两性离子参与的碳—碳和碳—杂原子键形成反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳-碳和碳-杂原子键的形成反应是有机合成研究的核心问题。利用亲核试剂与活泼π体系加成而得的两性离子作为反应中间体参与的有机反应已成为目前该领域研究的热点。本论文在综述了近年来以吡啶、叔胺、叔膦及氮杂环卡宾为亲核试剂形成的两性离子在碳-碳和碳-杂原子键形成反应中取得一系列进展的基础上,研究、发展了N-甲基咪唑参与的碳-碳和碳-氮键的形成反应及噻唑卡宾参与的三组分串联反应,主要内容如下:
     1.我们用烯酮来捕捉N-甲基咪唑与活泼炔DMAD形成的两性离子。研究中,我们首先发现了一个新的N-甲基咪唑催化的DMAD与原位产生的单取代烯酮的二组分反应,在温和的条件下以中等收率合成了(Z)-型和(E)-型的取代亚苄基琥珀酸二甲酯。
     在同位素标记基础上,我们推测了这个N-甲基咪唑催化的二组分反应可能的机理,并根据此机理设计用一个二取代的烯酮来捕捉N-甲基咪唑和DMAD形成的两性离子。实验结果表明,在形成可能的中间体B以后,由于烯酮取代基的作用,Michael加成被抑制,进而发生一个三组分串联反应,得到吡咯并咪唑衍生物。在此反应中,烯酮体现出不寻常的反应活性,作为“单碳”组分参与了形式上的[4+1]反应,形成五员环。
     2.我们用活泼炔DMAD捕捉了噻唑卡宾和醛形成的两性离子(Breslow中间体),发现并发展了一个新的噻唑卡宾、醛和DMAD的多组分串联反应,在温和的反应条件下以较好的收率合成了多取代的3-氨基呋喃衍生物。整个反应的历程取决于噻唑卡宾的亲核性,而卡宾前体在有机溶剂中的溶解性对反应也有较大的影响。同时,引入4-甲基噻唑盐作为卡宾前体,使整个反应的原子经济性得到了提高。此外,该反应对醛的适用范围较广,芳香醛、α,β-不饱和醛、甚至一些脂肪醛都能顺利进行反应。
     3.我们发现了一种新的噻唑卡宾和烯酮形成的两性离子的存在,并用活泼炔成功捕捉,从而发展了一个新的噻唑卡宾或苯并噻唑卡宾、二取代烯酮和活泼炔的三组分串联反应。通过这种方法,我们可以由简单易得的起始原料开始,以高度的原子经济性简便高效的合成呋喃并1,4-硫卓骨架。研究中,我们首次观察到了对烯酮的1,3-加成反应。另外,我们进一步研究了呋喃[2,3-C]并硫卓类化合物与苯炔的Diels-Alder反应,以高收率得到了1,4-硫卓并7-氧杂降冰片烯衍生物,此类结构可能具有潜在的可观的合成价值和生物学价值。
Carbon-carbon and carbon-heteroatom bond-forming reactions are central to organic synthesis. Zwitterions resulting from the addition of nucleophiles to activatedπsystems, although known for a long time, have not been recognized adequately by researchers. In this thesis, based on the review aiming at developments of zwitterions in synthesis using pyridine, tertiary amine, phosphine and N-heterocyclic carbenes as nucleophiles, we have described several N-methylimidazole engaged carbon-carbon and carbon-nitrogen bond-forming reactions and thiazole carbene mediated three-component tandem reactions. The details are summarized as following:
     1. The zwitterion derived from the addition of N-methylimidazole to DMAD was investigated and intercepted by a ketene. In this process, we have discovered a novel N-methylimidazole catalyzed two-component reaction. Dimethyl (Z)- and (E)- succinates can be synthesized in moderate yields under mild conditions. In the meantime, we proposed a mechanism for this catalytic reaction. According to the possible formation of intermediate B, we designed a disubstituted ketene of more function to re-capture the zwitterion. In this process, we have discovered a three-component tandem reaction leading to the formation of 6-vinyl-1,3a-diazapentalene derivatives. The ketene was found act as a one-carbon component in the reaction to form a five-membered ring.
     2. We captured the zwitterions derived from the addition of thiazole carbene to aldehyde using DMAD, and developed a facile and effective synthesis of highly substituted 3-aminofuran derivatives via a novel multicomponent reaction of thiazole carbenes, aldehydes and DMAD in moderate to good yields. It is ascertained the whole tandem reaction sequence pivots on the nucleophilicity of thiazole carbenes, and the solubility of thiazolium precursors has an enormous effect on the reactions. Moreover, an improved overall economy of the process could be achieved by using 4-methylthiazolium salts as carbene precursors. Furthermore, the reaction seems to be applicable to various aldehydes, besides aromatic aldehydes,α,β-unsaturated aldehydes and some aliphatic aldehydes could also complete the reaction smoothly.
     3. A novel zwitterion derived from the addition of thiazole carbene to ketene was discovered and captured by an activated alkyne. In this process, we developed a facile and efficient three-component tandem reaction involving thiazole or benzothiazole carbene, disubstituted ketene and activated alkyne. A highly substituted ring system containing furo[2,3-c]thiazepine core can be generated from simple and readily accessible starting materials via this methodology. In this reaction, the first example of 1,3-addition to ketene was observed. Furthermore, the synthetic utilities of these unique polyheterocyclic compounds were demonstrated via their Diels-Alder reactions with benzynes to furnish thiazepine-fused 7-oxanorbornadiene derivatives in excellent yields.
引文
[1](a)Nair V,Menon R S,Sreekanth A R,Abhilash N,Biju A T.Engaging Zwitterions in Carbon-Carbon and Carbon-Nitrogen Bond-Forming Reactions:A Promising Synthetic Strategy.Ace.Chem.Res.,2006,39(8):520-530.
    (b)Enders D,Niemeier O,Henseler A.Organocatalysis by N-Heterocyclic Carbenes.Chemical Reviews.,2007,107(12):5606-5655.
    (c)Cheng Y,Meth-Cohn O.Heterocycles Derived from Heteroatom-Substituted Carbenes.Chem.Rev.,2004,104(5):2507-2530.
    (d)Nair V,Santhamma B,Vellalath S.N-Heterocyclic Carbenes: Reagents, Not Just Ligands! Angew. Chem. Int. Ed., 2004,43(39): 5130-5135.
    [2] Diels O, Alder K. Synthesen in der Hydroaromatischen Reihe. Liebigs Ann. Chem., 1932,498:16-49.
    
    [3] (a) Acheson R M, Woollard J. Addition Reactions of Heterocyclic Compounds. Part LVII. Reactions of Pyridines with Acetylenic Esters in the Presence of Carbanion Sources. J. Chem. Soc. Perkin Trans. 1, 1975, (5): 438-445.
    
    (b) Acheson R M, Taylor G A. Pyridine and Methyl Acetylenedicarboxylate. Proc. Chem. Soc, 1959, 186-187.
    
    (c) Acheson R M, Taylor G A. Addition Reactions of Heterocyclic Compounds. Part IV: Dimethyl Acetylenedicarboxylate and Some Pyridines. J. Chem. Soc, 1960, 1691-1701.
    
    (d) Acheson R M, Gagan J M F, Taylor G A. Addition Reactions of Heterocyclic Compounds. Part XIII: Hydrolysis of Tetramethyl 4H-Quinolizine-1,2,3,4-tetracarboxylate by Hydrochloric Acid. J. Chem. Soc, 1963, 1903-1906.
    [4] (a) Huisgen R. in: Castle R, Ed. Topics in Heterocyclic Chemistry. New York: John Wiley and Sons, 1969. Chapter 8, 223.
    
    (b) Huisgen R. Synthese von Heterocyclen mit 1,4-Dipolaren Cycloadditionen. Z. Chem., 1968, 8(8): 290-298.
    [5] Huisgen R, Morikawa M, Herbig K, Brunn E. 1,4-Dipolare Cycloaddition, II: Dreikomponenten-Reaktionen des Isochinolins rait Acetylendicarbonsaii Reester und Verschiedenen Dipolarophilen. Chem. Ber., 1967, 100(4): 1094-1106.
    [6] (a) Acheson R M, Plunket A O. Addition Reactions of Heterocyclic Compounds. Part XVIII. The Structures and Reactions of Adducts from Pyridines, Dimethyl Acetylenedicarboxylate, and Carbon Dioxide at Low Temperatures. J. Chem. Soc, 1964, 2676-2683.
    
    (b) Acheson R M, Hodgson S J, Wright R G M. Addition Reactions of Heterocyclic Compounds. Part LXV. Synthesis, Tautomerism, and Rearrangement of Some 2H- and 4H-Quinolizine Esters. J. Chem. Soc. Perkin Trans. 1,1976, (18): 1911-1914.
    [7] Winterfeldt E, Naumann A. Cyclisierungen in der Pyridinreihe. Chem. Ber., 1965, 98(11): 3537-3545.
    [8] (a) Nair V, Sreekanth A R, Vinod A U. Novel Pyridine-Catalyzed Reaction of Dimethyl Acetylenedicarboxylate with Aldehydes: Formal [2+2] Cycloaddition Leading to 2-Oxo-3-benzylidinesuccinates. Org. Lett., 2001, 3(22): 3495-3497.
    
    (b) Nair V, Sreekanth A R, Vinod A U. Novel Pyridine-Catalyzed Reaction of Dimethyl Acetylenedicarboxylate with Aldehydes: Formal [2+2] Cycloaddition Leading to 2-Oxo-3-benzylidenesuccinates. Org. Lett., 2002, 4(16): 2807.
    
    (c) Nair V, Sreekanth A R, Abhilash N, Biju A T, Remadevi B, Menon R S, Rath N P, Srinivas R. Novel Pyridine-Catalyzed Reaction of Dimethyl Acetylenedicarboxylate with Aldehydes and N-Tosylimines: Efficient Synthesis of 2-Benzoyl Fumarates and 1-Azadienes. Synthesis, 2003, (12): 1895-1902.
    
    (d) Nair V, Remadevi B, Vidya N, Menon R S, Abhilash N, Rath N P. Novel Pyridine Catalyzed Reactions of Dimethyl Acetylenedicarboxylate (DMAD) and Arylmethylidenemalononitriles: A Stereoselective Synthesis of Highly Substituted Buta-1,3-dienes. Tetrahedron Lett., 2004, 45(16): 3203-3205.
    
    (e) Li C Q, Shi M. Reactions of Arylaldehydes and N-Sulfonated Imines with Dimethyl Acetylenedicarboxylate Catalyzed by Nitrogen and Phosphine Lewis Bases. Org. Lett., 2003, 5(23): 4273-4276.
    [9] Nair V, Pillai A N, Menon R S, Suresh E. Pyridine-Catalyzed Addition of Diary 1-1,2-diones to Dimethyl Butynedioate Leading to the Formation of 1,2-Diaroyl Dimethyl Maleates via an Unprecedented Rearrangement. Org. Lett., 2005, 7(6): 1189-1191.
    [10] Nair V, Pillai A N, Beneesh P B, Suresh E. Engaging the Pyridine-DMAD Zwitterion in a Novel Strategy for the Selective Synthesis of Highly Substituted Benzene and Cyclopentenedione Derivatives. Org. Lett., 2005, 7(21): 4625-628.
    [11] Diels O. Uber die Azoesterreaktion der Amine und Enole. Liebigs Ann. Chem., 1922,429: 1-55.
    [12] (a) Zhao G L, Huang J W, Shi M. Abnormal Aza-Baylis-Hillman Reaction of N-tosylated Imines with Ethyl-2,3-butadienoate and Penta-3,4-dien-2-one. Org. Lett., 2003, 5(24): 4737-739.
    (b) Zhao G L, Shi M. Aza-Baylis-Hillman Reactions of N-Tosylated Aldimines with Activated Allenes and Alkynes in the Presence of Various Lewis Base Promoters. J. Org. Chem., 2005, 70(24): 9975-9984.
    [13] Shi Y L, Shi M. DABCO-Catalyzed Reaction of Allenic Esters and Ketones with Salicyl N-Tosylimines: Synthesis of Functionalized Chromenes. Org. Lett., 2005,7(14): 3057-3060.
    [14] Zhao G L, Shi Y L, Shi M. Synthesis of Functionalized 2H-1-Benzopyrans by DBU-Catalyzed Reactions of Salicylic Aldehydes with Allenic Ketones and Esters. Org. Lett., 2005, 7(20): 4527-4530.
    [15] (a) Morita K, Suzuki Z, Hirose H. Tertiary Phosphine-Catalyzed Reaction of Acrylic Compounds with Aldehydes. Bull. Chem. Soc. Jpn., 1968, 41(11): 2815-2815.
    (b) Morita K, Kobayashi T. New Addition Reactions of Acrylic Compounds with Fumaric Esters Catalyzed by Tetravalent Phosphorous Compounds. Bull. Chem. Soc. Jpn., 1969, 42(9): 2732-2732.
    (c) Price K E, Broadwater S J, Jung H M, McQuade D T. Baylis-Hillman Mechanism: A New Interpretation in Aprotic Solvents. Org. Lett., 2005, 7(1): 147-150. For reviews, see
    (d) Basavaiah D, Rao J, Satyanarayana T. Recent Advances in the Baylis-Hillman Reaction and Applications. Chem. Rev., 2003, 103(3): 811-892.
    (e) Ciganek E. Organic Reactions. New York: Wiley, 1997. Vol.51, 201.
    (f) Langer P. New Strategies for the Development of an Asymmetric Version of the Baylis-Hillman Reaction. Angew. Chem. Int. Ed., 2000, 39(17): 3049-3052.
    [16] For reviews on phosphine-mediated reactions, see (a) Methot J L, Roush W R. Nucleophilic Phosphine Organocatalysis. Adv. Synth. Catal., 2004, 346(9+10): 1035-1050.
    (b) Lu X, Zhang C, Xu Z. Reactions of Electron-Deficient Alkynes and Allenes under Phosphine Catalysis. Acc. Chem. Res., 2001,34(7): 535-544.
    [17] (a) Brunn E, Huisgen R. Structure and Reactivity of the Betaine Derived from Triphenylphosphine and Dimethyl Azodicarboxylate. Angew. Chem. Int. Ed., 1969, 8(7): 513-515.
    (b) Cookson R C, Locke J M. Synthesis of a Pyrazole by Removal of Oxygen from an Ester-Carbonyl Group with Triphenylphosphine. J. Chem. Soc., 1963,6062-6064.
    [18] Mitsunobu O. The Use of Diethylazodicarboxylate and Triphenylphosphine in Synthesis and Transformation of Natural Products. Synthesis, 1981, (1): 1-28.
    [19] Ma S. Some Typical Advances in the Synthetic Applications of Allenes. Chem. Rev., 2005,105(7): 2829-2871.
    [20] Nair V, Biju A T, Mohanan K, Suresh E. Novel Synthesis of Highly Functionalized Pyrazolines and Pyrazoles by Triphenylphosphine Mediated Reaction of Dialkyl Azodicarboxylate with Allenic Esters. Org. Lett., 2006, 8(11): 2213-2216.
    [21] Otte R D, Sakata T, Guzei I A, Lee D. Reactivity of Mitsunobu Reagent toward Carbonyl Compounds. Org. Lett., 2005, 7(3): 495-498.
    [22] Cui S L, Wang J, Wang Y G. Facile Access to Pyrazolines via Domino Reaction of the Huisgen Zwitterions with Aziridines. Org. Lett., 2008, 10(1): 13-16.
    [23] Nair V, Biju A T, Abhilash K G, Menon R S, Suresh E. Reaction of Diaryl-1,2-diones with Triphenylphosphine and Diethyl Azodicarboxylate Leading to N,N-Dicarboethoxy Monohydrazones via a Novel Rearrangement. Org. Lett., 2005,7(11): 2121-2123.
    [24] Nair V, Biju A T, Vinod A U, Suresh E. Reaction of Huisgen Zwitterion with 1,2-Benzoquinones and Isatins: Expeditious Synthesis of Dihydro-1,2,3-benzoxadiazoles and Spirooxadiazolines. Org. Lett., 2005, 7(23): 5139-5142.
    [25] Nair V, Mathew S C, Biju A T, Suresh E. A Novel Reaction of the "Huisgen Zwitterion" with Chalcones and Dienones: An Efficient Strategy for the Synthesis of Pyrazoline and Pyrazolopyridazine Derivatives. Angew. Chem. Int. Ed., 2007, 46(12): 2070-2073.
    [26] (a) Johnson A W, Tebby J C. The Adducts from Triphenylphosphine and Dimethyl Acetylenedicarboxylate. J. Chem. Soc., 1961, 2126-2130.
    (b) Tebby J C, Wilson I F, Griffiths D V. Reactions of Phosphines with Acetylenes. Part 18. The Mechanism of Formation of 1,2-Alkylidene-diphosphoranes. J. Chem. Soc. Perkin Trans. 1,1979, (9): 2133-2135.
    [27] (a) Winterfeldt E, Dillinger H J. Additionen An die Dreifachbindung VI Heterocyclen aus Acetylenverbindungen. Chem. Ber., 1966, 99(5): 1558-1568.
    (b) Nozaki K, Sato N, Ikeda K, Takaya H. Synthesis of Highly Functionalized γ-Butyrolactones from Activated Carbonyl Compounds and Dimethyl Acetylenedicarboxylate. J. Org. Chem., 1996, 61(14): 4516-4519.
    (c) Xu Z, Lu X. A Novel [3+2] Cycloaddition Approach to Nitrogen Heterocycles via Phosphine-Catalyzed Reactions of 2,3-Butadienoates or 2-Butynoates and Dimethyl Acetylenedicarboxylate with Imines:A Convenient Synthesis of Pentabromopseudilin.J.Org.Chem.,1998,63(15):5031-5041.
    [28](a)Nair V,Nair J S,Vinod,A U,Rath N P.Triphenylphosphine Promoted Addition of Dimethyl Acetylenedicarboxylate to 1,2-Benzoquinones:Facile Synthesis of Novel γ-Spirolactones.J.Chem.Soc.Perkin Trans.1,1997,(21):3129-3130.
    (b)Nair V,Nair J S,Vinod A U.Triphenylphosphine-Mediated Addition of Dimethyl Acetylenedicarboxylate to 1,2- and 1,4-Benzoquinones:Synthesis of Novel γ-Spiro Lactones.Synthesis,2000,(12):1713-1718.
    [29]Zhu X F,Henry C E,Kwon O.Stable Tetravalent Phosphonium Enolate Zwitterions.J.Am.Chem.Soc.,2007,129(21):6722-6723.
    [30]Xu Z,Lu X.Phosphine-Catalyzed[3+2]Cycloaddition Reaction of Methyl 2,3-Butadienoate and N-Tosylimines.A Novel Approach to Nitrogen Heterocycles.Tetrahedron Lett.,1997,38(19):3461-3464.
    [31]Zhu G,Chen Z,Jiang Q,Xiao D,Cao P,Zhang X.Asymmetric[3+2]Cycloaddition of 2,3-Butadienoates with Electron-Deficient Olefins Catalyzed by Novel Chiral 2,5-Dialkyl-7-phenyl-7-phosphabicyclo[2.2.1]-heptanes.J.Am.Chem.Soc.,1997,119(6):3836-3837.
    [32]Du Y,Lu X.A Phosphine-Catalyzed[3+2]Cycloaddition Strategy Leading to the First Total Synthesis of(-)-Hinesol.J.Org.Chem.,2003,68(16):6463-6465.
    [33]Zhu X F,Lan J,Kwon O.An Expedient Phosphine-Catalyzed[4+2]Annulation:Synthesis of Highly Functionalized Tetrahydropyridines.J.Am.Chem.Soc.,2003,125(16):4716-4717.
    [34]Tran Y S,Kwon O.An Application of the Phosphine-Catalyzed[4+2] Annulation in Indole Alkaloid Synthesis:Formal Syntheses of(±)-Alstonerine and (±)-Macroline.Org.Lett.,2005,7(19):4289-4291.
    [35]Yang S T,Kwon O.Phosphine-Catalyzed[4+2]Annulation:Synthesis of Cyclohexenes.J.Am.Chem.Soc.,2007,129(42):12632-12633.
    [36]Jung C K,Wang J C,Krische M J.Phosphine-Mediated Reductive Condensation of γ-Acyloxy Butynoates:A Diversity Oriented Strategy for the Construction of Substituted Furans.J.Am.Chem.Soc.,2004,126(13):4118-4119.
    [37]Sriramurthy V,Barcan G A,Kwon O.Bisphosphine-Catalyzed Mixed Double-Michael Reactions:Asymmetric Synthesis of Oxazolidines,Thiazolidines,and Pyrrolidines.J.Am.Chem.Soc.,2007,129(43):12928-12929.
    [38](a)Du Y,Feng J,Lu X.A Phosphine-Catalyzed[3+6]Annulation Reaction of Modified Allylic Compounds and Tropone.Org.Lett.,2005,7(10):1987-1989.
    (b)Kumar K,Kapur A,Ishar M P S.Unusual[8+2]Annelation in the Reactions of Allenic Ester/Ketone-Derived 1,3-Dipoles with Tropone.Org.Lett.,2000,2(6):787-789.
    [39]Staudinger H,Kupfer O.Reactions of Methylene.Ⅲ.Diazomethane.Bet.Dtsch.Chem.Ges.,1912,45:501-509.
    [40](a)Igau A,Grutzmacher H,Baceiredo A,Bertrand G.Analogous a,a'-Bis-carbenoid,Triply Bonded Species:Synthesis of a Stable λ~3-phosphino Carbene-λ~5-phosphaacetylene.J.Am.Chem.Soc.,1988,110(19):6463-6466.
    (b)Igau A,Baceiredo A,Trinquier G,Betrand G.Bis(diisopropylamino)phosphino]-trimethylsilylcarbene:A Stable Nucleophilic Carbene.Angew.Chem.Int.Ed.,1989,28(5):621-622.
    [41] Arduengo A J III, Harlow R L, Kline M. A Stable Crystalline Carbene. J. Am. Chem. Soc., 1991, 113(1): 361-363.
    [42] (a) Hermann W A. N-Heterocyclic Carbenes: A New Concept in Organometallic Catalysis. Angew. Chem. Int. Ed., 2002, 41(8): 1290-1309.
    (b) Cesar V, Bellemin-Laponnaz S, Gade L H. Chiral N-Heterocyclic Carbenes as Stereodirecting Ligands in Asymmetric Catalysis. Chem. Soc. Rev., 2004, 33(9): 619-636.
    (c) Kauer Zinn F, Viciu M S, Nolan S P. Carbenes: Reactivity and Catalysis. Annu. Rep. Prog. Chem. Sec. B, 2004, 100, 231-249.
    (d) Diez-Gonzalez S, Nolan S P. Carbene and Transition Metal-Mediated Transformations. Annu. Rep. Prog. Chem. Sec. B, 2005, 101: 171-191.
    (e) Garrison J C, Youngs W J. Ag(I) N-Heterocyclic Carbene Complexes: Synthesis, Structure, and Application. Chem. Rev., 2005, 105(11): 3978-4008.
    (f) Nolan S P. N-Heterocyclic Carbenes in Synthesis. Weinheim, Germany: Wiley-VCH, 2006.
    (g) Tekavec T N, Louie J. Transition Metal-Catalyzed Reactions Using N-Heterocyclic Carbene Ligands (Besides Pd- and Ru-catalyzed Reactions). Top. Organomet. Chem., 2007, 21: 159-192.
    (h) Crabtree R H. Recent Developments in the Organometallic Chemistry of N-Heterocyclic Carbenes. Coord. Chem. Rev., 2007, 251 (5+6): 595.
    [43] Reviews: (a) Enders D, Balensiefer T. Nucleophilic Carbenes in Asymmetric Organocatalysis. Acc. Chem. Res., 2004, 37(8): 534-541.
    (b) Zeitler K. Extending Mechanistic Routes in Heterazolium Catalysis-Promising Concepts for Versatile Synthetic Methods. Angew. Chem. Int. Ed., 2005, 44(46): 7506-7510.
    (c) Marion N, Diez-Gonzalez S, Nolan S P. N-Heterocyclic Carbenes as Organocatalysts. Angew. Chem. Int. Ed., 2007, 46(17): 2988-3000.
    [44] Breslow R. Mechanism of Thiamine Action. IV. Evidence from Studies on Model Systems. J. Am. Chem. Soc, 1958, 80, 3719-3726.
    [45] (a) Johnson J S. Catalyzed Reactions of Acyl Anion Equivalents. Angew. Chem. Int. Ed., 2004, 43(11): 1326-1328.
    (b) Enders D, Niemeier O, Balensiefer T. Asymmetric Intramolecular Crossed-Benzoin Reactions by N-Heterocyclic Carbene Catalysis. Angew. Chem. Int. Ed., 2006, 45(9): 1463-1467.
    (c) Christmann M. New Developments in the Asymmetric Stetter Reaction. Angew. Chem. Int. Ed., 2005, 44(18): 2632-2634.
    [46] Burstein C, Glorius F. Organocatalyzed Conjugate Umpolung of α,β-Unsaturated Aldehydes for the Synthesis of γ-Butyrolactones. Angew. Chem., Int. Ed., 2004, 43(45): 6205-6208.
    [47] Sohn S S, Rosen E L, Bode J W. N-Heterocyclic Carbene-Catalyzed Generation of Homoenolates: γ-Butyrolactones by Direct Annulations of Enals and Aldehydes. J. Am. Chem. Soc, 2004,126(44): 14370-14371.
    [48] Catalytic Synthesis of γ-Lactams via Direct Annulations of Enals and N-Sulfonylimines. He, M.; Bode, J. W. Org. Lett., 2005, 7(14): 3131-3134.
    [49] Chan A, Scheidt K A. Conversion of α,β-Unsaturated Aldehydes into Saturated Esters: An Umpolung Reaction Catalyzed by Nucleophilic Carbenes. Org. Lett., 2005, 7(5): 905-908.
    [50] Sohn S S, Bode J W. Catalytic Generation of Activated Carboxylates from Enals: A Product-Determining Role for the Base. Org. Lett., 2005,7(18): 3873-3876.
    [51] Zeitler K. Stereoselective Synthesis of (E)-α,β-Unsaturated Esters via Carbene-Catalyzed Redox Esterification. Org. Lett., 2006, 8(4): 637-640.
    [52] Chow K Y K, Bode J W. Catalytic Generation of Activated Carboxylates: Direct, Stereoselective Synthesis of β-Hydroxyesters from Epoxyaldehydes. J. Am. Chem. Soc., 2004,126(26): 8126-8127.
    [53] Reynolds N T, de Alaniz J R, Rovis T. Conversion of α-Haloaldehydes into Acylating Agents by An Internal Redox Reaction Catalyzed by Nucleophilic Carbenes. J. Am. Chem. Soc, 2004,126(31): 9518-9519.
    [54] Reynolds N T, Rovis T. Enantioselective Protonation of Catalytically Generated Chiral Enolates as an Approach to the Synthesis of α-Chloroesters. J. Am. Chem. Soc, 2005, 127(47): 16406-16407.
    [55] Sohn S S, Bode J W. N-Heterocyclic Carbene Catalyzed C-C Bond Cleavage in Redox Esterifications of Chiral Formylcyclopropanes. Angew. Chem. Int. Ed., 2006, 45(36): 6021-6024.
    [56] Bode J W, Sohn S S. N-Heterocyclic Carbene-Catalyzed Redox Amidations of a-Functionalized Aldehydes with Amines. J. Am. Chem. Soc, 2007, 129(45): 13798-13799.
    [57] Vora H U, Rovis T. Nucleophilic Carbene and HOAt Relay Catalysis in an Amide Bond Coupling: An Orthogonal Peptide Bond Forming Reaction. J. Am. Chem. Soc, 2007, 129(45): 13796-13797.
    [58] He M, Struble J R, Bode J W. Highly Enantioselective Azadiene Diels-Alder Reactions Catalyzed by Chiral N-Heterocyclic Carbenes. J. Am. Chem. Soc, 2006, 128(26): 8418-8420.
    [59] He M, Uc Gerson J, Bode J W. Chiral N-Heterocyclic Carbene Catalyzed, Enantioselective Oxo Diene Diels-Alder Reactions with Low Catalyst Loadings. J. Am. Chem. Soc, 2006, 128(47): 15088-15089.
    [60] Nair V, Vellalath S, Poonoth M, Mohan R, Suresh E. N-Heterocyclic Carbene Catalyzed Reaction of Enals and 1,2-Dicarbonyl Compounds: Stereoselective Synthesis of Spiro γ-Butyrolactones. Org. Lett., 2006, 8(3): 507-509.
    [61] Nair V, Vellalath S, Poonoth M, Suresh E. N-Heterocyclic Carbene-Catalyzed Reaction of Chalcones and Enals via Homoenolate: An Efficient Synthesis of 1,3,4-Trisubstituted Cyclopentenes. J. Am. Chem. Soc., 2006,128(27): 8736-8737.
    [62] Chiang P C, Kaeobamrung J, Bode J. W. Enantioselective, Cyclopentene-Forming Annulations via NHC-Catalyzed Benzoin-Oxy-Cope Reactions. J. Am. Chem. Soc, 2007,129(12): 3520-3521.
    [63] Phillips E M, Wadamoto M, Chan A, Scheidt K A. A Highly Enantioselective Intramolecular Michael Reaction Catalyzed by N-Heterocyclic Carbenes. Angew. Chem. Int. Ed., 2007,46(17): 3107-3110.
    [64] Nair V, Poonoth M, Vellalath S, Suresh E, Thirumalai R. An N-Heterocyclic Carbene-Catalyzed [8+3] Annulation of Tropone and Enals via Homoenolate. J. Org. Chem., 2006, 71(23): 8964-8965.
    [65] Fischer C, Smith S W, Powell D A, Fu G C. Umpolung of Michael Acceptors Catalyzed by N-Heterocyclic Carbenes. J. Am. Chem. Soc, 2006, 128(5): 1472-1473.
    [66] Duong H A, Cross M J, Louie J. N-Heterocyclic Carbenes as Highly Efficient Catalysts for the Cyclotrimerization of Isocyanates. Org. Lett., 2004, 6(25): 4679-7681.
    [67] Magee W L, Shechter H. 3-Diazopyrazoles: Sources of Unusual Carbenes and Dipolar Reagents. J. Am. Chem. Soc, 1977,99(2): 633-634.
    [68] Magee W L, Shechter H. Substituent Effects in Reactions of Benzenes with 5-tert-butyl-3H-Pyrazolylidene. Tetrahedron Lett., 1979,20(49): 4697-4700.
    [69] Enders D, Breuer K, Runsink J, Teles J H. Chemical Reactions of the Stable Carbene 1,3,4-Triphenyl-4,5-dihydro-1H-1,2,4- triazol-5-ylidene. Liebigs Ann., 1996, (12): 2019-2028.
    [70] Katritzky A R, Cheng D, Leeming P, Ghiviriga I, Hartshorn C M, Steel P J. Generation and Reactivity of N,N-(Dimethylamino)benzotriazolylcarbene: A New Nucleophilic Carbene. J. Heterocycl. Chem., 1996, 33(6): 1935-1941.
    [71] Nair V, Bindu S, Sreekumar V, Rath N P. Unprecedented Reactivity of N-Heterocyclic Carbenes toward DMAD and Aldehydes Leading to Novel Multicomponent Reactions. Org. Lett., 2003, 5(5): 665-667.
    [72] Nair V, Sreekumar V, Bindu S, Suresh E. Two Unprecedented Multicomponent Reactions Involving N-Heterocyclic Carbenes, Activated Acetylenes, and Aldehydes. Org. Lett., 2005, 7(12): 2297-2300.
    [73] Rigby J H, Wang Z. Synthesis of Highly Substituted Cyclopentenones via the [4+1] Cycloaddition of Nucleophilic Carbenes and Vinyl Ketenes. Org. Lett., 2003, 5(3): 263-264.
    [74] Moehrle H, Dwuletzki H. Cycloaddition Reactions of Iminium Compounds. Arch. Pharm (Weinheim, Ger.), 1987,320(4): 298-303.
    [75] Malle K G. How Contaminated Is the North Sea? Chem.-Zeit., 1987, 21(1): 9-16.
    [76] Frenzen G, Kummell A, Meyer-Dulheuer C, Seitz G. Wanzlick Carbenes in the [4+1]Cycloaddition Reaction with Bis(methylthio)- and Bis(trifluoromethyl)-1,2,4,5-tetrazine.Chem.Ber.,1994,127(9):1803-1806.
    [77]Rigby J H,Wang Z.[4+1]Cycloaddition of N-Heterocyclic Carbenes with Vinyl Isocyanates.Org.Lett.,2002,4(24):4289-4291.
    [78]Hoffmann R W,Hagenbruch B,Smith D M.Carbene Reactions,Ⅷ.Selectivity of Nucleophilic Carbenes with Regard to Heterocumulenes.Chem.Ber.,1977,110(1):23-36.
    [79]Liu M F,Wang B,Cheng Y.A N-Heterocyclic Carbene Derived Highly Regioselective Ambident C-C-S and C-C-N 1,3-Dipolar System.Chem.Commun.,2006,(11):1215-1217.
    [80]Cheng Y,Liu M F,Fang D C,Lei X M.Substrate-Controlled and Site-Selective [3+2]Cycloadditions of N-Heterocyclic Carbene Derived Ambident Dipoles.Chem.Eur.J.,2007,13(15):4282-4292.
    [81]Zhu Q,Liu M F,Wang B,Cheng Y.An Unprecedented Tandem 1,3-Dipolar Cycloaddition-Cheletropic Elimination:a Facial Approach to Novel Push-Pull Olefins.Org.Biomol.Chem.,2007,5(8):1282-1286.
    [82]Hahn F E,Wittenbecher L,Van D L,Frohlich R,Wibbeling B.Novel 1,2,4-Triphosphole and 1,2,3-Triphosphetene Derivatives from N,N'-Bis(2,2-dimethylpropyl)benzimidazolin-2-ylidene and Phosphaalkynes.Angew.Chem.Int.Ed.,2000,39(13):2307-2310.
    [83]Hahn F E,Van D L,Moyes M C,Fehren T,Frohlich R,Würthwein E U.Unusual Formation of an Azaphospholene from 1,3,4,5-Tetramethylimidazol-2-ylidene and Di(isopropyl)aminophosphaalkyne.Angew.Chem.Int.Ed.,2001,40(17): 3144-3148.
    [84]Hahn F E,Van D L,Wittenbecher L,Moyes M C,Fehren T,Frohlich R,Würthwein E U.Novel 1,2,4-Triphosphole,1,2,3-Triphosphetene and Azaphospholene Derivatives from N-Heterocyclic Carbenes and Phosphaalkynes.Phosphorus,Sulfur Silicon Relat.Elem.,2002,177(6-7):1863-1867.
    [85]Couture P,Terlouw J K,Warkentin J.2-Alkoxy-2-amino-△~3-1,3,4-oxadiazolines as Novel Sources of Alkoxyaminocarbenes.J.Am.Chem.Soc.,1996,118(17):4214-4215.
    [86]Couture P,Warkentin J.Chemistry of Cyclic Aminooxycarbenes.Can.J.Chem.,1997,75(9):1281-1294.
    [87](a)Kωmmell A,Seitz G.Nucleophilic Singlet Carbene in Inverse[4+1]Cycloaddition.A New Isopyrazole Synthesis.Tetrahedron Lett.,1991,32(24):2743-2746.
    (b)Gerninghaus C,Kümmell A,Seitz G.Nucleophilic Singlet Carbenes in the[4+1]Cycloaddition with 1,2,4,5-Tetrazines:A New Synthesis of Isopyrazoles.Chem.Ber.,1993,126(3):733-738.
    [88]Rigby J H,Cavezza A,Ahmed G.Nucleophilic Carbenes in Organic Synthesis.Construction of Functionalized Hydroindolones via a Novel Reaction Pathway of Dimethoxycarbene.J.Am.Chem.Soc.,1996,118(50):12848-12849.
    [89]Rigby J H,Cavezza A,Heeg M J.Asymmetric Induction in[1+4]Cycloadditions of Vinyl Isocyanates with Chiral Nucleophilic Carbenes.Tetrahedron Lett.,1999,40(13):2473-2476.
    [90]Imming P,Kümmell A,Seitz G.Inverse[4+1]Cycloadditions of 3-Methyl-2,3-dihydro-1,3-benzothiazole-2-ylidene with 1,2,4,5-Tetrazines. Heterocycles, 1993,35(1): 299-304.
    [91] Ma Y G, Chen Y. The Unprecedented Ring Transformation from Thiazoline-Spiro-Thiophene to Thieno[2,3-b]pyrazine Involved in the Reaction of 2-Thiocarbamoyl Thiazolium Salts with Dimethyl Acetylenedicarboxylate. Chem. Commun, 2007, (47): 5087-5089.
    [92] Haug E, Kantlehner W, Hagen H, Speh P, Brauner H J. Orthoamides. XLIII. Nucleophilic Carbenes from 3-Alkyl-1,3,4-thiadiazolium Salts. Liebigs Ann. Chem., 1988, (6): 605-607.
    [93] Cheng Y, Wang B, Cheng L Q. High Nucleophilicity of Cyclic Amidocarbene toward Aryl Isocyanates, New Approach to Spiro[azetidinone-4,3'-indolinone] Derivatives. J. Org. Chem., 2006, 71(12): 4418-4427.
    [94] Li J Q, Liao R Z, Ding W J, Cheng Y. Highly Efficient and Site-Selective [3 + 2] Cycloaddition of Carbene-Derived Ambident Dipoles with Ketenes for a Straightforward Synthesis of Spiro-Pyrrolidones. J. Org. Chem., 2007, 72(16): 6266-6269.
    [95] Reynolds T E, Stern C A, Scheidt K A. N-Heterocyclic Carbene-Initiated α-Acylvinyl Anion Reactivity: Additions of α-Hydroxypropargylsilanes to Aldehydes. Org. Lett., 2007, 9(13): 2581-2584.
    [1]Adib M,Mollahosseini M,Yavari H,Sayahi M H,Bijanzadeh H R.Efficient One-Pot Three-Component Synthesis of 7-Oxo-1,7,8,8a-tetrahydro-imidazo-[1,2-a]-pyrimidines.Synlett,2004,(6):1086-1088.
    [2]Adib M,Sheibani E,Mostofi M,Ghanbarya K,Bijanzadeh H R.Efficient Highly Diastereoselective Synthesis of 1,8a-Dihydro-7H-imidazo[2,1-b][1,3]oxazines.Tetrahedron,2006,62(14):3435-3438.
    [3]Shen Y C,Zhang Y M.A Convenient Synthesis of Substituted 3-Alkoxycarbonyl-β-γ-unsaturated Esters with Predominant Z-Selectivity.Heteroatom Chem.,2003,14(3):276-279.
    [4](a)Mayr H.Vinylketenes from Cyclobutenones by Electrocyclic Ring Opening.Angew.Chem.Int.Ed.,1975,14,500-501.
    (b)Niwayama S,Kallel E A,Spellmeyer D C,Sheu C,Houk K N.Theoretical Predictions of Substituent Effects on the Thermal Electrocyclic Ring Openings of Cyclobutenones.J.Org.Chem.,1996,61(7):2517-2522.
    [5]Mitani M,Sudoh T,Koyama K.Reaction of Ketene Alkyl Trimethylsilyl Acetals with Dimethyl Acetylenedicarboxylate Catalyzed with Zirconium Tetrachloride.Bull.Chem.Soc.Jpn.,1995,68(6):1683-1687.
    [6] For reviews, see: (a) Johnson J S. Catalyzed Reactions of Acyl Anion Equivalents. Angew. Chem. Int. Ed., 2004, 43(11): 1326-1328.
    (b) Seebach D. Methods of Reactivity Umpolung. Angew. Chem. Int. Ed., 1979, 18(4): 239-258.
    (c) Hase T A. Umpoled Synthons. New York: Wiley, 1987.
    [7] Gordaliza M, Miguel del Corral J M, Castro M A, Salinero M A, San Feliciano A, Dorado J M, Valle F. A New Synthesis of 3-Methylidenetetrahydrofurans. Synlett, 1996, (12): 1201-1202.
    (b) Perron E, Abizafi K F. Chemistry of Spiroketals. Chem. Rev., 1989, 89(7): 1617-1661.
    [8] (a) Yvon B L, Datta P K, Le T N, Charlton J L. Synthesis of Magnoshinin and Cyclogalgravin: Modified Stobbe Condensation Reaction. Synthesis, 2001, (10): 1556-1560.
    (b) Ayres D C, Carpenter B G, Denney J. Lignans. III. Synthesis of 1-Arylnaphthalenes Related to Podophyllotoxin. J. Chem. Soc, 1965, 3578-3582.
    (c) Johnson W S. in: Daub G H, Ed. Organic Reactions. New York: John Wiley, 1951. Vol. VI, 1-73.
    (d) Ballini R, Rinaldi A. Michael Addition of Nitroalkanes to Dimethyl maleate with DBU. A New Direct Method for the Synthesis of Polyfunctionalized α,β-Unsaturated Esters. Tetrahedron Lett., 1994, 35(49): 9247-9250.
    (e) Ballini R, Marcantoni E, Perella S. A Two Steps Synthesis of γ-Substituted and γ,γ-Disubstituted α-(Alkylmethylene)-γ-butyrolactones. J. Org. Chem., 1999, 64(8): 2954-2957.
    [9] (a) England D C, Krespan C G. Bis(trifluoromethyl)ketene. J. Am. Chem. Soc, 1965, 87(17): 4019-4020.
    (b) DoMinh T, Strautz O P. Cycloaddition of Ethoxyketene to Olefins. J. Am. Chem. Soc, 1970, 92(6): 1766-1768.
    (c) Yamabe S, Dai T, Minato T, Machiguchi T, Hasegawa T. Ketene Is a Dienophile for [4+2] (Diels-Alder) Reactions across Its C=O Bond. J. Am. Chem. Soc, 1996, 118(27): 6518-6519.
    (d) Machiguchi T, Okamoto J, Morita Y, Hasegawa T, Yamabe S, Minato T. Challenge to Detect 1,4-Zwitterions Spectroscopically in a Ketene-Alkene Reaction. J. Am. Chem. Soc, 2006,128(1): 44-45.
    [10] For the Reaction of 1,4-Zwitterions Derived from Lewis Base and DMAD, see: (a) Huisgen R, Morikawa M, Herbig K, Brunn E. 1,4-Dipolar Cycloadditions. II. Three-component Reactions of Isoquinoline with Acetylenedicarboxylic Acid Esters and Various Dipolarophiles. Chem. Ber., 1967, 100(4): 1094-1106.
    (b) Acheson R M, Plunkett A O. Addition Reactions of Heterocyclic Compounds. XVIII. The Structures and Reactions of Adducts from Pyridines, Dimethyl Acetylenedicarboxylate, and Carbon Dioxide at Low Temperatures. J. Chem. Soc, 1964, 2676-2683.
    (c) Nair V, Sreekanth A R, Abhilash N, Bhadbhade M M, Gonnade R C. A Novel Three-Component Reaction for the Diastereoselective Synthesis of 2H-Pyrimido[2,1-a]isoquinolines via 1,4-Dipolar Cycloaddition. Org. Lett., 2002, 4(21): 3575-3577.
    [1](a)Dean F A.Naturally Occurring Oxygen Ring Compounds.London:Butterworth,1963.
    (b)Nakanishi K,Goto T,Ito S,Natori S,Nozoe S.Natural Products Chemistry.Tokyo:Kodansha,1974.
    (c)Mortensen D S,Rodriguez A L,Carlson K E,Sun J,Katzenellenbogen B S,Katzenellenbogen J A.Synthesis and Biological Evaluation of a Novel Series of Furans: Ligands Selective for Estrogen Receptor α. J. Med. Chem., 2001, 44(23): 3838-3848.
    (d) Bock I, Bornowski H, Ranft A, Theis H. New Aspects in the Synthesis of Mono- and Dialkylfurans. Tetrahedron, 1990,46(4): 1199-1210.
    [2] For selected reviews, see: (a) Lipshutz B H. Five-membered Heteroaromatic Rings as Intermediates in Organic Synthesis. Chem. Rev., 1986, 86(5): 795-820.
    (b) Raczko J, Jurcak J. Furan in the synthesis of natural products. Stud. Nat. Prod. Chem., 1995,16: 639-685.
    [3] For reviews of furan synthesis, see: (a) Konig B. Hetarenes and Related Ring Systems: Fully Unsaturated Small-Ring Heterocycles and Monocyclic Five-Membered Hetarenes with One Heteroatom. Methoden Org. Chem. 4~(th) ed. Houben-Weyl, 2001. Vol.9, 183-286.
    (b) Hou X L, Cheung H Y, Hon T Y, Kwan P L, Lo T H, Tong S Y, Wong H N C. Regioselective syntheses of substituted furans. Tetrahedron, 1998, 54(10): 1955-2020.
    [4] For selected examples of cycloisomerization approaches to substituted furans, see: (a) Marshall J A, Robinson E D. A Mild Method for the Synthesis of Furans. Application to 2,5-Bridged Furano Macrocyclic Compounds. J. Org. Chem., 1990, 55(11): 3450-3451.
    (b) Hashmi A S K. Transition Metal Catalyzed Dimenzation of Allenyl Ketones. Angew. Chem. Int. Ed., 1995, 34(15): 1581-1583.
    (c) Hashmi A S K, Schwarz L, Choi J H, Frost T M. A New Gold-Catalyzed C-C Bond Formation. Angew. Chem. Int. Ed., 2000, 39(13): 2285-2288.
    (d) Ma S, Zhang J, Lu L. Pd~0-Catalyzed Coupling Cyclization Reaction of Aryl or 1-Alkenyl Halides with 1,2-Allenyl Ketones: Scope and Mechanism. An Efficient Assembly of 2,3,4-, 2,3,5-Tri- and 2,3,4,5-Tetrasubstituted Furans. Chem. Eur. J., 2003, 9(11): 2447-2456.
    (e) Fukuda Y, Shiragami H, Utimoto K, Nozaki H. Synthesis of Substituted Furans by Palladium-catalyzed Cyclization of Acetylenic Ketones. J. Org. Chem., 1991, 56(20): 5816-5819.
    (f) Hashmi A S K, Sinha P. Gold Catalysis: Mild Conditions for the Transformation of Alkynyl Epoxides to Furans. Adv. Synth. Catal., 2004, 346(4): 432-438.
    (g) Miller D. Synthesis of Furans from Acetylenic Epoxides and Diols. J. Chem. Soc. C, 1969, (1): 12-15.
    (h) Marshall J A, Sehon C A. Synthesis of Furans and 2,5-Dihydrofurans by Ag(I)-Catalyzed Isomerization of Allenones, Alkynyl Allylic Alcohols, and Allenylcarbinols. J. Org. Chem., 1995, 60(18): 5966-5968.
    (i) Seiller B, Bruneau C, Dixneuf P H. Synthesis of Furans by Cyclization of 2-En-4-yn-1-ols in the Presence of Ruthenium and Palladium Catalysts. Tetrahedron, 1995, 51(47): 13089-13102.
    (j) Furstner A, Davies P W. Heterocycles by PtCl_2-catalyzed Intramolecular Carboalkoxylation or Carboamination of Alkynes. J. Am. Chem. Soc, 2005, 127(43): 15024-15025.
    (k) Arcadi A, Cacchi S, Rosario M D, Fabrizi G, Marinelli F. Palladium-Catalyzed Reaction of o-Ethynylphenols, o-((Trimethylsilyl)ethynyl)- phenyl Acetates, and o-Alkynylphenols with Unsaturated Triflates or Halides: A Route to 2-Substituted-, 2,3-Disubstituted-, and 2-Substituted-3-acylbenzo[b]furans. J. Org. Chem., 1996, 61(26): 9280-9288.
    (l) Nakamura I, Mizushima Y, Yamamoto Y. Synthesis of 2,3-Disubstituted Benzofurans by Platinum-olefin-catalyzed Carboalkoxylation of o-Alkynylphenyl Acetals. J. Am. Chem. Soc, 2005, 127(43): 15022-15023.
    (m) Fiirstner A, Heilmann E K, Davies P W. Total Synthesis of the Antibiotic Erypoegin H and Cognates by a PtCl_2-Catalyzed Cycloisomerization Reaction. Angew. Chem. Int. Ed., 2007, 46(25): 4760-4763.
    [5] Donohoe T J, Fishlock L P, Lacy A R, Procopiou P A. A Metathesis-Based Approach to the Synthesis of Furans. Org. Lett., 2007, 9(6): 953-956.
    [6] Nair V, Vinod A U. The Reaction of Cyclohexyl Isocyanide and Dimethyl Acetylenedicarboxylate with Aldehydes: A Novel Synthesis of 2-Aminofuran Derivatives. Chem. Commun., 2000, (12): 1019-1020.
    [7] Redman A M, Dumas J, Scott W J. Preparation of 5-Substituted 3-Aminofuran-2-carboxylate Esters. Org. Lett., 2000, 2(14): 2061-2063.
    [8] Sanz R, Miguel D, Martinez A, Alvarez-Gutierrez J M, Rodriguez F. Br(?)nsted Acid Catalyzed Propargylation of 1,3-Dicarbonyl Derivatives. Synthesis of Tetrasubstituted Furans. Org. Lett., 2007,9(4): 727-730.
    [9] Xu L, Huang X, Zhong F. Intermolecular Tandem Addition-Cyclization of Bromoallenes: A Facile Synthesis of Methylenecyclopropyl Carboxylates and Polysubstituted Furans. Org. Lett., 2006, 8(22): 5061-5064.
    [10] Shindo M, Yoshimura Y, Hayashi M, Soejima H, Yoshikawa T, Matsumoto K, Shishido K. Synthesis of Multisubstituted Furans, Pyrroles, and Thiophenes via Ynolates. Org. Lett., 2007, 9(10): 1963-1966.
    [11] (a) Shi M, Li C Q. Reactions of Arylaldehydes and N-Sulfonated Imines with Dimethyl Acetylenedicarboxylate Catalyzed by Nitrogen and Phosphine Lewis Bases. Org. Lett., 2003, 5(23): 4273-4276.
    (b) Nair V, Sreekanth A R, Abhilash N, Biju A T, Remadevi B, Menon R S, Rath N P, Srinivas R. Novel Pyridine-catalyzed Reaction of Dimethyl Acetylenedicarboxylate with Aldehydes and N-Tosylimines: Efficient Synthesis of 2-Benzoylfumarates and 1-Azadienes. Synthesis, 2003, (12): 1895-1902.
    [12] Sahoo M K, Mhaske S B, Argade N P. Facile Routes to Alkoxymaleimides/ maleic Anhydrides. Synthesis, 2003, (3): 346-349.
    [13] For the ring opening of thiazolium salts with nucleophiles,see: (a) Duclos J M, Haake P. Ring Opening of Thiamine Analogs. Role of Ring Opening in Physiological Function. Biochemistry, 1974, 13(26): 5358-5362.
    (b) Hajos Gy, Messmer A J. Ambident Reactivity of a Thiazolo[3,2-a]pyridinium Salt with Nucleophiles. J. Heterocycl. Chem., 1984, 21(3): 809-811.
    (c) Singh H, Lal K. Preparation of 2,3-Dihydrothiazolo-[2,3-a]isoquinolinium Salts and Their Reactions with Complex Metal Hydrides. J. Chem. Soc. Perkin Trans. 1, 1972, (14): 1799-1803.
    (d) Zoltewicz J A, Uray G. Hydrolysis of the Thiazolium Ion Ring of 1'-Methylthiaminium Ion. Rate and Equilibrium Constants. J. Org. Chem., 1980, 45(11): 2104-2108.
    [14] See selective references: (a) Kim D J, Yoo K H, Park S W. 1,3-Dipolar Cycloaddition of 5,6-Dihydroimidazo-[2,1-b]thiazolium Betaines. J. Org. Chem., 1992, 57(8): 2347-2352.
    (b) Musicki B. Synthesis and 1,3-Dipolar Cycloaddition Reactions of Novel Heteropentalene Mesomeric Betaines, Pyrrolo[1,2-c]imidazole Mesomeric Betaines. J. Org. Chem., 1990, 55(3): 910-918.
    (c) Meth-Cohn O. 1,3-Dipolar Cycloaddition of Benzimidazolium Ylides with Dimethyl Acetylenedicarboxylate. Reinvestigation. Tetrahedron Lett., 1975, 16(6): 413-416.
    (b) Abe N, Nishiwaki T, Komoto N. Studies on Heteropentalenes. II. Cycloaddition of Imidazo[2,1-b]thiazoles, Thiazolo[3,2-a]benzimidazole, and Imidazo[2,1-b] benzo-thiazole with a Reactive Acetylenic Ester. Bull. Chem. Soc. Jpn., 1980, 53(11): 3308-3312.
    (c) Potts K T, Choudhury D R, Westby T R. Bridgehead Nitrogen Systems. X. Cycloadditions with Thiazolium N-Ylides. J. Org. Chem., 1976, 41(2): 187-191.
    [15] Bordwell F G, Satish A V. Acidities of C2 Hydrogen Atoms in Thiazolium Cations and Reactivities of Their Conjugate Bases. J. Am. Chem. Soc., 1991, 113(3): 985-990.
    [1](a)Skiles J W,Sub J T,Williams B E,Menard P R,Barton J N,Love B,Jones H,Neiss E S,Schwab A,Mann W S.Angiotensin-Converting Enzyme Inhibitors:New Orally Active 1,4-Thiazepine-2,5-diones, 1,4-Thiazine-2,5-diones, and 1,4-Benzothiazepine-2,5- diones Possessing Antihypertensive Activity. J. Med. Chem., 1986,29(5): 784-796.
    (b) Umemiya H, Fukasawa H, Ebisawa M, Eyrolles L, Kawachi E, Eisenmann G, Gronemeyer H, Hashimoto Y, Shudo K, Kagechika H. Regulation of Retinoidal Actions by Diazepinylbenzoic Acids. Retinoid Synergists Which Activate the RXR-RAR Heterodimers. J. Med. Chem., 1997, 40(26): 4222-4234.
    (c) Venkatesan A M, Gu Y, Dos Santos O, Abe T, Agarwal A, Yang Y, Petersen P J, Weiss W J, Mansour T S, Nukaga M, Hujer A M, Bonomo R A, Knox J R. Structure-Activity Relationship of 6-Methylidene Penems Bearing Tricyclic Heterocycles as Broad-Spectrum β-Lactamase Inhibitors: Crystallographic Structures Show Unexpected Binding of 1,4-Thiazepine Intermediates. J. Med. Chem., 2004,47(26): 6556-6568.
    [2] (a) Malli R, Frieden M, Trenker M, Graier W F. The Role of Mitochondria for Ca~(2+) Refilling of the Endoplasmic Reticulum. J. Biol. Chem., 2005, 280(13): 12114-12122.
    (b) Neamati N, Turpin J A, Winslow H E, Christensen J L, Williamson K, Orr A, Rice W G, Pommier Y, Garofalo A, Brizzi A, Campiani G. Thiazolothiazepine Inhibitors of HIV-1 Integrase. J. Med. Chem., 1999, 42(17): 3334-3341.
    (c) Maruenda H, Johnson F. Design and Synthesis of Novel Inhibitors of HIV-1 Reverse Transcriptase. J. Med. Chem., 1995, 38(12): 2145-2151.
    (d) Garofalo A, Campiani G, Fiorini I, Nacci V. Benzothiazine and Benzothiazepine Derivatives: Synthesis and Preliminary Biological Evaluation. Farmaco, 1993, 48(2): 275-283.
    (e) Boulware S L, Bronstein J C, Nordby E C, Weber P C. Identification and Characterization of a Benzothiophene Inhibitor of Herpes Simplex Virus Type 1 Replication Which Acts at the Immediate Early Stage of Infection. AntiVir. Res., 2001, 51(2): 111-125.
    (f) Cale A D, Gero T W, Walker K R, Lo Y S, Welstead W J, Jaques L W, Johnson A F, Leonard C A, Nolan J C, Johnson D N. Benzo- and Pyrido-1,4-oxazepin-5-ones and -thiones:Synthesis and Structure-Activity Relationships of a New Series of H1-Antihistamines.J.Med.Chem.,1989,32(9):2178-2199.
    (g)Schlosser K M,Krasutsky A P,Hamilton H W,Reed J E,Sexton K.A Highly Efficient Procedure for 3-Sulfenylation of Indole-2-carboxylates.Org.Lett.,2004,6(5):819-821.
    [3]Yale H L,Sowinski F.Novel Polycyclic Heterocycles.Ⅱ.Derivatives of 5,11-Dihydrodibenz[b,e][1,4]oxazepine~1.J.Med.Chem.,1964,7(5):609-614.
    [4]Margolis B J,Swidorski J J,Rogers B N.An Efficient Assembly of Heterobenzazepine Ring Systems Utilizing an Intramolecular Palladium-Catalyzed Cycloamination.J.Org.Chem.,2003,68(2):644-647.
    [5]Bates D K,Li K.Stannous Chloride-Mediated Reductive CyclizationRearrangement of Nitroarenyl Ketones.J.Org.Chem.,2002,67(24):8662-8665.
    [6]Crescenza A,Botta M,Corelli F,Santini A,Tafi A.Cyclic Dipeptides.3.~1Synthesis of Methyl(R)-6-[(tert-Butoxycarbonyl)amino]- 4,5,6,7-tetrahydro-2-methyl-5-oxo-1,4-thiazepine-3-carboxylate and Its Hexahydro Analogues:Elaboration of a Novel Dual ACE/NEP Inhibitor.J.Org.Chem.,1999,64(9):3019-3025.
    [7]Mordant C,Andrade C C,Touati R,Ratovelomanana-Vidal V,Hassine B B,Genet J P.Stereoselective Synthesis of Diltiazem via Dynamic Kinetic Resolution.Synthesis,2003,(15):2405-2409.
    [8]Ilyn A P,Loseva M V,Vvedensky V Y,Putsykina E B,Tkachenko S E,Kravchenko D V,Khvat A V,Krasavin M Y,Ivachtchenko A V.One-Step Assembly of Carbamoyl-Substituted Heteroannelated[1,4]Thiazepines.J.Org.Chem.,2006, 71(7): 2811-2819.
    [9] (a) Alaimo R J, Farnum D G. Nucleophilic Addition of Triethylamine to Dimethyl Acetylenedicarboxylate. Can. J. Chem. 1965,43(3): 700-701.
    (b) Kandeel K A, Vernon J M. Reactions of Tertiary Allylamines with Dimethyl Acetylenedicarboxylate. J. Chem. Soc. Perkin Trans. 1,1987, (9): 2023-2026.
    [10] Itoh T, Nagata K, Okada M, Ohsawa Akio. Reaction of 3-Methylthiazolium Derivatives with Superoxide. Tetrahedron, 1993,49(22): 4859-4870.
    [11] For rearrangements in the thizaole system, see: (a) Abbott P J, Acheson R M, Eisner U, Watkin D J, Carruthers J R. Structure of 2:1 Molar Adducts from Dimethyl Acetylenedicarboxylate with Thiazoles and Related Heterocycles. Chem. Commun., 1975, (5): 155-156.
    (b) Potts K T, Choudhury D R, Westby T R. Bridgehead Nitrogen Systems. X. Cycloadditions with Thiazolium N-ylides. J. Org. Chem., 1976, 41(2): 187-191.
    [12] For similar transformations in the convertion of β-lactamase inhibitor, see: (a) Micetich R G, Maiti S N, Tanaka M, Yamazaki T, Ogawa K. Studies on 6-Halo- and 6,6-Dihalopenicillins: the Rearrangement of Methyl 6,6-Dibromopenicillanate to 1,4-Thiazepine. J. Org. Chem., 1986, 51(6): 853-858.
    (b) Nukaga M, Abe T, Venkatesan A M, Mansour T S, Bonomo R A, Knox J R. Inhibition of Class A and Class C β-Lactamases by Penems: Crystallographic Structures of a Novel 1,4-Thiazepine Intermediate. Biochemistry, 2003, 42(45): 13152-13159.
    [13] Baldessarini R J. in: Hardman J G, Limbird L E, Eds. Goodman and Gilman's the Pharmacological Basis of Therapeutics. 10~(th) ed.; New York: McGraw-Hill, 2001. 447-83.
    [14] For reviews on Diels-Alder reaction, see: (a) Corey E J. Catalytic Enantioselective Diels-Alder Reactions: Methods, Mechanistic Fundamentals, Pathways, and Applications. Angew. Chem. Int. Ed., 2002, 41(10): 1650-1667.
    (b) Nicolaou K C, Snyder S A, Montagnon T, Vassilikogian-nakis G. The Diels-Alder Reaction in Total Synthesis. Angew. Chem. Int. Ed., 2002, 41(10): 1668-1698.
    (c) Pellissier H, Santelli M. The use of arynes in organic synthesis. Tetrahedron, 2003, 59(6): 701-730.
    [15] (a) Himeshima Y, Sonoda T, Kobayashi H. Fluoride-induced 1,2-Elimination of o-(Trimethylsilyl)phenyl Triflate to Benzyne under Mild Conditions. Chem. Lett., 1983, (8): 1211-1214.
    (b) Pena D, Perez D, Guitian E, Castedo L. Palladium-Catalyzed Cocyclization of Arynes with Alkynes: Selective Synthesis of Phenanthrenes and Naphthalenes. J. Am. Chem. Soc, 1999, 121(24): 5827-5828.
    (c) Yoshida H, Sugiura S, Kunai A. Facile Synthesis of N-Alkyl-N'-arylimidazolium Salts via Addition of Imidazoles to Arynes. Org. Lett., 2002, 4(16): 2767-2769.
    (d) Yoshida H, Ikadai J, Shudo M, Ohshita J, Kunai A. Palladium-Catalyzed Bissilylation of Arynes with Cyclic Disilanes: Synthesis of Benzo-Annulated Disilacarbocycles. J. Am. Chem. Soc, 2003, 125(22): 6638-6639.
    (e) Sato Y, Tamura T, Mori M. Arylnaphthalene Lignans through Pd-Catalyzed [2+2+2] Cocyclization of Arynes and Diynes: Total Synthesis of Taiwanins C and E. Angew. Chem. Int. Ed., 2004, 43(18): 2436-2440.
    (f) Ramtohul Y K, Chartrand A. Direct C-Arylation of β-Enamino Esters and Ketones with Arynes. Org. Lett., 2007, 9(6): 1029-1032.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700