肝型脂肪酸结合蛋白与非酒精性脂肪肝的关系及药物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:非酒精性脂肪肝(nonalcoholic fatty liver disease, NAFLD)是指与过量饮酒无关的,以肝细胞弥漫性脂肪变性和脂质贮积为主的临床病理综合征。NAFLD的发病率逐年上升,发病年龄逐渐年轻化,已成为全球性的公共卫生问题。然而NAFLD的发病机制尚未明确,临床上仍无有效的治疗手段。目前研究发现,肝型脂肪酸结合蛋白(fatty acid-binding protein, L-FABP)与高甘油三酯血症、高胆固醇血症、肥胖、2-型糖尿病等的形成密切相关。为此,本实验通过高脂饮食建立非酒精性脂肪肝大鼠模型,来观察L-FABP在NAFLD形成过程中的表达,初步探讨L-FABP在NAFLD发病机制中的作用;同时观察降脂益肝冲剂对肝组织中L-FABP mRNA表达的影响,探讨其可能的分子治疗机制,为临床应用提供更加可靠的实验依据。
     方法:1.造模与取材雄性清洁级Wistar大鼠80只,重量约为160-220g,适应性喂养1周后,开始正式实验。随机分为8组,每组10只,其中正常组(N1,N2,N3组)以普通饲料喂养,模型组(M1,M2,M3组)和治疗组(D1,D2组)以高脂饲料喂养。每天8:00~9:00am,4:00~5:00pm为喂食和给药的时间。实验动物自由进食和饮水,治疗D1组在给予高脂饮食喂养的同时即给予降脂益肝冲剂16g·Kg-1·d-1(按成年人60kg体质量的剂量(40g/d)计算出大鼠药物剂量),分2次灌胃(ig),共8周;治疗D2组于8周末时给予降脂益肝冲剂,ig(剂量、用法同D1组),共4周。同时模型组和正常组分别给予等量的生活饮用水,ig。在实验第4周末处死正常组(N1组)、模型组(M1组);在实验第8周末处死正常组(N2组)、模型组(M2组)和治疗组(D1组)大鼠,于12周末处死其余组大鼠。所有大鼠处死前均隔夜禁食并用水合氯醛麻醉,腹主动脉采血,各组大鼠于肝左叶相同部位留取O.1g组织置于1.5mL EP管,-70℃冰箱冻存,用于RT-PCR的检测;另取肝右叶相同部位(1cm×1cm×0.5cm)组织,在4%多聚甲醛中固定,常规制片、HE染色。
     2.检测指标:测量各实验鼠的体重、肝脾湿重及体长,并计算肝脾比值、肝指数及Lee's指数等体质指标;将采集的全血用低温离心机迅速分离血浆,丙氨酸转氨酶(ALT)、天冬氨酸转氨酶(AST)、血脂(TC,TG)以及肝组织脂质含量在全自动生化分析仪(Olympus Au1000)上测定;采用铜染色法测定血清和肝组织中的FFA水平;采用葡萄糖氧化酶法测定空腹血糖(FBG);空腹胰岛素(FINS)测定步骤按照放免试剂盒操作步骤进行,并计算胰岛素敏感指数(ISI=ln (1/(FINS×FBG)));在光镜下评估脂肪变性的程度;半定量反转录聚合酶链反应(reverse transcriptase-polymerase chain reaction, RT-PCR)测定L-FABP mRNA的动态表达。
     结果:1.正常组(N1,N2,N3组)肝小叶结构完整,肝细胞呈多边形,围绕中央静脉呈放射状,肝窦清晰可见,肝索排列整齐;各项检测指标均在正常范围内,并可观察到L-FABP mRNA的表达。
     2.造模4周末(M1组),模型组肝组织呈现轻度脂肪变性;血清转氨酶较正常组有所升高;总胆固醇(TC)、甘油三酯(TG)、FFA升高,开始出现脂质代谢紊乱;FBG, FINS开始升高,ISI有所下降,出现轻度胰岛素抵抗;肝组织L-FABP mRNA的表达较其正常组升高。
     3.造模8周末(M2组),模型组肝组织呈中度脂肪变性及部分气球样变,形成单纯性脂肪肝,肝脂肪变以大泡性为主;血清转氨酶(ALT, AST)、血脂(TC, TG, FFA)较正常组显著升高;肝组织L-FABP mRNA的表达较其同期正常组显著升高(P<0.01)。
     4.造模12周末(M3组),模型组肝组织脂肪变加剧并出现肝细胞完全气球样变、小叶内混合有炎症细胞浸润以及散在的点状坏死;与正常组相比,血清转氨酶、总胆固醇、甘油三酯较正常组显著升高;与正常组相比,肝组织L-FABP mRNA的表达显著升高(P<0.01)。
     5.用药组(D1组),在细胞形态、血脂、转氨酶及肝组织肝型脂肪酸结合蛋白的表达量,与正常组(N1组)比较均无统计学差异,但与4周模型组Ml相比,各项指标均有所改善,具有统计学差异(P<0.01)。
     6.用药组(D2组),肝组织仍可见索条状排列的肝细胞,脂变程度较同期模型组明显减轻,仅有轻微的炎性细胞浸润,未见明显坏死灶;与M2组相比,ALT, AST, TC, TG明显降低,FBG, FINS亦显著降低,L-FABP mRNA的表达量明显下调(P<0.01)。
     结论:1.高脂高胆固醇饮食可成功的复制NAFLD大鼠模型;胰岛素抵抗及脂质代谢紊乱与NAFLD的发生关系密切。
     2.正常大鼠肝脏可表达L-FABP mRNA, NAFLD模型的大鼠L-FABP mRNA增高,且随造模时间延长表达量明显升高,其增高的程度与NAFLD的程度呈正相关。
     3.在NAFLD早期,给予降脂益肝冲剂,可有效的预防NAFLD的发病。
     4.降脂益肝冲剂可使ALT, AST, TC, TG, FFA显著降低,说明该药不仅能够逆转肝脏的脂质沉积,而且具有很好的降酶保肝的作用;可使FBG, FINS显著降低,证实该药物可通过有效的改善胰岛素抵抗来达到对NAFLD良好的治疗效果;而L-FABP mRNA的表达明显降低,表明降脂益肝冲剂可以通过调节脂质代谢,减轻肝细胞的脂肪变性,从而达到治疗目的。
Objective:Nonalcoholic fatty liver disease is nothing to do with the excessive drinking, clinical syndrome characterized by excessive fat storing in liver and hepatic cellular dif-fuse steatosis. There has been an increase in the incidence rate of NAFLD, and it may occur in very young children, it has become a global public health problem. However, the mechanisms of NAFLD is not clear, there is still no effective treatment. There is no effective therapeutic tool. The current study found that L-FABP is closely related to high hypertriglyceridemia, hypercholesterolemia, obesity,2-diabetes. Through high-fat diet, this study establish the non-alcoholic fatty liver rat model, in order to observate the ex-pression of L-FABP in the formation of NAFLD; to investigate the effect of L-FABP in pathogenesis of NAFLD; moreover, to observe if traditional Chinese medicine-Jiangz-hi Yigan Chongji can treat and prevent NAFLD through regulating the expression of L-FABP mRNA, explore the molecular therapeutic mechanisms, This investigation can pro-vide more reliable experimental evidence for clinical treatment.
     Methods:1. Modeling and specimen collection:80 male Wistar rats, weight is about 160-220g, after adaptive feeding 1 week, began to officially experiment.There were ran-domly divided into 8 groups, each group has 10 rats. Normal group (N group) were fed standard diet. Model group(M group) were fed with high-fat and high-cholesterol di-et. Every day in the time of 8:00~9:00am,4:00~5:00pm for the feeding and administra-tion. The eating and drinking of experimental animals is free. Treatment group(Di group) were given Jiangzhi Yigan Chongji 16g·Kg-1·d-1 (calculate the dose in rat by the dose of an adult 60kg body weight, about 40g/d, twice every day, intragastric administration) while fed with high-fat and high-cholesterol diet, a total of 8 weeks; Treatment group (D2 group) were given Jiangzhi YiganChongji(the dosage and usage the same as D1 gr-oup) after the beginning of the study 8 weeks, a total of 4 weeks; meanwhile, the nor-mal and model group were separately given life drinking water by the samemeans. All the rats were sacrificed after 4,8 or 12 weeks. Before all rats were killed, overnight fasting and used pentobarbital anesthesia, abdominal aortic blood,-70℃refrigerator fr-ozen.
     2.Measurement Indicators:The following parameters were observed dynamically in each group:body weight, liver and spleen weight, body lenth were detected, at the same ti-me, the retios of liver and spleen, liver index and Lee's index were calculated; the lev-el of aminotransferase, blood fat and lipid in liver tissue were detected by using autom-atic biochemistry analyzer; serum and liver free fatty acid were detected by copper stai-ning method; fasting blood glucose was detected by glucose oxidase method; serum ins-ulin were detected by radio-immunity assay, simultaneously the insulin sensitivity index was calculated; assessing the extent of fatty degeneration with light microscope; The expression of L-FABP mRNA were assayed with reverse transcriptase-polymerase chain reaction(RT-PCR).
     Results:1. In normal group(N1, N2, N3 group), the structure of hepatic lobule is integr-ited, cells were polygonal, and the central veins radiate, sinusoids clearly visible, liver cable arranged in neat rows, every biochemical manifestation was all in normal range, the expression of L-FABP mRNA was observed in liver.
     2.After 4 weeks, in model group(M1 group), hepatic histopathology show in hepatocyte light steatosis, compared with the normal group, ALT, ALT, TC, TG and FFA increasin-g, occurs lipid metabolic disorder; FBG, FINS began to increase, ISI decline, appears insulin resistance; in model group, the expression of L-FABP is higher than nomal gr-oup.
     3.After 8 weeks, model group(M2 group) showed that moderate fatty degeneration of liver tissue, forming simple fatty liver, hepatic steatosis major in Bullous; serum transa-minase(ALT, AST), blood lipids(TC, TG, FFA) was significantly higher than the normal group; the expression of L-FABP mRNA was significantly higher than the normal group in the same period(P<0.01).
     4.After 12 weeks, in model group(M3 group), hepatic steatosis is sharply increased, an-d the emergence of hepatocyte completely ballooning, lobular mixed with inflammatory celll, as well as scattered point-like necrosis; compared with normal group, serum trans-aminase, total cholesterol and triglyceride were significantly increased; compared with normal group, the expression of L-FABP mRNA was significantly higher(P<0.01).
     5.Compared with normal group, in treatment group(D1 group) the lever of cell morpho-logy, blood lipids, liver transaminases and the expression of L-FABP mRNA were no statistical differences; but compared with the same period in the model group(M1 grou-p), every indicators have improved, and there is significant statistical difference(P<0.01).
     6. Treatment group(D2 group), liver tissue was still visible cable strips arranged in liver cells; compared with the same period in the model group, the degree of fatty change has significantly reduced, only slight inflammatory cell infiltration, no significant necros-is; compared with the M2 group, ALT, AST, TC, TG was improved remarkably, FBG, FINS significantly reduced, the expression of L-FABP was significantly lower(P<0.01).
     Conclusion:1. The rats model of NAFLD could be successfully established with high-fat and high-cholesterol diet; Insulin resistance and disturbance of lipid metabolism were well associated with the development of NAFLD.
     2. Normal rats liver can be expressed fatty acid-binding protein. In NAFLD rat model, the expressiong of L-FABP is increased, and with the extension of modeling time, the expressiong of L-FABP is significantly higher.
     3. In early times of NAFLD, given Jiangzhi Yigan Chongji can effectively prevent the genesis and development of NAFLD.
     4. JYC can reduce the level of ALT, AST, TC, TG, FFA promote the liver function re-vival. It's show that the drug can not only reverse the liver lipid deposition, but also has a very good role in reducing enzyme and protecting liver; JYC can reduce the lev-el of FBG, FINS, it confirmed that the drug can achieve effective treatment effect on NAFLD throngh improve insulin resistance; and the expression of L-FABP mRNA was significantly reduced, indicating that JYC can be adjusted lipid metabolism, reduce the fatty degeneration of hepatic cells, so as to achieve purposes of treatment.
引文
[1]Diehl AM, Goodman Z, Ishak KG. Alcoholike liver disease in nonalcoholics a cli-nical and histologic comparison with alcohol-inducd liver injuy[J]. Gastroenterology, 1988,95(4):1056~1061
    [2]Marchesini G, Brizi M, Bianchi G, et al. Non-alcoholic fatty liver disease. A featu-reof the metabolic syndrome[J]. Diabetes,2001,50:1844
    [3]Sanyal AJ, Cambell-Sargent C, Mirashahi F, et al. Nonalcoholic steatohepatitis:ass-ociation of insulin resistance and mitochondrial abnormalities [J]. Gatroenterology, 2001,120:1183
    [4]中华医学会肝脏病学分会脂肪肝和酒精性肝病学组.非酒精性脂肪性肝病诊疗指南[J].肝脏,2006,11(1):68
    [5]张虎,朱金玲,张玉萍,等.肝型脂肪酸结合蛋白与脂类转运[J].世界华人消化杂志,2008,16(27):3065~3069
    [6]Storch I, Thumser AE. The fatty acid transport function of fatty acid binding prot-eins[J]. Biochim Biophys Acta,2000,1486:2844
    [7]Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance:lessons from genetically engineered mice. Journal of Clinical Investigation,2008,118:829~838
    [8]卜松其.脂肪肝的研究进展[J].河北中医,2006,28(5):298~400
    [9]殷果华,殷云勤,赵和平,等.降脂益肝冲剂治疗脂肪肝的实验观察[J].中华实验和临床病毒学杂志,2000,14(6):193~194
    [10]戴林,邓彬,白成,等.吡格列酮对大鼠非酒精性脂肪性肝炎的实验研究[J].胃肠病学和肝病学杂志,2004,13(5):482~484
    [11]徐叔云,卞如廉,陈修.药理实验方法学.第2版.北京:人民卫生出版社,1991,178~179
    [12]Kazantzis M, Seelaender MC. Cancer cachexia modifies the zonal distribution of lipid metabolism-related proteins in rat liver[J]. Cell Tissue Resarch,2005,321: 419~427
    [13]栗凤霞.复方中药治疗NAFLD的实验研究PPARa及其配体作用:[硕士学位论文].天津:天津医科大学,2004
    [14]Knodell RG, Ishak KG, Black WC, et al. Formulation and application of a numeri-cal scoring system for assessing histological activity in asymptomatic chronic active hepatitis. Hepatol,1981,1(5):431
    [15]王泰龄,刘霞,周元平,等.慢性肝炎炎症活动度及纤维化程度计分方案[J].中华肝 脏病杂志,1998,6(4):195~197
    [16]刘菲,钟岚,王军臣.茴三硫防治非酒精性脂肪性肝炎的实验研究[J].中华消化杂志,2002,22:532~534
    [17]Lieber CS, Leo MA, Mak KM, et al. Model of nonalcoholic steatohepatitis[J]. AM J Clin Nutr.2004,79(3):502~509
    [18]钟岚,范建高,王国良,等.非酒精性脂肪性肝炎动物模型的建立[J].中华实用医学,2000,2(1):3-6
    [19]Marchesini G, Brizi M, Morselli-Labate AM, et al. Association of nonalcoholic fat-ty liver disease with insulin resistance [J]. Am J Med,1999,107:450~455
    [20]Chitturi S, Farrell GC. Etiopathogenesis of nonalcoholic steatohepatitis[J]. Semin Liver Dis,2001,21:27~41
    [21]Promrat K, Lutchman G, Uwaifo GI, et al. A pilot study of pioglitazone treatment for nonalcoholic steatohepatitis[J]. Hepatology,2004,39:188~196
    [22]Marchesini G, Brizi M, Bianchi G, et al. Metformin in non-alcoholic steatohepatitis [J]. Lancet 2001,358:893~894
    [23]Samuel VT, Liu ZX, Qu x, et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease[J]. J Biol Chem,2004,279(31):32345~53
    [24]Marchesini G, Brizi M, Bianchi G, et al. Nonalcoholic fatty liver disease:a feature of the metabolic syndrome[J]. Diabetes,2001,50(8):1844~1850
    [25]范建高.非酒精性脂肪肝的病因和发病机制[J].胃肠病学,2003,8:363~365
    [26]王家珑.非酒精性脂肪性肝炎病理病因和发病机制[J].中华消化杂志,2002,22(6):360~361
    [27]Assy N, Kaita K, Mymin D, et al. Fatty infiltration of liver in hyperlipidemic pa-tients[J]. Dig Dis Sci,2000,45:1929~1934
    [28]徐正婕,范建高,王国良.游离脂肪酸在脂肪性肝炎发病中的作用[J].中华肝脏病杂志,2000,8(2):127~128
    [29]Lewis GF, Carpentier A, Adeli K, et al. Disorderd fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes [J]. Endocr Rev,2002,23: 201~229
    [30]Duseja A, Murlidharan R, Bhansali A, et al. Assessment of insulin resistance and effect of metformin in nonalcoholic steatoheptitis-a preliminary report[J]. Indian J Gastroenterol,2004,23(1):12~15
    [31]Su Al, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB. A gene atlas of the mouse and human protein-encoding transcriptomes[J]. Proc Natl Acad Sci USA, 2004,101:6062~6067
    [32]Rajaraman G, Roberts MS, Hung D, Wang GQ, Burczynski FJ. Membrane binding proteins are the major determinants for the hepatocellular transmembrane flux of long-chain fatry acids bound to albumin. Pharm Res 2005,22:1793~1804
    [33]Hung DY, Burczynski FJ, Chang P, Lewis A, Masci PP, Siebert GA, Anissimov Y G, Roberts MS. Fatty acid binding protein is a major determinant of hepatic phar-macokinetics of palmitate and its metabolites[J]. Am J Phvsiol Gastrointest Liver Physiol,2003,284:G423~G433
    [34]Hung DY, Siebert GA, Chang P, Burczynski FJ, Roberts MS. Reduced hepatic extr-action of palmitate in steatosis correlated to lower level of liver fatty acid binding protein[J]. Am J Physiol Gastrointest Liver Phvsiol,2005,288:G93-G100
    [35]Owada Y. Fatty acid binding protein;localization and functional significance in the brain[J]. Tohoku J Exp Med,2008,214:213~220
    [36]Zimmerman AW, Van Moerkerk HT, Veerkamp JH, et al. Ligand specificicy and conformational stability of human fatty acid binding proteins[J]. Int Biochem Cell Biol.2001,33:865~876
    [37]Landrier JF, Thomas C, Grober J, et al. Statin induction of liver fatty acid-binding protein(L-FABP) gene expression is peroxisome proliferators-activated receptor-alpha-dependent [J]. J Biol Chem,2004:279(44):45512~8
    [38]Daoud G, Simoneau L, Masse A, et al. Expression of cFABP and PPAR in tropho-blast cells:effect of PPAR ligands on linoleic acid uptake and differention[J]. Bioc-him Biophys Acta,2005,1687(1~3):181~194
    [39]Nanji AA, Dannenberg AJ, Jokelainen K, et al. Alcoholic liver injury in the rat is associated with reduced expression of peroxisome proliferators alpha(PPAR alpha) regulated genes and is ameliorated by PPARalpha activation[J]. J Pharmacol Exp Ther,2004,310(1):417~424
    [40]Schachtru PC, Emmler T, Bleck B, et al. Functional analysis of peroxisome-prolife-rator responsive element motifs in genes of fatty acid binding proteins[J]. Biochem J,2004,382(Pt 1):239~245
    [41]Wang G, Chen QM, Minuk GY, et al. Enhanced expression of cytosolic fatty acid binding protein and fatty acid uptake during liver regeneration in rats[J]. Mol Cell Biochem,2004,262(1-2):41~49
    [42]Monbaliu D, De Vries B, Crabbe T, et al. Liver fatty acid-binding protein:An ea-rly and sensitive plasma marker of hepatocellular damage and a reliable predictor of graft viability after liver transplantation from non-heart-beating donors[J]. Trans- plant Proc,2005,37(1):413~416
    [43]Kamijo-Ikemori A, Sugaya T, Obama A, et al. Liver-type fatty acid-binding protein attenuates renal injury induced by unilateral ureteral obstruction[J]. Am J Pathol, 2006,169(4):1107~1117
    [44]Rajaraman G, Wang GQ, Yan J, et al. Role of cytosolic liver fatty acid binding protein in hepatocellular oxidative stress:effect of dexamethasone and clofibrate tr-eatment[J]. Mol Cell Biochem,2007,295(1-2):27~34
    [45]Wang G, Gong Y, Anderson J, et al. Antioxidative function of L-FABP in L-FABP stably transfected Chang liver cells[J]. Hepatology,2005,42(4):871~879
    [46]Storch J, Thumser AE. The fatty acid transport function of fatty acid binding prot-eins[J]. Biochim Biophys Acta,2000,1486:28~44
    [47]Binas B, Erol E. FABPs as determinants of myocellular and hepatic fuel metaboli-sm[J]. Mol Cell Biochem,2007,299:75~84
    [48]Chuang S, Velkov T, Home J, Porter CJ, Scanlon MJ. Characterization of the drug binding specificity of rat liver fatty acid binding protein[J]. J Med Chem,2008,51: 3755~3764
    [49]Jolly CA, Wilton DC, Schroeder F. Microsomal fatty acyl-CoA transacylation and hydrolysis:fatty acyl-CoA species dependent modulation by liver fatty acyl-CoA binding proteins[J]. Biochim Biophys Acta,2000,1483:185~197
    [50]Weisiger RA. Cytosolic fatty and binding proteins catalyze two distinct steps in in-tracellar transport of their ligands[J]. Mol Cell Bilchem,2002,239:35~43
    [51]Martin GG, Atshaves BP, McIntosh AL, Mackie JT, Kier AB, Schroeder F. Liver fatty-acid-binding protein(L-FABP)gene ablation alters liver bile acid metabolism in male mice[J]. Biochem J,2005,391:549~560
    [52]Hoekstra M, Stitzinger M, van Wanrooij EJ, Michon IN, Kruijt JK, Kamphorst J, Van Eck M, Vreugdenhil E, Van Berkel TJ, Kuiper J. Microarray analysis indicates an important role for FABP5 and putative novel FABPs on a Western-type diet[J]. J Lipid Res,2006,47:2198~2207
    [53]Wang G, Gong Y, Anderson J, Sun D, Minuk G, Roberts MS, Burczynski FJ. Ant-ioxidative function of L-FABP in L-FABP stably transfected Chang liver cells [J]. Hepatology,2005,42:871~879
    [54]Wolfrum C, Borrmann CM, Borchers T, Spener F. Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors alpha and gamma-mediate-d gene expression via liver fatty acid binding protein:a singaling path to the nuc-leus[J]. Proc Natl Acad Sci USA,2001,98:2323~2328
    [55]Schroeder F, Petrescu AD, Huang H, Atshaves BP, McIntosh AL, Martin GC, Hos-tetler HA, Vespa A, Landrock D, Landrock KK, Payne HR, Kier AB. Role of fatty acid binding proteins and long chain fatty acids in modulating nuclear receptors and gene transciption [J]. Lipids,2008,43:1~17
    [56]Landrier JF, Thomas C, Grober J, Duez H, Percevarlt F, Souidi M, Linard C, Stael B, Besnard P. Statin induction of liver fatty acid-binding protein(L-FABP) gene ex-pression is peroxisome proliferator-activated receptor-alpha-dependent[J]. J Biol Che-m,2004,279:45512~45518
    [57]胡义扬,刘平,刘成,等.丹参提取物对CCL4和DMN诱导的大鼠肝纤维化的影响[J].上海中医药杂志,1999(10):7~8
    [58]邓理有.降血脂佳品——泽泻.家庭中医药[J],2000,7(3):52
    [59]李英,王晓素.脂肪肝的中医药治疗现状[J].甘肃中医,2006,19(3):35~37
    [60]沈映君.中药药理学.人民卫生出版社,2000:1015
    [61]王德山,肖玉芳,董朝晖,等.枸杞抗实验性高血脂、肝脂量效关系及毒性研究[J].辽宁中医杂志,1997,24(12):567~568
    [62]何菊英,刘松青,彭永富,等.决明子降血脂作用机制研究[J].中国药房,2003,14(4):202
    [63]陈爽,责长恩,杨美娟,等.柴胡皂甙对肝细胞增殖及基质合成的实验研究[J].中国中医基础医学杂志,1999,5(5):21
    [64]李贵海,孙敬勇,张希林,等.山楂降血脂有效成分的实验研究[J].中草药,2002,33(1):50
    [65]林秋实.山楂及山楂黄酮预防大鼠脂质代谢紊乱的分子机制研究[J].营养学报,200-0,22(2):131~136
    [66]Bjorntorp P. Metabolic difference between visceral fat and subcutaneous abdominal fat[J], Diabetes Metab,2000,28(suppl):10~12
    [1]Brunt EM. Nonalcoholic steatohepatits[J]. Semin LiverDis,2004,24:3~20
    [2]Van Nieuwenhover FA, Vander Vusse GJ, Glatz JFC. Membrane associated and cytoplasmic fatty acid binding proteins[J]. Lipids,1996,31(suppl):233~227
    [3]Storch J, Thumser AE. The fatty acid transport function of fatty acid-binding pro-teins[J]. Biochim Biophys Acta,2000,1486:28~44
    [4]Kurian E, Kirk WR, Prendergast FG. Affinity of fatty acid for rat intestinal fatty acid binding proein:Further examination[J]. Biochemistry,1996,35:3865~3874
    [5]Richieri GV, Low PJ, Ogata RT, Kleinfeld AM. Thermodynamics of fatty acid bin-ding to engineered mutants of the adipocyte and intestinal fatty acid-binding protei-ns[J]. J Biol chem,1998,273:7397-7405
    [6]Glatz JF, Van der Vusse GJ. Cell fatty acid binding proteins:Current concepts and future directions[J]. Mol Cell Biochem,1990,98:237~251
    [7]Kaikaus RM, Chan WK, Ortiz de Montellano PR, Bass NM. Mechanisms of regul-ation of liver fatty acid-binding protein[J]. Mol Cell Biochem,1993,123:93~100
    [8]Zimmerman AW, van Moerkerk HT, Veerkamp JH. Ligand specificity and conform-ational stability of human fatty acid-binding protein[J]. J Biochem Cell Biol,2001, 33:865~876
    [9]Kliewer SA, Sundseth SS, JonesSA, et al. Fatty acids and eicosanoids regulate ge- ne expression through direct interactions with peroxisome proliferator-activated rece-ptors α and γ [J]. Proc Natl Acad Sci USA,1997,94:4318~23
    [10]Wolfrum C, Borrmann CM, Borchers T, et al. Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors α and γ mediated gene expre-ssion via liver fatty acid binding protein:Asignaling path to the nucleus[J]. Proc Natl Acad Sci USA,2001,98:2323~28
    [11]Tan NS, Shaw NS. Vinckenbosch N, et al. Selective cooperation between fatty aci-d binding proteins and peroxisome proliferator-activated receptors in regulating tran-scription[J]. Mol Cell Biol,2002,22:5114~27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700