氮杂环及含羧基类配体官能化多钼酸盐的合成及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文旨在利用含氮杂环或羧基类配体与原位生成的多钼酸盐阴离子反应,构筑新型具有一定功能特性的多钼酸盐官能化衍生物。研究这类化合物的合成条件及反应规律,探讨反应过程中的pH值、抗衡阳离子、溶剂、配位原子电荷密度等因素对化合物结构形成的影响。在分子设计思想的指导下,实验中所得到的化合物不仅实现了氮杂环或羧基类配体通过不同强度的共价键与多钼酸盐阴离子的连接,而且实现了多钼酸盐衍生物的结构从零维到三维的变化。
     在实验中我们选用吡啶类衍生物、咪唑、多元羧酸、二氧化碳、含羧基的铜配合物等作为修饰配体,不同的多钼酸盐为无机组分,在常规条件下通过调节反应原料的种类和反应条件合成了十六种未见文献报道的多钼酸盐衍生物。通过元素分析、红外光谱、X-射线光电子能谱、电化学分析和单晶X-射线衍射分析等手段对这些化合物的晶体结构和性质进行了表征。
     1.利用有机配体烟酰胺或异烟酸在水溶液中与原位生成的八钼酸盐反应合成并表征了四个有机配体修饰的多钼酸盐衍生物:
     化合物1–3实现了烟酰胺配体与γ?构型八钼酸盐的官能化反应。三个化合物中的阴离子骨架结构相似。但是由于钠离子的堆积不同,化合物2与3中钠离子连接的阴离子骨架分别呈现一维链和二维层状结构。化合物4中的吡啶氮原子没有与阴离子配位因此只形成了氢键连接的超分子化合物。
     2.利用有机配体咪唑,在水溶液或混合溶剂中与钼酸盐及过渡金属离子反应,合成并表征了四个咪唑诱导的多钼酸盐衍生物:
     化合物5中无机骨架单元为两种咪唑官能化的γ-型八钼酸盐多阴离子,这些多阴离子利用钾离子与配合物阳离子的连接形成了具有一维孔道的三维化合物。6与7虽然是在相同的条件下合成产生,但所得结构却完全不同:化合物6中的阴离子骨架为结构新颖的首例Co2+离子作为中心杂原子的Keggin型杂多钼酸盐;而化合物7则呈现[Co(H2O)5]2+水合离子与七钼酸盐通过共用氧原子相连形成的简单阴离子结构。化合物8的合成条件与6和7虽然相近仅是在反应体系中引入了N,N’-二甲基酰胺溶剂,但晶体结构却与6和7完全不同。化合物8中与咪唑配位的[Co(imi)2(H2O)2]2+配合物阳离子将七钼酸盐连接成为一维链式结构。
     3.利用含羧基的有机配体在水溶液中与钼酸盐反应,合成并表征了四个羧基官能化的多钼酸盐衍生物:
     化合物9与10分别实现了脂肪族与芳香族羧酸配体官能化γ-型八钼酸盐多阴离子的反应。化合物11与12则实现了多羧基配体与新型十钼酸盐的官能化反应,而且有机配体与十钼酸盐之间通过三个配位键使有机与无机两种阴离子之间的结合力增强。11与12还呈现出少见报道的内消旋链结构。化合物11与聚乙烯醇组成的复合膜还具有光致变色性质。
     4.在二氧化碳的参与下,利用常规水溶液合成方法制备出两种以共价键结合的链状二氧化碳官能化的杂多钼酸盐:
     在化合物13与14中,CO2分子通过两个氧原子与相邻的[PMo11CoO39(H2O)]5-或[SiMo11CoO39(H2O)]6-多阴离子之间以共价键连接形成了一维链状结构。首次实现了多阴离子与CO2分子的官能化反应,即实现了CO2分子的化学共价键固载。
     5.在水/N, N’-二甲基甲酰胺混合体系中,用预先制备的铜配合物与原位生成的多钼酸盐反应,分别制备出链状或层状的铜配合物修饰的八钼酸盐化合物:
     化合物15利用两步合成的方法,证明了多钼酸盐阴离子的端氧可以取代配合物中弱的配体,并发现多阴离子可以通过改变配合物前驱体的构型来实现磁学性质的调变。化合物16进一步实现了配合物中有机基团和中心离子同时与多钼酸盐阴离子的配位并得到层状二维结构。化合物16的磁学性质研究也表明多阴离子的取代对配合物的磁性可以产生较大的影响。
In this thesis, N-heterocycle or carboxylic ligands were used to react with in-situ generated polymolybdate anion to construct functionalized polymolybdate derivative with certain functions. The influence of the reaction conditions for the final products was investigated such as pH, counterion, solvent, and charge density of coordination atom. By way of molecular design, N-heterocycle or carboxylic ligands were realized to coordinate to the polymolybdate anions by different covalent bonds. The structures of these new functionalized polymolybdate compounds also vary from 0D to 3D.
     Under conventional conditions, we select pyridine derivative, imidazole, multi-carboxylic acids, carbon dioxide, and carboxyl containing copper complex as organic ligands to react with polymolybdate inorganic component and new sixteen polymolybdate compounds were successful synthesized. These new complexes were characterized by elemental analysis, IR and XPS spectra, TGA, electrochemical and XRD single crystal analysis.
     1. In aqueous phase, four polymolybdate derivatives were synthesized by using nicotinic amide or nicotinic acid as organic ligands:
     Compounds 1?3 realized the functionalization of nicotinamide withγ?type octamolybdate. Due to the different arrangement of Na+ ions, compounds 2 and 3 display 1D chain and 2D layered structures, respectively. While compound 4 only shows H-bond linked supramolecular framework, because the N atom in nicotinic acid does not coordinate to the polyanion.
     2. In aqueous or mixed phase, imidazole and transition metal ion react with molybdate forming four imidazole-containing polymolybdate derivatives:
     Compound 5 contains the imidazole functionlizedγ?type octamolybdate polyanion. These polyanions together with K+ and copper complex cations to form 3D framework with 1D channel. Under the same conditions, compounds 6 and 7 present different structures: compound 6 is the first example of Keggin-type heteropolymolybdate with Co2+ ion as central heteroatom; while compound 7 only contains a heptmolybdate anion coordinated by a [Co(H2O)5]2+ cation. In mixed solvent, compound 8 represent a 1D chain structure that the heptmolybdate anions are linked by [Co(imi)2(H2O)2]2+ cations.
     3. In aqueous phase, the carboxylic ligands were used to react with molybdate and four carboxyl functionalized polymolybdate formed:
     Compounds 9 and 10 realize the functionalization of carboxyl withγ?type octamolybdate polyanion. Compounds 11 and 12 realize the functionalization of carboxyl with decamolybdate polyanion, where the multi-carboxylic acids coordinate to the decamolybdate anions by three covalent bonds and present interesting meso-helical chain structures. In addition, the film containing 11and polyvinyl shows photochromic properties.
     4. In aqueous phase, two heteropolymolybdate were functionalized by carbon dioxide ligands:
     In compounds 13 and 14, CO2 ligand coordinates to the [PMo11CoO39(H2O)]5- or [SiMo11CoO39(H2O)]6- anions by its oxygen atoms, showing 1D chain-like structures. It is the first time to realize the coordination of CO2 by polyoxoanions.
     5. In water/DMF mixed solvent, the as-synthesized copper complex was used as ligand to react with polymolybdate and chain-like or layered octamolybdate compounds were isolated:
     Using two-step synthetic method, compound 15 confirm that the terminal oxygen atom can substitute the weak ligand in the copper complex. It was also found that the magnetic properties can be modulated by the conformation change of the as-synthesized copper complex (CuL1). Compound 16 further realized the coordination of carboxyl and copper ion with polymolybdate anions simultaneously and present 2D layered structure. Magnetism of compound 16 also indicates that the substituted polyanion can affect the magnetic properties of as-synthesized copper complex (CuL2).
引文
[1] Pope M T. Heteropoly and Isopoly Oxometalates [M]. Springer-Verlag: Berlin, 1983, 1–10.
    [2] Pope M. T. Müller A.Polyoxometalate Chemistry [M]. Kluwer, Dordrecht, 2001, 1–10.
    [3] Berzelius J. The preparation of the phosphomolybdate ion [PMo12O40]3 [J]. Pogg. Ann. 1826, 6: 369–371.
    [4] Mizumo N, Misono M. Heterogeneous catalysis [J]. Chem. Rev. 1998, 98: 199–217.
    [5] Carrier X, Caillerie J B, Lambert J F. The support as a chemical reagent in the preparation of Wox/y-Al2O3 catalysts formation and deposition of aluminotungstic heteropolyanions [J]. J. Am. Chem. Soc. 1999, 121(14): 3377–3378.
    [6] Chen X, Xu Z, Okuhara T. Liquid-phase esterification of acrylic acid with 1-butanol catalyzed by solid acid catalysts [J]. Appl. Catal. A. 1999, 180(1-2): 261–269.
    [7] Harrup M, Hill C L. Triniobium polytungstophosphates, suntheses, structures, clarification of isomerism and reactivity in the presence of H2O2 [J]. Inorg. Chem. 1998, 37(21): 5550–5556.
    [8] Anne G, Pascal B, Edmond P. Preparation of hydrodesulfurization catalysts by impregnation of alumina with new heteropoly compounds [J]. Chem. Lett. 1997, 12: 1259–1260.
    [9] Hu C W, He Q L, Wang E B. Synthesis, stability and oxidative activity of polyoxometalates pillared anionic clays ZnAl-SiW11 and ZnAl-SiW11Zn [J]. Catl. Today. 1996, 30: 141–145.
    [10] Hu C W, He Q L, Zhang Y H, et al. Synthesis of new types of polyoxometalate pillared anionic clays:31P and 27Al NMR study of the orientation of intercalated PW11VO40 [J]. J. Chem. Soc. Chem. Commun. 1996, 121–122.
    [11] Katsoulis D E. A survey of applications of polyoxometalates [J]. Chem. Rev. 1998, 98: 359–388.
    [12] Pope M T, Muller A, Chemistry of polyoxometalates, Actual variation on an old theme with interdisciplinary references [J]. Angew. Chem. Int. Ed. Engl. 1991, 103(1): 56–70.
    [13] Baker L C W, Glick D C. Present general status of understanding of heteropoly electrolytes and traeing of some major highlights in the history of their elucidations [J]. Chem. Rev. 1998, 98: 3–50.
    [14] Wang E B, Li B T, Zhang B J. Researches into the proton conductivity of molybdovanadophosphotic acids with Well-Dawson structure [J]. Chem. Res. Chin. Univ. 1996, 12(4): 322–323.
    [15] 王力,刘宗瑞,周云山等.取代型钨镓杂多配合物导电性及磁性研究 [J].高等学校化学学报.1997, 18(6): 846–848.
    [16] 胡长文,许林,王恩波,杂多金属氧酸盐的磁性 [J]. 科学通报. 1998,43(12): 1234–1236.
    [17] 余新武,刘术侠,王戈等. 三取代过渡技术钨镓杂多配合物的磁性及导电性能研究 [J]. 化学学报. 1996, 54: 864–868.
    [18] Xu L, Hu C W, Wang E B. Magnetic properties of heteropolyoxometalates [J]. Chin. Sci. Bull. 1999, 44(6): 481–488.
    [19] Borshch S A, Bigot B. Magnetic properties of the mixed-valence heteropoly blues with a Keggin structure [J]. Chem. Phys. Lett. 1993, 212(3-4): 398–403.
    [20] Clemente-Juan J M, Coronado E, Gomez-Garcia C J. Increasing the nuclearity of magnetic polyoxometalates. Syntheses, structure, and magnetic properties of salts of the heteropolycomplexes [Ni3(H2O)(PW10O39)H2O]n-, [Ni4(H2O)2(PW10O34)2]10-, [Ni9(OH)3(H2O)6(HPO4)2(PW10O34)2]16- [J]. Inorg. Chem. 1999, 38: 55–63.
    [21] Cassan-Pastor N, Baker L C W. Magnetic properties of mixed-valence heteropoly blues interactions with complexes containing paramagnetic atoms in obvious sites as well as ‘blue’ electrodes delocalized over polytungstate frameworks [J]. J. Am. Chem. Soc. 1992, 114(26): 10384–10386.
    [22] Liu J F, Chen Y G, Meng L. Synthesis and characterization of novel heteropolytungstatoarsenates containing lanthanides {LnAs4W40O140}25- and their biological activity [J]. Polyhedron. 1998, 17(9): 1541–1546.
    [23] Yamase T, Fujita H, Fukushima K. Medical chemistry of polyoxometalates part 1. potent antitumor activity of polyoxomolybdates on animal transplantable tumors and human cancer xenograft [J]. Inorg. Chim. Acta. 1988, 151: 15–18.
    [24] Wang X H, Hill C L. Synthesis and anti-HIV activity of bis(methanofullerene) polyoxometalates [J]. Proc-Electrochem. Soc. 1998, 98(8): 1222–1226.
    [25] Fugita H, Fugita T, Skurai T. A new type of antiumor substances, polyoxomolybdates [J]. Chemotherapy. 1992, 40(2): 173–178.
    [26] Wang X H, Liu J F, Pope M T. Synthesis, characterization and biological activity of organotitanium substituted heteropolytungstates [J]. J. Chem. Soc, Dalton Trans. 2000, 1139–1142.
    [27] Wang X H, Dai H C, Liu J F. Synthesis and characterization of organotin-substituted heteropolytungstosilicates and their biological activity I [J]. Polyhedron. 1999, 18: 2293–2300.
    [28] 刘术侠,刘彦勇,王恩波等. Keggin 结构钨磷酸稀土镨盐杂多蓝的合成及抗艾滋病毒(HIV-1)活性的研究 [J]. 高等学校化学学报. 1996,17(8): 1188–1190.
    [29] 刘术侠,刘彦勇,王恩波,13-钼镍(锰)杂多酸稀土盐的合成及其镨盐抗肿瘤活性研究(I) [J].化学学报. 1996, 54: 673–678.
    [30] 刘术侠,李白涛,王恩波等. 新型穴状结构阴离子 NaSb9W21O86 18-杂多蓝合成及抗艾滋病毒(HIV-1)活性 [J]. 科学通报. 1997, 42(15): 1622–1626.
    [31] 邱云峰. 有机分子修饰的多酸衍生物的合成、结构和性质研究 [D]:[硕士学位论文]. 长春:东北师范大学化学学院,2006.
    [32] Combs-Walker L A, Hill C L. Stabilization of the defect ("lacunary") complex polymolybdophosphate, PMo11O397-. Isolation, purification, stability characteristics, and metalation chemistry [J]. Inorg. Chem. 1991, 30: 4016–4026.
    [33] Gili P, Lorenzo-Luis P A, Mederos Alfredo, et al. Crystal structures of two new heptamolybdates and of a pyrazole incorporating a γ-octamolybdate anion [J]. Inorg. Chim. Acta. 295,106–114.
    [34] Bridgeman A J, The Electronic Structure and Stability of the Isomers of Octamolybdate [J]. J. Phys. Chem. A. 2002, 106(50): 12151–12160.
    [35] Khan M I, Chen Q, Salta J, et al. Retention of Structural Cores in the Synthesis of High-Nuclearity Polyoxoalkoxomolybdate Clusters Encapsulating [Na(H2O)3]+ and [MoO3] Moieties. Hydrothermal Syntheses and Structures of (NH4)7[NaH12Mo16O52]·4H2O and (Me3NH)4K2[H14Mo16O52]·8H2O and Their Structural Relationships to the Class of Superclusters [XHnMo42O109{(OCH2)3CR}7]m- (X=Na(H2O)3+: n=13, m= 19; n=15, m=7. X= MoO3: n=14, m=9; n=13, m=10) [J]. Inorg Chem, 1996, 35:1880–1901.
    [36] Long D L, K?gerler P, Farrugia L J, et al. Restraining Symmetry in the Formation of Small Polyoxomolybdates: Building Blocks of Unprecedented Topology Resulting From Shrink-Wrapping [H2Mo16O52]10--Type Clusters [J]. Angew. Chem. Int. Ed. 2003, 42: 4180–4183.
    [37] Long D L, Streb C, Kogerler P, et al. Observation and Theoretical Analysis of the “Sensitive Coordination Sites” in the Isopolyoxomolybdate Cluster [Mo36O112(H2O)14]8- [J]. J. Cluster Sci. 2006, 17: 291–293.
    [38] Liang D D, Liu S X, Wang C L, et al. A novel nanomolecular organic–inorganic hybrid compound: Na2[NH(CH2CH2OH)3]4{Mo36O112(OH2)14[OHCH2CH2NH(CH2CH2OH)2]2}·nH2O (n≈72) exhibiting a supramolecular one-dimensional chainlike structure [J]. J. Solid state Chem. 2007, 180: 558–563.
    [39] Müller A, Krickemeyer E, Meyer J, et al. [Mo154(NO)14O420(OH)28(H2O)70](25±5)-: A water-soluble big wheel with more than 700 atoms and a relative molecular mass of about 24000 [J]. Angew. Chem. Int. Ed. Engl. 1995, 34: 2122–2124.
    [40] Müller A, Polarz S, Das S K, et al. Molecular growth from a Mo176 to a Mo248 cluster [J]. Nature. 1999,397: 48–50.
    [41] Kurth DG, Lehmann P, Volkmer D, et al. Biologically inspired polyoxometalate-surfactant composite materials. Investigations on the structures of discrete, surfactantencapsulated clusters, monolayers, and Langmui-Blodgett films of (DODA)40(NH4)2[(H2O)n∩Mo132O372(CH3CO2)30(H2O)72] [J]. J. Chem. Soc. Dalton Trans. 2000, 3989–3998.
    [42] Müller A, Beckmann E, B?gge H, et al, Inorganic Chemistry Goes Protein Size: A Mo368 Nano-Hedgehog Initiating Nanochemistry by Symmetry Breaking [J]. Angew. Chem. Int. Ed. Engl. 2002, 41(7): 1162–1167.
    [43] Yamase T, Prokop P V. Photochemical Formation of Tire-Shaped Molybdenum Blues: Topology of a Defect Anion, [Mo142O432H28(H2O)58]12- [J]. Angew. Chem. Int. Ed. Engl. 2002, 41: 466–469.
    [44] [C4H9)4N]2[(OC14H8O)2Mo4O10(OCH3)2]的合成和晶体结构. 鲁晓明,朱慧菊,刘顺诚. 高等学校化学学报,1996 ,17(2): 183~186.
    [45] Barkigia K M, RajkovicBlazer L M, Pope M T et al. Molybdoarsinate heteropoly complexes. Structure of the hydrogen tetramolybdodimethylarsinate anion by x-ray and neutron diffraction Inorg. Chem. 1980, 19 (9): 2531~2537.
    [46] Thompson M R, Day C S, Day V W et al. Substitutive intramolecular carbonyl insertion in a carbomolybdate cluster: formation of a polycentric, conformationally flexible anion binding cavity [J]. J . Am. Chem. Soc. 1980 ,102 (18): 5971~5973.
    [47] Hsieh T C , Zubieta J. Synthesis and characterization of a tetranuclear oxomolybdate containing coordinatively bound diazenido units. [Mo4O8(OCH3)2(NNC6H5)4]2- [J]: a versatile precursor for the synthesis of complexes with the [Mo(NNC6H5)2]2+ unit Inorg. Chem. ,1985 ,24(9): 1287~1288.
    [48] Liu S, Sun X, Zubieta J. Synthesis and structural characterization of a thiolate coordination complex of a mixed-valence Mo(V)/Mo(VI) polyoxomolybdate, [Mo10O28(SCH2CH2O)2(HOCH3)2]4-, and of its decomposition product [Mo4O6(SCH2CH2O)5]2- [J]. J . Am. Chem. Soc. 1988, 110 (10): 3324~3326.
    [49] Chilou V, Gouzerh P, Jeannin Yet al. [M4O12{MeC(NH2)NO}2]2- (M = Mo or W), a tetranuclear complex with a small 4-acetamidoximate ligand as an unprecedented bridge [J]. J . Chem. Soc. Chem. Commun. ,1987: 1469~1450.
    [50] Proust A, Gouzerh P, Robert F. Molybdenum oxo nitrosyl complexes. 1. Defect Lindqvist compounds of the type [Mo5O13(OR)4(NO)]3- (R = CH3, C2H5). Solid-state interactions with alkali-metal cations [J] Inorg. Chem. 1993, 32 (23): 5291~5298.
    [51] Gouzerh P, Jeannin Y, Proust A et al. Two Novel polyoxometalates containing the [MoNO]3+ unit: [Mo5Na(NO)O13(OCH3)4]2- and [Mo6(NO)O18]3- [J]. Angew. Chem. Int. Ed. Engl. 1989, 28(10): 1363~1364.
    [52] Proust A, Gouzerh P, Robert F. Organometallic Oxides: Lacunary Lindqvist-Type Polyanion-Supported Cyclopentadienylrhodium Complex Fragments [J]. Angew. Chem. Int. Ed. Engl. 1993, 32(1): 115-116.
    [53] Proust A, Thouvenot R, Robert F, et al. Molybdenum oxo nitrosyl complexes. 2. Molybdenum-95 NMR studies of defect and complete Lindqvist-type derivatives. Crystal and molecular structure of (n-Bu4N)2[Mo6O17(OCH3)(NO)] [J]. Inorg. Chem. 1993, 32: 5299–5304.
    [54] Bank S, Liu S, Shaikh S N, et al. Molybdenum-95 NMR studies of (aryldiazenido)- and (organohydrazido)molybdates. Crystal and molecular structure of [n-Bu4N]3[Mo6O18(NNC6F5)] [J]. Inorg. Chem. 1988, 27: 3535–3543.
    [55] Proust A, Thouvenot R, Herson P. Revisiting the synthesis of [Mo6(η5-C5Me5)O18]–. X-Ray structural analysis, UV-visible, electrochemical and multinuclear NMR characterization [J]. J.Chem. Soc.Dalton Trans. 1999, 51–56.
    [56] Kwen H, Young V G Jr, Maatta E A. A Diazoalkane Derivative of a Polyoxometalate: Preparation and Structure of [Mo6O18(NNC(C6H4OCH3)CH3)]2- [J]. Angew. Chem. Int. Ed. 1999, 38: 1145–1146.
    [57] Du Y, Rheingold A L, Maatta E A. Activation parameters for triplet .delta.-hydrogen abstraction by o-tert-butylbenzophenones: no tunneling but an entropy-controlled inductive effect in the isoelectronic anilinium ion [J]. J. Am. Chem. Soc. 1992, 114: 346–348.
    [58] Proust A, Thouvenot R, Chaussade M, et al. Phenylimido derivatives of [Mo6O19]2?: syntheses, X-ray structures, vibrational, electrochemical, 95Mo and 14N NMR studies [J]. Inorg.Chim. Acta. 1994, 224: 81–95.
    [59] Clegg W, Errington R J, Fraser K A. et al. Richards, Polyoxometalates: From PlatonicSolids to Anti-Retroviral Activity (Eds.: M. T. Pope, A. MOller), Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994, 113.
    [60] Strong J B, Yap G P A, Ostrander R, et al. A New Class of Functionalized Polyoxometalates: Synthetic, Structural, Spectroscopic, and Electrochemical Studies of Organoimido Derivatives of [Mo6O19]2- [J]. J. Am. Chem. Soc. 2000, 122: 639–649.
    [61] Stark J L, Young V G Jr, Maatta E A. A Functionalized Polyoxometalate Bearing a Ferrocenylimido Ligand: Preparation and Structure of [(FcN)Mo6O18]2- [J]. Angew. Chem. Int. Ed. Engl. 1995, 34: 2547–2548.
    [62] Stark J L, Rheingold A L, Maatta E A, et al. Polyoxometalate clusters as building blocks: preparation and structure of bis(hexamolybdate) complexes covalently bridged by organodiimido ligands [J]. J. Chem. Soc. Chem. Commun. 1995, 1165–1166.
    [63] Clegg W, Errington R J, Fraser K, et al. Functionalisation of [Mo6O19]2– with aromatic amines: synthesis and structure of a hexamolybdate building block with linear difunctionality [J]. J. Chem. Soc. Chem. Commun. 1995, 455–456.
    [64] Wei Y, Xu B, Barnes C L, et al. An Efficient and Convenient Reaction Protocol to Organoimido Derivatives of Polyoxometalates [J]. J. Am. Chem. Soc. 2001, 123: 4083–4084.
    [65] Roesner R A, McGrath S C, Brockman J T, et al. Mono- and di-functional aromatic amines with p-alkoxy substituents as novel arylimido ligands for the hexamolybdate ion [J]. Inorg.Chim.Acta 2003, 342: 37–47.
    [66] Peng Z H. Rational Synthesis of Covalently Bonded Organic-Inorganic Hybrids [J]. Angew. Chem. Int. Ed. 2004, 43: 930 –935
    [67] Xu L, Lu M, Xu B, et al. Towards Main-Chain-Polyoxometalate-Containing Hybrid Polymers: A Highly Efficient Approach to Bifunctionalized Organoimido Derivatives of Hexamolybdates [J]. Angew. Chem. Int. Ed. 2002, 41: 4129–4132.
    [68] Hao J, Xia Y, Wang L S, et al. Unprecedented Replacement of Bridging Oxygen Atoms in Polyoxometalates with Organic Imido Ligands [J]. Angew. Chem. Int. Ed. 2008, 47: 1–7
    [69] Hasenknopf B, Delmont R, Herson P, et al. Anderson-Type Heteropolymolybdates Containing Tris(alkoxo) Ligands: Synthesis and Structural Characterization [J]. Eur. J. Inorg. Chem. 2002, 1081-1087.
    [70] Marcoux P R, Hasenknopf B, Vaissermann J. Developing Remote Metal Binding Sites in Heteropolymolybdates [J]. Eur. J. Inorg. Chem. 2003, 2406-2412.
    [71] Song Y F, Long D L, Cronin L, Noncovalently Connected Frameworks with Nanoscale Channels Assembled from a Tethered Polyoxometalate–Pyrene Hybrid [J]. Angew. Chem. Int. Ed. 2007, 46, 1 – 6.
    [72] Li C J. Organic reactions in aqueous media - with a focus on carbon-carbon bond formation [J]. Chem. Rev. 1993, 93: 2023–2035.
    [73] Lindstr?m U M. Stereoselective organic reactions in water [J]. Chem. Rev. 2002, 102: 2751–2772.
    [74] Zha Z G, Hui A L, Zhou Y Q, et al. A Recyclable Electrochemical Allylation in Water [J]. Org. Lett. 2005, 7, 1903–1905.
    [75] Liu G B, Zhao H Y, Yang H J, et al. Preparation of 2-Aryl-2H-benzotriazoles by Zinc-Mediated Reductive Cyclization of o-Nitrophenylazophenols in Aqueous Media without the Use of Organic Solvents [J]. Adv. Synth. Catal. 2007, 349, 1637–1640.
    [76] Inoue M, Yamase T. Synthesis and Crystal Structures of γ-Type Octamolybdates Coordinated byChiral Lysines [J]. Bull. Chem. Soc. Jpn. 1995, 68: 3055–3063.
    [77] Kortz U, Savelieff M G, Abou F Y, et al. Heteropolymolybdates of AsIII, SbIII, BiIII, SeIV, and TeIV Functionalized by Amino Acids [J]. Angew. Chem. Int. Ed. 2002, 41: 4070–4073.
    [78] Cindri? M, Novak T K, Kraljevi? S, et al. Structural and antitumor activity study of γ-octamolybdates containing aminoacids and peptides [J]. Inorg. Chim. Acta. 2006, 359: 1673–1680.
    [79] Mahata G, Biradha K. Hydrogen bonding adducts of octamolybdate anions containing coordinately bound pyridiniumoxides [J]. Inorg. Chim. Acta. 2007, 360: 281–285.
    [80] Gili P, Lorenzo-Luis P A, Mederos A, et al. Rosa Carballo Crystal structures of two new heptamolybdates and of a pyrazole incorporating a g-octamolybdate anion [J]. Inorg. Chim. Acta. 1999, 295: 106–114.
    [81] Wu C D, Lu C Z, Chen S M, et al. Synthesis and characterization of two new polyoxomolybdate compounds: [Cu(imi)2(H2O)4][Himi]2[(imi)2Mo8O26] and [Himi]3[H3O][SiMo12O40]·H2O [J]. Polyhedron. 2002, 22(23): 3091–3095.
    [82] An H Y, Li Y G, Wang E B, et al. Self-Assembly of a Series of Extended Architectures Based on Polyoxometalate Clusters and Silver Coordination Complexes [J]. Inorg. Chem. 2005, 44(17): 6062–6070.
    [83] An H Y, Li Y G, Xiao D, et al. Self-Assembly of Extended High-Dimensional Architectures from Anderson-type Polyoxometalate [J]. Clusters Cryst. Growth Des. 2006, 6(5): 1107–1112.
    [84] Tan H, Li Y, Zhang Z. et al. Chiral Polyoxometalate-Induced Enantiomerically 3D Architectures: A New Route for Synthesis of High-Dimensional Chiral Compounds [J]. J. Am. Chem. Soc. 2007, 129(33): 10066–10067.
    [1] Moulton B, Zaworotko M J. From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids [J]. Chem Rev, 2001, 101: 1629–1658.
    [2] Cotton F A, Lin C, Murillo C A. Supramolecular Arrays Based on Dimetal Building Units [J]. Acc Chem Res, 2001, 34: 759–771.
    [3] Müller A, Serain C. Soluble Molybdenum Blues-"des Pudels Kern" [J]. Acc Chem Res, 2000, 33: 2–10.
    [4] Eddaoudi M, Moler D B, Li H L, et al. Acc Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks [J]. Chem Res, 2001, 34: 319–330.
    [5] Holliday B J, Mirkin C A. Strategies for the Construction of Supramolecular Compounds through Coordination Chemistry [J]. Angew Chem Int Ed, 2001, 40: 2022–2043.
    [6] Kitagawa S, Kitaura R, Noro S. Functional Porous Coordination Polymers [J]. Angew Chem Int Ed, 2004, 43: 2334–2375.
    [7] Yaghi O M, Li H L, Groy T L. A Molecular Railroad with Large Pores: Synthesis and Structure of Ni(4,4'-bpy)2.5(H2O)2(ClO4)2·1.5(4,4'-bpy)·2H2O [J]. Inorg Chem, 1997, 36: 4292–4293.
    [8] Cussen E J, Claridge J B, Rosseinsky M J, et al. Flexible Sorption and Transformation Behavior in a Microporous Metal-Organic Framework [J]. J Am Chem Soc 2002, 124: 9574–9581.
    [9] Finn R C, Burkholder E, Zubieta J. The hydrothermal syntheses and characterization of one- and two-dimensional structures constructed from metal–organic derivatives of polyoxometalates: [{Cu(bpy)2}{Cu(bpy)(H2O)}(Mo5O15){O3P(CH2)4PO3}]·H2O and [{Cu2(tpypyz)(H2O)2}(Mo5O15) (O3PCH2CH2PO3 )]·5.5H2O [bpy = 2,2'-bipyridine, tpypyz = tetra(2-pyridyl)pyrazine] [J]. Chem Commun 2001,1852–1853.
    [10] Kahn M I, Yohannes E, Powell D. Vanadium Oxide Clusters as Building Blocks for the Synthesis of Metal Oxide Surfaces and Framework Materials: Synthesis and X-ray Crystal Structure of [H6Mn3VIV15VV4O46(H2O)12]·30H2O [J]. Inorg Chem, 1999, 38: 212–213.
    [11] Sadakane M, Dickman M H, Pope M T. Controlled Assembly of Polyoxometalate Chains from Lacunary Building Blocks and Lanthanide-Cation Linkers [J]. Angew Chem Int Ed, 2000, 39: 2914–2916.
    [12] Knaust J M, Inman C, Keller S W. A host–guest complex between a metal–organic cyclotriveratrylene analog and a polyoxometalate: [Cu6(4,7-phenanthroline)8(MeCN)4]2PM12O40(M = Mo or W) [J]. Chem Commun, 2004, 492–493.
    [13] Johnson B J S, Geers S A, Brennessel W W, et al. A coordination network containing non-coordinating polyoxometalate clusters as counterions [J]. Dalton Trans, 2003, 24: 4678–4681.
    [14] Müller A, Roy S. En route from the mystery of molybdenum blue via related manipulatable building blocks to aspects of materials science [J]. Coord Chem Rev, 2003, 245:153–166.
    [15] Hussain F, Bassil B S, Bi L H, et al. Structural Control on the Nanomolecular Scale: Self-Assembly of the Polyoxotungstate Wheel [{β-Ti2SiW10O39}4]24- [J]. Angew Chem Int Ed, 2004, 43: 3485–3488.
    [16] Anderson T M, Neiwert W A, Kirk M L, et al. A Late-Transition Metal Oxo Complex: K7Na9[O=PtIV(H2O)L2], L = [PW9O34]9- [J]. Science, 2004, 306: 2074–2077.
    [17] Yamase T, Prokop P, Arai Y. Photochemical studies of alkylammonium molybdates. Part 12. O→Mo charge-transfer triplet-states-initiated self-assembly to {Mo154} ring- and tube-molybdenum-blues [J]. J Mol Struc, 2003, 656: 107–117.
    [18] Hill C L. Introduction: Polyoxometalates-Multicomponent Molecular Vehicles To Probe Fundamental Issues and Practical Problems [J]. Chem. Rev. 1998, 98: 1–2.
    [19] Coronado E, G?mez-García C J. Polyoxometalate-Based Molecular Materials [J]. Chem. Rev. 1998, 98: 273–296.
    [20] Yamase T. Photo- and Electrochromism of Polyoxometalates and Related Materials [J]. Chem. Rev. 1998, 98: 307–326.
    [21] Kelly S M. Flat Panel Displays: Advanced Organic Materials, Royal Society of Chemistry, Cambridge, 2002.
    [22] Katz H E, Bao Z, Gilat S L. Synthetic Chemistry for Ultrapure, Processable, and High-Mobility Organic Transistor Semiconductors [J]. Acc. Chem. Res. 2001, 34: 359–369.
    [23] Katz H E, Bao Z. J. The Physical Chemistry of Organic Field-Effect Transistors [J]. Phys. Chem. B 2000, 104: 671–678.
    [24] Shirringhaus H, Tessler N, Friend R H. Solution-Processed Fabrication of Single-Walled Carbon Nanotube Field Effect Transistors Science [J]. 1998, 280: 1741–1749.
    [25] Dimitrakopoulos C D, Malenfant P R. Organic Thin Film Transistors for Large Area Electronics [J]. Adv. Mater. 2002, 14: 99–117.
    [26] Horowitz G. Organic Field-Effect Transistors [J]. Adv. Mater. 1998, 10: 365–377.
    [27] Babel A, Jenekhe S. A. High Electron Mobility in Ladder Polymer Field-Effect Transistors [J]. J. Am. Chem. Soc. 2003, 125: 13656–13657.
    [28] Kraft A, Grimsdale A C, Holmes A B. Electroluminescent Conjugated Polymers - Seeing Polymers in a New Light [J]. Angew. Chem. Int. Ed. 1998, 37: 402–428.
    [29] Hide F, Diaz-Garcia M A, Schwartz B J, et al. New developments in the photonic applications of conjugated polymers [J]. Acc. Chem. Res. 1997, 30: 430–436.
    [30] McGehee M D, Heeger A J. Semiconducting (Conjugated) Polymers as Materials for Solid-State Lasers [J]. Adv. Mater. 2000, 12: 1655–1668.
    [31] Du Y, Rheingold A L. Maatta E A. A polyoxometalate incorporating an organoimido ligand: preparation and structure of [Mo5O18(MoNC6H4CH3)]2- [J]. J. Am. Chem. Soc. 1992, 114: 345–346.
    [32] Stark J L, Young Jr V G, Maatta E A. A Functionalized Polyoxometalate Bearing a Ferrocenylimido Ligand: Preparation and Structure of [(FcN)Mo6O18]2- [J]. Angew. Chem. Int. Ed. Engl. 1995, 34: 2547-2548.
    [33] Proust A, Thouvenot R, Chaussade M, et al. Phenylimido derivatives of [Mo6O19]2?: syntheses, X-ray structures, vibrational, electrochemical, 95Mo and 14N NMR studies [J]. Inorg. Chim. Acta 1994, 224: 81-95.
    [34] Clegg W, Errington R J, Fraser K A, et al. Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity (Eds.: M. T. Pope, A. Müller)[M], Kluwer: Dordrecht, 1994, 113.
    [35] Strong J B, Yap G P A, Ostrander R, et al. A New Class of Functionalized Polyoxometalates: Synthetic, Structural, Spectroscopic, and Electrochemical Studies of Organoimido Derivatives of [Mo6O19]2- [J]. J. Am. Chem. Soc. 2000, 122: 639-649.
    [36] Strong J B, Ostrander R, Rheingold A L, et al. Ensheathing a Polyoxometalate: Convenient Systematic Introduction of Organoimido Ligands at Terminal Oxo Sites in [Mo6O19]2- [J]. J. Am. Chem. Soc. 1994, 116: 3601–3602.
    [37] Mohs T D, Yap G P A, Rheingold A L, et al. An Organoimido Derivative of the Hexatungstate Cluster: Preparation and Structure of [W6O18(NAr)]2- (Ar = 2,6-(i-Pr)2C6H3) [J]. Inorg. Chem. 1995, 34: 9–10.
    [38] Li Q, Wu P, Wei Y, et al. Synthesis, structure and supramolecular assembly in the crystalline state of a bifunctionalized arylimido derivative of hexamolybdate [J]. Inorg. Chem. Commun. 2004, 7: 524–527.
    [39] Li Q, Wu P, Y. Wei, et al. Organic-Inorganic Hybrids: Preparation and Structural Characterization of (Bu4N)2[Mo6O17(NAr)2] and (Bu4N)2[Mo6O18(NAr)] (Ar = o-CH3C6H4) [J]. Z. Anorg. Allg. Chem. 2005, 631: 773–779.
    [40] Wu P, Li Q, Ge N, et al. An Easy Route to Monofunctionalized Organoimido Derivatives of the Lindqvist Hexamolybdate (p 2819-2822) [J]. Eur. J. Inorg. Chem. 2004, 2819–2822.
    [41] Wei Y, Xu B, Barnes C L, et al. An Efficient and Convenient Reaction Protocol to Organoimido Derivatives of Polyoxometalates [J]. J. Am. Chem. Soc. 2001, 123: 4083–4084.
    [42] Wei Y, Meng L, Cheung C F-C, et al. Functionalization of [MoW5O19]2- with Aromatic Amines: Synthesis of the First Arylimido Derivatives of Mixed-Metal Polyoxometalates [J]. Inorg. Chem. 2001, 40: 5489–5490.
    [43] Xu L, Lu M, Xu B, et al. Towards Main-Chain-Polyoxometalate-Containing Hybrid Polymers: A Highly Efficient Approach to Bifunctionalized Organoimido Derivatives of Hexamolybdates [J]. Angew. Chem. Int. Ed. 2002, 41: 4129–4132.
    [44] Xu B, Wei Y, Barnes C l, et al. Hybrid Molecular Materials Based on Covalently Linked Inorganic Polyoxometalates and Organic Conjugated Systems [J]. Angew. Chem. Int. Ed. 2001, 40: 2290–2292.
    [45] Xu B, Wei Y, Powell D R. Polyoxometalates covalently bonded with terpyridine ligands [J]. Chem. Commun. 2003, 2562–2563.
    [46] Clegg W, Errington R J, Fraser K A, et al. Functionalisation of [Mo6O19]2– with aromatic amines: synthesis and structure of a hexamolybdate building block with linear difunctionality [J]. Chem. Commun. 1995, 455–456.
    [47] Roesner R A, McGrath S C, Brockman J T, et al. Mono- and di-functional aromatic amines with p-alkoxy substituents as novel arylimido ligands for the hexamolybdate ion [J]. Inorg. Chim. Acta. 2003, 342: 37–47.
    [48] Marcoux P R, Hasenknopf B, Vaissermann J, et al. Developing Remote Metal Binding Sites in Heteropolymolybdates [J]. Eur. J. Inorg. Chem. 2003, 2406–2412.
    [49] Hasenknopf B, Delmont R, Herson P, et al. Anderson-Type Heteropolymolybdates Containing Tris(alkoxo) Ligands: Synthesis and Structural Characterization [J]. Eur. J. Inorg. Chem. 2002, 1081–1087.
    [50] Favette S, Hasenknopf B, Vaissermann J, et al. Assembly of a polyoxometalate into an anisotropic gel [J]. Chem. Commun. 2003, 2664-2665.
    [51] Song Y F, Long D L, Cronin L. Cover Picture: Inclusion of Cavitands and Calix[4]arenes into a Metallobridged para-(1H-Imidazo[4,5-f][3,8]phenanthrolin-2-yl)-Expanded Calix[4]arene [J]. Angew. Chem. Int. Ed. 2007, 46: 1-2.
    [52] Brown I D, Altermatt D. Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database [J]. Acta Crystallogr. B. 1985, 41: 244-247.
    [53] Atencio R, Brice?o A, Silva P, et al. Sequential transformations in assemblies based on octamolybdate clusters and 1,2-bis(4-pyridyl)ethane [J]. New J. Chem. 2007, 31: 33-38.
    [54] Wu C D, Lu C Z, Chen S M, et al. Synthesis and characterization of two new polyoxomolybdate compounds: [Cu(imi)2(H2O)4][Himi]2[(imi)2Mo8O26] and [Himi]3[H3O][SiMo12O40] · H2O [J]. Polyhedron 2003, 22: 3091-3095;
    [55] Zhan X P, Lu C Z, Yang W B, et al. [Mo8S4O12(OH)8(C2O4)]: a novel polyoxothiomolybdate ring synthesized via a hydrothermal method [J]. Dalton Trans, 2003, 1457–1458.
    [56] Pavani K, Lofland S E, Ramanujachary K V, et al. The Hydrothermal Synthesis of Transition Metal Complex Templated Octamolybdates [J]. Eur. J. Inorg. Chem. 2007, 568–578.
    [57] Coué V, Dessapt R, Bujoli-Doeuff M, et al. Synthesis, Characterization, and Photochromic Properties of Hybrid Organic-Inorganic Materials Based on Molybdate, DABCO, and Piperazine [J]. Inorg. Chem. 2007, 46: 2824–2835.
    [58] Gaussian 03, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas,D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.
    [59] He X, Ye J W, Xu J N. Self-assembly of a 3D supramolecular architecture with nicotinic acid ligands and polyoxomolybdate units [J]. J. Mol. Struct. 2005, 749, 9-12.
    [1] Atencio R, Brice?o A, Silva P, et al. Sequential transformations in assemblies based on octamolybdate clusters and 1,2-bis(4-pyridyl)ethane [J]. New J. Chem. 2007, 31: 33–38.
    [2] Wu C D, Lu C Z, Chen S M, et al. Synthesis and characterization of two new polyoxomolybdate compounds: [Cu(imi)2(H2O)4][Himi]2[(imi)2Mo8O26] and [Himi]3[H3O][SiMo12O40]·H2O [J]. Polyhedron. 2003, 22: 3091–3095;
    [3] Zhan X P, Lu C Z, Yang W B, et al. [Mo8S4O12(OH)8(C2O4)]: a novel polyoxothiomolybdate ring synthesized via a hydrothermal method [J]. Dalton Trans. 2003, 1457–1458.
    [4] Pavani K, Lofland S E, Ramanujachary K V, et al. The Hydrothermal Synthesis of Transition Metal Complex Templated Octamolybdates [J]. Eur. J. Inorg. Chem. 2007, 568–578.
    [5] Gómez-García C J, Giménez-Saiz C, Triki S, et al. Coexistence of Magnetic and Delocalized Electrons in Hybrid Molecular Materials. The Series of Organic-Inorganic Radical Salts (BEDT-TTF)8[XW12O40](solv)n (X = 2(H+), BIII, SiIV, CuII, CoII, and FeIII; solv = H2O, CH3CN) [J]. Inorg. Chem. 1995, 34: 4139–4151.
    [6] Balula M S S, Santos I C M S, Gamelas J A F, et al. Structural studies of keggin-type polyoxotungstates by extended x-ray absorption fine structure spectroscopy [J]. Eur. J. Inorg. Chem. 2007, 1027–1038.
    [7] Chen Q, Hill C L. A Bivanadyl Capped, Highly Reduced Keggin Polyanion, [PMoV6MoVI6O40(VIVO)2]5- [J]. Inorg. Chem. 1996, 35: 2403–2405.
    [8] Borrows J N, Jameson G B, Pope M T. Structure of a heteropoly blue. The four-electron reduced.beta.-12-molybdophosphate anion [J]. J. Am. Chem. Soc. 1985, 107: 1771–1773.
    [9] Chae H K, Klemperer W G, Laez Loyo D, et al. Synthesis and structure of a high nuclearity oxomolybdenum(V) complex, [(C5Me5RhIII)8(MoV12O36)(MoVIO4)]2+ [J]. Inorg. Chem. 1992, 31: 3187–3189.
    [10] Zhang G J, Chen Z H, He T, et al. Construction of Self-Assembled Ultrathin Polyoxometalate/1,10-Decanediamine Photochromic Films [J]. J. Phys. Chem. B. 2004, 108: 6944–6948.
    [11] McIntyre N S, Johnston D D, Coatsworth L L, et al. X-ray photoelectron spectroscopic studies of thin film oxides of cobalt and molybdenum [J]. Surf. Interface Anal. 1990, 15: 265–272.
    [12] Bessel C A, Rolison D R. Topological Redox Isomers: Surface Chemistry of Zeolite-Encapsulated Co(salen) and [Fe(bpy)3]2+ Complexes [J]. J. Phys. Chem. B. 1997, 101: 1148–1157.
    [13] Gili P, Lorenzo-Luis P A, Mederos A, et al. Crystal structures of two new heptamolybdates and of a pyrazole incorporating a γ-octamolybdate anion [J]. Inorg. Chim. Acta. 1999, 295: 106–114.
    [14] Roman P, Luque A, Aranzabe A, et al. Reactions of MoO3 with diethylenetriamine (dien) : syntheses, solid-state characterization and thermal behaviour. Molecular and crystal structure of a second polymorph of (H3dien)2[Mo7O24]·4H2O. Polyhedron. 1992, 11: 2027–2038.
    [15] Liu G, Liu T, Mal S S, et al. Wheel-Shaped Polyoxotungstate [Cu20Cl(OH)24(H2O)12(P8W48O184)]25- Macroanions Form Supramolecular "Blackberry" Structure in Aqueous Solution [J]. J. Am. Chem. Soc. 2006, 128: 10103–10110.
    [16] Kasai J, Nakagawa Y, Uchida S, et al. [gamma-1,2-H2SiV2W10O40] immobilized on surface-modified SiO2 as a heterogeneous catalyst for liquid-phase oxidation with H2O2. [J]. Chem. Eur. J. 2006, 12: 4176–4184.
    [17] Liu G, Liu T. Strong Attraction among the Fully Hydrophilic {Mo72Fe30} Macroanions [J]. J. Am. Chem. Soc. 2005, 127: 6942–6943.
    [18] Kawamoto R, Uchida S, Mizuno N. Amphiphilic Guest Sorption of K2[Cr3O(OOCC2H5)6(H2O)3]2[-SiW12O40] Ionic Crystal [J]. J. Am. Chem. Soc. 2005, 127: 10560–10567.
    [19](5) Reinoso S, Vitoria P, Felices L S, et al. Organic-Inorganic Hybrids Based on Novel Bimolecular [Si2W22Cu2O78(H2O)]12- Polyoxometalates and the Polynuclear Complex Cations [Cu(ac)(phen)(H2O)]nn+ (n=2, 3) [J]. Chem. Eur. J. 2005, 11: 1538–1548.
    [20] Bassil B S, Nellutla S, Kortz U, et al. The Satellite-Shaped Co-15 Polyoxotungstate, [Co6(H2O)30{Co9Cl2(OH)3(H2O)9(β-SiW8O31)3}]5- [J]. Inorg. Chem. 2005, 44: 2659–2665.
    [21] Mbomekalle I M, Keita B, Nadjo L, et al. Semi-vacant Wells–Dawson anions. Synthesis of tri-tungsten-vacant derivatives and crystallographic studies of [αββα-(CuIIOH2)2(CuII)2(AsW15(OH2)3(OH)O52)2]12– [J]. Dalton Trans. 2004, 4094–4095.
    [22] Ritorto M D, Anderson T M, Neiwert W A, et al. Decomposition of A-Type Sandwiches. Synthesis and Characterization of New Polyoxometalates Incorporating Multiple d-Electron-Centered Units [J]. Inorg. Chem. 2004, 43: 44–49.
    [23] Ruether T, Hultgren V M, Timko B P, et al. Electrochemical Investigation of Photooxidation Processes Promoted by Sulfo-polyoxometalates: Coupling of Photochemical and Electrochemical Processes into an Effective Catalytic Cycle [J]. J. Am. Chem. Soc. 2003, 125: 10133–10143.
    [24] Yamase T, Prokop P V. Photochemical formation of tire-shaped molybdenum blues: topology of a defect anion, [Mo142O432H28(H2O)58]12-.[J]. Angew. Chem. Int. Ed. 2002, 41: 466–469.
    [25] Mialane P, Duboc A, Sécheresse F. Functionalization of polyoxometalates by carboxylato and azido ligands: macromolecular complexes and extended compounds [J]. Chem. Commun. 2006, 3477–3485.
    [26] Manos M J, Tasiopoulos A J, Tolis E J, et al. A New Class of Ferromagnetically-Coupled Mixed Valence Vanadium(IV/V) Polyoxometalates [J]. Chem. Eur. J. 2003, 9: 695–703.
    [27] Boglio C, Lemière G, Hasenknopf B, et al. Lanthanide Complexes of the Monovacant Dawson Polyoxotungstate [α1-P2W17O61]10- as Selective and Recoverable Lewis Acid Catalysts [J]. Angew. Chem. Int. Ed. 2006, 45: 3324–3327.
    [28] Khenkin A M, Weiner L, Neumann R. Selective Ortho Hydroxylation of Nitrobenzene with Molecular Oxygen Catalyzed by the H5PV2Mo10O40 Polyoxometalate [J]. J. Am. Chem. Soc. 2005, 127: 9988–9989.
    [29] Yin C X, Finke R G. Vanadium-Based, Extended Catalytic Lifetime Catechol Dioxygenases: Evidence for a Common Catalyst [J]. J. Am. Chem. Soc. 2005, 127: 9003–9013.
    [30] Plault L, Hauseler A, Nlate S, et al. Synthesis of dendritic polyoxometalate complexes assembled by ionic bonding and their function as recoverable and reusable oxidation catalysts [J]. Angew. Chem. Int. Ed. 2004, 43: 2924–2928.
    [31] Bar-Nahum I, Khenkin A M, Neumann, R. Mild, Aqueous, Aerobic, Catalytic Oxidation of Methane to Methanol and Acetaldehyde Catalyzed by a Supported Bipyrimidinylplatinum-Polyoxometalate Hybrid Compound [J]. J. Am. Chem. Soc. 2004, 126: 10236–10237.
    [32] Pope M T, Muller A. Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines [J]. Angew. Chem., Int. Ed. Engl. 1991, 30: 34–48.
    [33] Witvrouw M, Weigold H, Pannecouque C, et al. Potent Anti-HIV (Type 1 and Type 2) Activity of Polyoxometalates: Structure-Activity Relationship and Mechanism of Action [J]. J. Med. Chem. 2000, 43: 778–783.
    [34] Berzelius J. The preparation of the phosphomolybdate ion [PMo12O40]3 [J]. Pogg. Ann. 1826, 6: 369–371.
    [35] Keggin J F. The Structure and Formula of 12-Phosphotungstic Acid [J]. Proc. R. Soc. 1934, A144: 75–100.
    [36] Duraisamy T, Ramanan A, Vittal J J. Two new inorganic-organic hybrid salts: [NH2Me2]4[NMe4]2-[Mo0.5O4? (Mo12O36)]·1.5H2O and [NMe4]2[NH4]2[Mo8O26]·2H2O [J]. J. Mater. Chem. 1999, 9: 763–767.
    [37] Brown I D, Altermatt D. Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database [J]. Acta Crystallogr. B. 1985, 41: 244–247.
    [38] Zhang G J, Chen Z H, He T, et al. Construction of Self-Assembled Ultrathin Polyoxometalate/1,10-Decanediamine Photochromic Films [J]. J. Phys. Chem. B. 2004, 108: 6944–6948.
    [1] Inou M, Yamase T. Synthesis and Crystal Structures of γ-Type Octamolybdates Coordinated by Chiral Lysines [J]. Bull. Chem. Soc. Jpn. 1995, 68: 3055–3063.
    [2] Liu G, Zhang S. W, Tang Y Q. Tetraammonium Diglycinyl-octamolybdate(VI) Dihydrate, (NH4)4[(NH3CH2CO)2(Mo8O28)]?2H2O [J]. Z. Anorg. Allg. Chem. 2001, 627: 1077–1080.
    [3] Han Z. B, An H. Y, Wang L, et al. Synthesis and crystal structure of organic-inorganic hybrid: {[Na2(H2O)4]2[-Mo8O26(Gly-Gly)2]}?4H2O [J]. Chem. J. Chin. Uni. 2003, 24:1558–1560.
    [4] Cindri? M, Novak T. K, Kraljevi? S, et al. Structural and antitumor activity study of γ-octamolybdates containing aminoacids and peptides [J]. Inorg. Chim. Acta. 2006, 359: 1673–1680.
    [5] Xu L, Lu M, Xu B, et al. Towards Main-Chain-Polyoxometalate-Containing Hybrid Polymers: A Highly Efficient Approach to Bifunctionalized Organoimido Derivatives of Hexamolybdates [J]. Angew. Chem, Int. Ed. 2002, 41: 4129–4132.
    [6] Lu M, Xie B, Kang J, et al. Synthesis of Main-Chain Polyoxometalate-Containing Hybrid Polymers and Their Applications in Photovoltaic Cells [J]. Chem. Mater. 2005, 17: 402–408.
    [7] Xu B, Lu M, Kang J, et al. Synthesis and Optical Properties of Conjugated Polymers Containing Polyoxometalate Clusters as Side-Chain Pendants [J]. Chem. Mater. 2005, 17: 2841–2851.
    [8] Atencio R, Brice?o A, Silva P, et al. Sequential transformations in assemblies based on octamolybdate clusters and 1,2-bis(4-pyridyl)ethane [J]. New J. Chem. 2007, 31: 33–38.
    [9] Wu C D, Lu C Z, Chen S M, et al. Synthesis and characterization of two new polyoxomolybdate compounds: [Cu(imi)2(H2O)4][Himi]2[(imi)2Mo8O26] and [Himi]3[H3O][SiMo12O40] · H2O [J]. Polyhedron. 2003, 22: 3091–3095.
    [10] Zhan X P, Lu C Z, Yang W B, et al. [Mo8S4O12(OH)8(C2O4)]: a novel polyoxothiomolybdate ring synthesized via a hydrothermal method [J]. Dalton Trans, 2003, 1457–1458.
    [11] Pavani K, Lofland S E, Ramanujachary K V, et al. The Hydrothermal Synthesis of Transition Metal Complex Templated Octamolybdates [J]. Eur. J. Inorg. Chem. 2007, 568–578.
    [12] Fuchs J, Hartl H, Hunnius W D, et al. Anion Structure of Ammonium Decamolybdate (NH4)8Mo10O34 [J]. Angew. Chem., Int. Ed. 1975, 14: 644–644.
    [13] Bharadwaj P K, Ohashi Y, Sasada Y, et al. Structure of oxonium tris(triethylammonium) octamolybdate(4-) dihydrate, (C6H16N)3(H3O)[Mo8O26].2H2O [J]. Acta Crystallogr. C. 1984, 40: 48–50.
    [14] Barlett R A, Olmstead M M, Power P P. Structural characterization of the solvate complexes of the lithium diorganophosphides [{Li(Et2O)PPh2}.infin.], [{Li(THF)2PPh2}.infin.], and [{Li(THF)P(C6H11)2}.infin.] [J]. Inorg. Chem. 1986, 25: 1243–1247.
    [15] Becker G, Eschbach B, Mundt O, et al. Metallderivate von Molekülverbindungen. VIII. catena-Poly[(2,5,8-trioxanonan-O2,O5) lithium-methylphosphanid]–eine Verbindung mit meso-Helix-Struktur [J]. Z. Anorg. Allg. Chem. 1994, 620: 1381–1390.
    [16] Airola K, Ratilainen J, Nyr?nen T, et al. A linear open-chain piperazine-pyridine ligand and its meso-helical Co complex [J]. Inorg. Chim. Acta. 1998, 277: 55?60.
    [17] Plasseraud L, Maid H, Hampel F, et al. A meso-Helical Coordination Polymer from Achiral Dinuclear [Cu2(H3CCN)2(μ-pydz)3][PF6]2 and 1,3-Bis(diphenylphosphanyl)propane - Synthesis and Crystal Structure of {[Cu(μ-pydz)2][PF6]} (pydz=pyridazine) [J]. Chem. Eur. J. 2001, 7: 4007–4011.
    [18] Cheng L, Lin J B, Gong J Z, et al. Encapsulation of Water Cluster, meso-Helical Chain and Tapes in Metal-Organic Frameworks Based on Double-Stranded Cd(II) Helicates and Carboxylates [J]. Crystal Growth & Design. 2006, 6: 2739?2746.
    [19] Liu S, Kurth D G, M?hwald H, et al. A Thin-Film Electrochromic Device Based on a Polyoxometalate Cluster [J]. Adv. Mater. 2002, 14: 225–228.
    [20] Gao G, Xu L, Wang W, et al. Electrochromic ultra-thin films based on cerium polyoxometalate [J]. J. Mater. Chem. 2004, 14: 2024–2029.
    [21] Gao G, Xu L, Wang W, et al. Electrochromic Multilayer Films of Tunable Color by Combination of Copper or Iron Complex and Monolacunary Dawson-Type Polyoxometalate [J]. J. Phys. Chem. B. 2005, 109: 8948–8953.
    [22] Yang G, Gong J, Yang R, et al. Modification of electrode surface through electrospinning followed by self-assembly multilayer film of polyoxometalate and its photochromic [J]. Electrochem. Commun. 2006, 8: 790–796.
    [23] Liu S, M?hwald H, Volkmer D, et al. Polyoxometalate-Based Electro- and Photochromic Dual-Mode Devices [J]. Langmuir. 2006, 22: 1949–1951.
    [24] Xu B B, Xu L, Gao G G, et al. Jin, Y. N. Nanosized multilayer films with concurrent photochromism and electrochromism based on Dawson-type polyoxometalate [J]. Appl. Surf. Sci. 2007, 253: 3190?3195.
    [25] Xu M, Li Y C, Li W, et al. Structure, photochromic, and electrochemical properties of dioctadecylamine/H3PMo12O40 Langmuir–Blodgett film [J]. J. Colloid Interf. Sci. 2007, 315: 753?760.
    [26] Samoladas A, Bikiaris D, Zorba T, et al. Photochromic behavior of spiropyran in polystyrene and polycaprolactone thin films – Effect of UV absorber and antioxidant compound [J]. Dyes and Pigments 2008, 76: 386?393.
    [27] Coué V, Dessapt R, Bujoli-Doeuff M, et al. Synthesis, Characterization, and Photochromic Properties of Hybrid Organic-Inorganic Materials Based on Molybdate, DABCO, and Piperazine [J]. Inorg. Chem. 2007, 46: 2824?2835.
    [28] Yamase, T. Photo- and Electrochromism of Polyoxometalates and Related Materials [J]. Chem. Rev. 1998, 98: 307–326.
    [1] Leitner W. Carbon Dioxide as a Raw Material: The Synthesis of Formic Acid and Its Derivatives from CO2 [J]. Angew. Chem. Int. Ed. Engl. 1995, 34: 2207–2221.
    [2] Wells S L, DeSimone J. CO2 Technology Platform: An Important Tool for Environmental Problem Solving [J]. Angew. Chem. Int. Ed. 2001, 40: 518–527.
    [3] Yin X, Moss J R. Recent developments in the activation of carbon dioxide by metal complexes [J]. Coord. Chem. Rev. 1999, 181: 27–54.
    [4] Gibson D H. The Organometallic Chemistry of Carbon Dioxide [J]. Chem. Rev. 1996, 96: 2063–2096.
    [5] Contreras L, Paneque M, Sellin M, et al. Novel carbon dioxide and carbonyl carbonate complexes of molybdenum. The X-ray structures of trans-[Mo(CO2)2{HN(CH2CH2PMe2)2}(PMe3)] and [Mo3(μ2-CO3) (μ2-O)2(O)2(CO)2(H2O)(PMe3)6]·H2O [J]. New J. Chem. 2005, 29: 109–115.
    [6] Castro-Rodriguez I, Nakai H, Zakharov L N, et al. O-Coordinated η1-CO2 Bound to Uranium [J]. Science. 2004, 305: 1757–1759.
    [7] Chang C C, Liao M C, Chang T H, et al. Aluminum-Magnesium Complexes with Linearly Bridging Carbon Dioxide [J]. Angew. Chem. Int. Ed. 2005, 44: 7418–7420.
    [8] Lisnard L, Mialane P, Dolbecq A, et al. Effect of Cyanato, Azido, Carboxylato, and Carbonato Ligands on the Formation of Cobalt(II) Polyoxometalates: Characterization, Magnetic, and Electrochemical Studies of Multinuclear Cobalt Clusters [J]. Chem. Eur. J. 2007, 13: 3525–3536.
    [9] Manos M J, Keramidas A D, Woollins J D, et al. The first Polyoxomolybdenum carbonate compound: Synthesis and crystal structure of (NH4)5[(Mo2VO4)3(μ6-CO3) (μ-CO3)3(μ6-OH3)]·0.5CH3OH [J]. J. Chem. Soc. Dalton Trans. 2001, 3419 –3420.
    [10] Berzelius J. The preparation of the phosphomolybdate ion [PMo12O40]3 [J]. Pogg. Ann. 1826, 6: 369–371.
    [11] Keggin J F. The Structure and Formula of 12-Phosphotungstic Acid [J]. Proc. R. Soc. 1934, A144: 75–100.
    [12] Combs-Walker L A, Hill C L. Stabilization of the defect ("lacunary") complex polymolybdophosphate, PMo11O397-. Isolation, purification, stability characteristics, and metalation chemistry [J]. Inorg. Chem. 1991, 30: 4016–4026.
    [13] Bergwerff J A, van de Water L G A, Visser T, et al., Spatially Resolved Raman and UV-visible-NIR Spectroscopy on the Preparation of Supported Catalyst Bodies: Controlling the Formation of H2PMo11CoO405- Inside Al2O3 Pellets During Impregnation [J]. Chem. Eur. J. 2005, 11, 4591–4601.
    [14] Qu X S, Xu L, Qiu Y F, et al. New Series of Porous Ionic Crystals Constructed from Various Polyoxometalate Anions and Macrocations: Syntheses, Crystal Structures, and Comparison with Diverse Spatial Arrangement [J]. Z. Anorg. Allg. Chem. 2007, 633: 1040–1047.
    [15] Sadakane M, Steckhan E, Electrochemical Properties of Polyoxometalates as Electrocatalysts [J]. Chem. Rev. 1998, 98(1): 219-238.
    [1] Uchida S, Hikichi S, Akatsuka T, et al. Preparation of Monodispersed Nanoparticles by Electrostatic Assembly of Keggin-Type Polyoxometalates and 1,4,7-Triazacyclononane-Based Transition-Metal Complexes [J]. Chem. Mater. 2007, 19(19): 4694–4701.
    [2] Reinoso S, Vitoria P, Felices L S, et al. Analysis of Weak Interactions in the Crystal Packing of Inorganic Metalorganic Hybrids Based on Keggin Polyoxometalates, and Dinuclear Copper(II)-Acetate Complexes [J]. Inorg. Chem. 2006, 45(1): 108–118.
    [3] Shivaiah V, Das S K. Polyoxometalate-Supported Transition Metal Complexes and Their Charge Complementarity: Synthesis and Characterization of [M(OH)6Mo6O18{Cu(Phen)(H2O)2}2][M(OH)6Mo6O18{Cu(Phen)(H2O) Cl}2]·5H2O (M = Al3+, Cr3+) [J]. Inorg. Chem. 2005, 44(24): 8846–8854.
    [4] Cui X B, Xu J Q, Meng H, et al. A Novel Chainlike As-V-O Polymer Based on a Transition Metal Complex and a Dimeric Polyoxoanion [J]. Inorg. Chem. 2004, 43(25): 8005–8009.
    [5] Yuan M, Li Y, Wang E et al. Modified Polyoxometalates: Hydrothermal Syntheses and Crystal Structures of Three Novel Reduced and Capped Keggin Derivatives Decorated by Transition Metal Complexes [J]. Inorg. Chem. 2003, 42(11): 3670–3676.
    [6] Zheng S T, Yuan D Q, Zhang J et al. Combination of Lacunary Polyoxometalates and High-Nuclear Transition Metal Clusters under Hydrothermal Conditions. 3. Structure and Characterization of [Cu(enMe)2]2{[Cu(enMe)2(H2O)]2[Cu6(enMe)2(B-a-SiW9O34)2]}·4H2O [J]. Inorg. Chem. 2007, 46(11): 4569–4574.
    [7] Jin H, Qi Y, Wang E et al. Molecular and Multidimensional Organic-Inorganic Hybrids Based on Polyoxometalates and Copper Coordination Polymer with Mixed 4,4'-Bipyridine and 2,2'-Bipyridine Ligands [J]. Cryst. Growth Des. 2006, 6(12): 2693–2698.
    [8] Sha J Q, Peng J, Liu H S, et al. Asymmetrical Polar Modification of a Bivanadium-Capped Keggin POM by Multiple Cu-N Coordination Polymeric Chains [J]. Inorg. Chem. 2007, 46(26): 11183–11189.
    [9] Zhao J, Li B, Zheng S et al. Two-Dimensional Extended (4,4)-Topological Network Constructed from Tetra-NiII-Substituted Sandwich-Type Keggin Polyoxometalate Building Blocks and NiII-Organic Cation Bridges [J]. Cryst. Growth Des. 2007, 7(12): 2658–2664.
    [10] Sha J, Peng J, Tian A, et al. Assembly of Multitrack Cu?N Coordination Polymeric Chain-Modified Polyoxometalates Influenced by Polyoxoanion Cluster and Ligand [J]. Cryst. Growth Des. 2007, 7(12): 2535–2541.
    [11] Waizumi K, Takuno M, Fukushima N et al. Structures of pyridine carboxylate complexes of cobalt(II) and copper(II) [J]. J. Coord. Chem. 1998, 44, 269–276.
    [12] Pavani K, Lofland S E, Ramanujachary K V, et al. The Hydrothermal Synthesis of Transition Metal Complex Templated Octamolybdates [J]. Eur. J. Inorg. Chem. 2007, 568–578.
    [13] Atencio R, Brice?o A, Silva P, et al. Sequential transformations in assemblies based on octamolybdate clusters and 1,2-bis(4-pyridyl)ethane [J]. New J. Chem. 2007, 31: 33–38.
    [14] Wu C D, Lu C Z, Chen S M, et al. Synthesis and characterization of two new polyoxomolybdate compounds: [Cu(imi)2(H2O)4][Himi]2[(imi)2Mo8O26] and [Himi]3[H3O][SiMo12O40] · H2O [J]. Polyhedron 2003, 22: 3091–3095;
    [15] Zhan X P, Lu C Z, Yang W B, et al. [Mo8S4O12(OH)8(C2O4)]: a novel polyoxothiomolybdate ring synthesized via a hydrothermal method [J]. Dalton Trans, 2003, 1457–1458.
    [16] Liu H, Gomez-Garcia C J, Peng J, et al. Ferromagnetically Coupled Dimer of CuII-Substituted γ-Decatungstosilicate [J]. Inorg. Chem. 2007, 46(24): 10041–10043.
    [17] Bleaney B, Bowers K D. Anomalous Paramagnetism of Copper Acetate [J]. Proc. Roy. Soc. (London) Ser. 1952, A 214: 451–465.
    [18] Ovcharenko V I, Gorelik E V, Fokin S V et al. Ligand Effects on the Ferro- to Antiferromagnetic Exchange Ratio in Bis(o-Semiquinonato)copper(II) [J]. J. Am. Chem. Soc. 2007, 129(34), 10512-10521.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700