands”, Cryst. Growth Des., 2006, 1, 209-215.
    [218] S. R. Fan, L. G. Zhu, “Influence of the Reaction Conditions on the Self-assembly of Lead(II) 5-Sulfosalicylate Coordination Polymers with Chelating Amine Ligands”, Inorg. Chem., 2006, 45, 7935-7942.
    [219] Z. D. Lu, L. L. Wen, Z. P. Ni, Y. Z. Li, H. Z. Zhu, Q. J. Meng, “Syntheses, Structures, and Photoluminescent and Magnetic Studies of Metal-Organic Frameworks Assembled with 5-Sulfosalicylic Acid and 1,4-Bis(imidazol-1-ylmethyl)-benzene”, Cryst. Growth Des., 2007, 7, 268-274.
    [220] H. Y. Sun, C. H. Huang, X. L. Jin, G. X. Xu, “THE SYNTHESIS, CRYSTAL STRUCTURE AND SYNERGISTIC FLUORESCENCE EFFECT OF A HETERONUCLEAR LANTHANIDE COMPLEX (HLC) {Na3TbLa2(C7H3SO6)4·26H20}n”, Polyhedron, 1995, 14, 1201-1206.
    [221] S. R. Fan, L. G. Zhu, “Poly[[tris(di-2-pyridylamine)tris(μ-5- sulfonatosalicylato)tricopper(II)] trihydrate]”, Acta Crystallogr., 2005, E61, m174-m176.
    [222] P. Starynowicz, “Synthesis and crystal structure of europium(II) dihydrogen bis(sulfosalicylate) pentahydrate [Eu(C7H5O6S)2(H2O)5]∞”, J. Alloy and Compounds, 2000, 305, 117-120.
    [223] J. F. Ma, J. Yang, L. Li, G. L. Zheng, J. F. Liu, “The first ladder structure containing three different squares: the structure of barium 3-carboxy-4-hydroxybenzenesulfonate”, Inorg. Chem. Commun., 2003, 6, 581-583.
    [224] Z. D. Lu, L. L. Wen, J. Yao, Z. Z. Zhu, Q. J. Meng, “Two types of novel layer framework structures assembled from 5-sulfosalicylic acid and lanthanide ions”, CrystEngComm., 2006, 8, 847-853.
    [225] M. C. Hu, C. Y. Geng, S. N. Li, Y. P. Du, Y. C, Jiang, Z. H. Liu, “Syntheses and crystal structures of three cesium salts: Cesium 5-sulfosalicylate, cesium 3,5-dinitrosalicylate and cesium 2,4-dinitrophenoxide monohydrate”, J. Organomet. Chem., 2005, 690, 3118-3124.
    [226] J. F. Ma, J. Yang, S. L. Li, S. Y. Song, H. J. Zhang, H. S. Wang, K. Y. Yang, “ Two Coordination Polymers of Ag(I) with 5-Sulfosalicylic Acid”, Cryst. Growth Des., 2005, 5, 807-812.
    [227] A. Marzotto, D. A. Clemente, T. Gerola, G. Valle, “Synthesis, molecular structure and reactivity of sodium 5-sulfosalicylate dihydrate and sodium [triaqua(5-sulfosalicylato)copper(II)] 2 hemihydrate”, Polyhedron, 2001, 20, 1079-1087.
    [228] X. Q. Wang, J. Zhang, Z. J. Li, Y. H. Wen, J. K. Cheng, Y. G. Yao, “Poly[aquaneodymium(III)-μ5-2-oxido-5-sulfonatobenzoato]”, Acta Crystallogr., 2004, C60, m657-m658.
    [229] A. Krief, T. Ollevier, D. Swinnen, B. Norberg, G. Baudoux, G. Evrard, “Synthesis and Absolute Structure Determination of Camphanoate Derivatives of Five Bicyclo[3.1.0]hexane Compounds”, Acta Cryst., 1998, C54, 392-398.
    [230] W. Li, H. P. Jia, Z. F. Ju, J. Zhang, “A Novel Chiral Cd(II) Coordination Polymer Based on Achiral Unsymmetrical 3-Amino-1,2,4-triazole with anUnprecedented μ4-Bridging Mode”, Cryst. Growth Des., 2006, 4, 2136-2140.
    [231] U. Abram, D. Amico, F. Calderazzo, C. Porta, U. Englert, F. Marchetti, A. Merigo, “Isotypical N,N-dialkylcarbamato lanthanide complexes covering a range of 11 atomic numbers: direct experimental assessment of the lanthanide contraction in trivalent molecular compounds”, Chem. Commun., 1999, 2053-2054.
    [232] L. Pan, X. Huang, J. Li, Y. Wu, N. Zheng, “Novel Single- and Double-Layer and Three-Dimensional Structures of Rare-Earth Metal Coordination Polymers: The Effect of Lanthanide Contraction and Acidity Control in Crystal Structure Formation”, Angew. Chem. Int. Ed., 2000, 39, 527-530.
    [233] C. Janiak, “A critical account on – stacking in metal complexes with aromatic nitrogen-containing ligands”, J. Chem. Soc., Dalton Trans., 2000, 3885-3896.
    [234] N. W. Ockwig, O. D. Friedrichs, M. O’Keeffe, O. M. Yaghi, “Reticular Chemistry: Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks”, Acc. Chem. Res., 2005, 8, 176-182.
    [235] M. O’Keeffe, M. Eddaoudi, H. Li, T. Reineke, O. M. Yaghi, “Frameworks for Extended Solids: Geometrical Design Principles”, J. Solid State Chem., 2000, 152, 3-20.
    [236] D. L. Long, A. J. Blake, N. R. Champness, C. Wilson, M. Schr?der, “Lanthanum Coordination Networks Based on Unusual Five-Connected Topologies”, J. Am. Chem. Soc., 2001, 123, 3401-3402.
    [237] L. Pan, N. Ching, X. Y. Huang, J. Li, 2001, “An unprecedented two-fold interpenetrated heterometallic 4664 network constructed by five-connected copper metal nodes”, Chem. Commun., 2001, 1064-1065.
    [238] H. L. Sun, B. Q. Ma, S. Gao, S. R. Batten, “Syntheses, Structures, and Characterizations of Four New Silver(I) Sulfonate Coordination Polymers with Neutral Ligands”, Cryst. Growth Des., 2006, 4, 209-215.
    [239] 陈小明,蔡继文,“单晶结构分析”,科学出版社,2003,100。
    [240] G. H. Dieke, “Spectra and energy levels of rare earth ions in crystals”, Interscience Publishers, New York, 1968, 268-279.
    [241] S. Quici, M. Cavazzini, G. Marzanni, G. Accorsi, N. Armaroli, B. Ventura, F. Barigelletti, “Visible and Near-Infrared Intense Luminescence from Water-Soluble Lanthanide [Tb(III), Eu(III), Sm(III), Dy(III), Pr(III), Ho(III), Yb(III), Nd(III), Er(III)] Complexes”, Inorg. Chem., 2005, 44, 529-537.
    [242] G. M. Davies, R. J. Aarons, G. R. Motson, J. C. Jeffery, H. Adams, S. Faulkner, M. D. Ward, “Structural and near-IR photophysical studies on ternary lanthanide complexes containing poly(pyrazolyl)borate and 1,3-diketonate ligands”, Dalton Trans., 2004, 1136-1144.
    [243] A. J. Blake, N. R. Champness, P. Hubberstey, W. S. Li, M. A. Withersby, M. Schroder, “Inorganic crystal engineering using self-assembly of tailored building-blocks”, Coord. Chem. Rev., 1999, 183 117-138.
    [244] S. Kitagawa, R. Kitaura, S. Noro, “Functional Porous Coordination Polymers”, Angew. Chem. Int. Ed., 2004, 43, 2334-2375.
    [245] Y. H. Wan, L. P. Zhang, L. P. Jin, “Three new lanthanide coordination polymers containing isophthalate and 1,10-phenanthroline”, J. Mol. Struct., 2003, 658, 253-260.
    [246] Y. F. Zhou, F. L. Jiang, D. Q. Yuan, B. L. Wu, R. H. Wang, Z. Z. Lin, M. C. Hong, “Copper Complex Cation Templated Gadolinium(iii)–Isophthalate Frameworks”, Angew. Chem. Int. Ed., 2004, 43, 5665-5668.
    [247] Y. F. Zhou, D. Q. Yuan, F. L. Jiang, Y. Q. Xu, M. C. Hong, “Lanthanide-isophthalate cavity frameworks encapsulated copper(I) complexes”, J. Mol. Struct., 2006, 796, 203-209.
    [248] A. Thirumurugan, S. Natarajan, “Synthesis, structure and luminescent properties of yttrium benzene dicarboxylates with one- and three-dimensional structure”, Dalton Trans., 2004, 2923-2928.
    [249] X. J. Zheng, T. T. Zheng, L. P, Jin, “Self-assembly of lanthanidemixed-carboxylates coordination polymers”, J. Mol. Struct., 2005, 740, 31-35.
    [250] A. D. B. Dias, “Isophthalato-Based 2D Coordination Polymers of Eu(III), Gd(III), and Tb(III): Enhancement of the Terbium-Centered Luminescence through Thiophene Derivatization”, Inorg. Chem., 2005, 44, 2734-2741.
    [251] Y. F. Zhou, F. L. Jiang, Y. Xu, R. Cao, M. C. Hong, “Two-dimensional lanthanide-isophthalate coordination polymers containing right- and left-handed helical chains”, J. Mol. Struct., 2004, 691, 191-195.
    [252] D. X. Hu, P. K. Chen, F. Luo, Y. X. Che, J. M. Zheng, “Hydrothermal synthesis, structure and properties of two lanthanide benzenedicarboxylates, [La2(isophth)2(Hisophth)2(H2O)·H2O]n and [Dy4(isophth)4(Ac)4(H2O)8·2H2O]n, possessing infinite Ln–O–Ln linkages”, J. Mol. Struct., 2007, 837, 179-184.
    [253] B. Kesanli, W. Lin, “Chiral porous coordination networks: rational design and applications in enantioselective processes”, Coord. Chem. Rev., 2003, 246, 305-326.
    [254] C. B. Ma, C. N. Chen, Q. T. Liu, F. Chen, D. Z. Liao, L. C. Li, L. C. Sun, “Synthesis, Structure and Magnetic Properties of a Series of Novel Isophthalate-Bridged Manganese(II) Polymers with Double-Layer or Double-Chain Structures”, Eur. J. Inorg. Chem., 2004, 3316-3325.
    [255] J. F. Song, Y. Chen, Z. G. Li, R. S. Zhou, X. Y. Xu, J. Q. Xu, “Copper and cobalt coordination polymers based on isophthalate as bridging ligands and imidazole as capping ligands: syntheses, crystal structures, spectroscopic characterization”, J. Mol. Struct., 2007, 842, 125-131.
    [256] L. B. Wang, X. M. Li, Q. W. Wang, B. Liu, “catena-Poly[[aqua (1H-imidazole-?N3)cadmium(II)]-μ-benzene-1,3-dicarboxylato-?3O,O':O'']”, Acta Crystallogr., 2007, E63, m715-716.
    [257] J. H. Yang, S. L. Zheng, J. Tao, G. F. Liu, X. M. Chen, “Hydrogen-Bonded Three-Dimensional Molecular Architectures Featuring Carboxylate–Imidazole–Zinc Triad Systems”, Aust. J. Chem., 2002, 55, 741-744.
    [258] S. R. Batten, P. Jensen, B. Moubaraki, K. S. Murray, R. Robson, “Structure and molecular magnetism of the rutile-related compounds M(dca)2, M = CoII, NiII, CuII, dca = dicyanamide, N(CN)2–”, Chem. Commun., 1998, 439-440.
    [259] J. Kim, B. Chen, T. M. Reineke, H. Li, M. Eddaoudi, D. B. Moler, M. O’Keeffe, O. M. Yaghi, “Assembly of Metal-Organic Frameworks from Large Organic and Inorganic Secondary Building Units: New Examples and Simplifying Principles for Complex Structures”, J. Am. Chem. Soc., 2001, 123, 8239-8247.
    [260] P. Jensen, D. J. Price, S. R. Batten, B. Moubaraki, K. S. Murray, “Self-Penetration - A Structural Compromise between Single Networks and Interpenetration: Magnetic Properties and Crystal Structures of [Mn(dca)2(H2O)] and [M(dca)(tcm)], M = Co, Ni, Cu, dca = Dicyanamide, N(CN)2-, tcm = Tricyanomethanide, C(CN)3-”, Chem. Eur. J., 2000, 6, 3186-3195.
    [261] E. Y. Lee, S. Y. Jang, M. P. Suh, “Multifunctionality and Crystal Dynamics of a Highly Stable, Porous Metal-Organic Framework [Zn4O(NTB)2]”, J. Am. Chem. Soc., 2005, 127, 6374-6381.
    [262] L. G. Beauvais, M. P. Shores, J. R. Long, “Cyano-Bridged Re6Q8 (Q = S, Se) Cluster-Metal Framework Solids: A New Class of Porous Materials”, Chem. Mater., 1998, 10, 3783-3786.
    [263] D. J. Chesnut, D. Plewak, J. Zubieta, “Solid state coordination chemistry of the copper(I)–cyano–organodiimine system. Two- and three-dimensional copper cyanide phases incorporating linear dipodal ligands”, J. Chem. Soc., Dalton Trans., 2001, 2567-2580.
    [264] S. C. Xiang, X. T. Wu, J. J. Zhang, R. B. Fu, S. M. Hu, X. D. Zhang, “A 3D Canted Antiferromagnetic Porous Metal-Organic Framework with Anatase Topology through Assembly of an Analogue of Polyoxometalate”, J. Am. Chem. Soc., 2005, 127, 16352-16353.
    [265] A. I. Voloshin, N. M. Shavaleev, V. P. Kazakov, “Luminescence of praseodymium (III) chelates from two excited states (3P0 and 1D2) and its dependence on ligand triplet state energy”, J. Lumin., 2001, 93, 199-204.
    [266] S. Comby, J. C. G. Bünzli, “Handbook on the Physics and Chemistry of Rare Earths”, Elsevier Science, Amsterdam, 2007.
    [267] C. G. Arena, G. Bruno, F. Faraone, “Heterotetranuclear M2(d0)M’2(d8)(M = Ti or Zr, M’ = Rh or Ir) complexes containing pyridine-3,5-dicarboxylate as an assembling ligand. Crystal structure of [(η5-C5H5)2Ti{μ-3,5-C5H3N(CO2)2}2 Ti(η5-C5H5)2]”, J. Chem. Soc., Dalton Trans., 1991, 1223-1226.
    [268] Z. Q. Qin, M. C. Jennings, R. J. Puddephatt, K.W. Muir, “Self-assembly motifs of palladium(II) dicarboxypyridine complexes”, CrystEngComm, 2000, 11, 1-4.
    [269] C. L. Ma, J. K. Li, R. F. Zhang, D. Q. Wang, “Syntheses and characterization of triorganotin complexes: X-ray crystallographic study of triorganotin pyridinedicarboxylates with trinuclear, 1D polymeric chain and 2D network structures”, J. Organomet. Chem., 2006, 691, 1713-1721.
    [270] P. S. Wang, C. N. Moorefield, M. Panzner, G. R. Newkome, “Terpyridine CuII Polycarboxylate Crystal Reorganization to One- and Two-Dimensional Nanostructures: Crystal Disassembly and Reassembly”, Cryst. Growth Des., 2006, 4, 1563-1565.
    [271] T. Brasey, R. Scopelliti, K. Severin, “Guest-induced formation of an icosahedral coordination cage”, Chem. Commun., 2006, 3308-3310.
    [272] Q. Shi, S. Zhang, Q. Wang, H. W. Ma, G. Q. Yang, W. H. Sun, “Synthesis and crystal structure of metal-organic frameworks [Ln2(pydc-3,5)3 (H2O)9]n3nH2O (Ln = Sm, Eu, Gd, Dy; pydc-3,5 = pyridine-3,5-dicarboxylate) along with the photoluminescent property of its europium one”, J. Mol. Struct., 2007, 837, 185-189.
    [273] Y. L. Lu, J. Y. Wu, M. C. Chan, S. M. Huang, C. S. Lin, T. W. Chiu, Y. H. Liu, Y. S. Wen, C. H. Ueng, T. M. Chin, C. H. Hung, K. L. Lu, “Influence ofWater Content on the Self-Assembly of Metal-Organic Frameworks Based on Pyridine-3,5-dicarboxylate”, Inorg. Chem., 2006, 45, 2430-2437.
    [274] X. W. Wang, X. Li, J. Z. Chen, G. Zheng, H. L. Hong, “Novel (3,4)- and (4,5)-Connected Lanthanide Metal-Organic Frameworks”, Eur. J. Inorg. Chem., 2008, 98-105.
    [275] M. A. Lawandy, L. Pan, X. Y Huang, J. Li, “A New Three-dimensional Lanthanide Framework Constructed by Oxalate and 3,5-pyridinedicarboxylate”, Mat. Res. Soc. Symp. Proc., 2001, 658, GG6.12.1-GG6.12.6.
    [276] S. K. Ghosh, P, K. Bharadwaj, “Self-Assembly of Lanthanide Helicate Coordination Polymers into 3D Metal-Organic Framework Structures”, Inorg. Chem., 2004, 43, 2293-2298.
    [277] A. Fernandes, J. Jaud, J. D. Ghys, C. B. Cabarrecq, “Study of new lanthanide complexes of 2,6-pyridinedicarboxylate: synthesis, crystal structure of Ln(Hdipic)(dipic) with Ln = Eu, Gd, Tb, Dy, Ho, Er, Yb, luminescence properties of Eu(Hdipic)(dipic)”, Polyhedron, 2001, 20, 2385-2391.
    [278] S. Q. Xia, S. M. Hu, J. C. Dai, X. T. Wu, J. J. Zhang, Z. Y. Fu, W. X, Du, “Two 2D, 3D cadmium-pyridinedicarboxylate polymers: structures and photoluminescent properties”, J. Mol. Struct., 2004, 7, 51-53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700