中温固体氧化物燃料电池阴极材料Pr_(1-x)Sr_xCo_(0.8)Fe_(0.2)O_(3-δ)的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用溶胶-凝胶法合成出了中温固体氧化物燃料电池(IT-SOFC)新型阴极材料Pr1-xSrxCo0.8Fe0.2O3-δ(0.2≤x≤0.6)系列样品,并对其基本物性及电化学性能进行了系统的研究。Pr1-xSrxCo0.8Fe0.2O3-δ(0.2≤x≤0.6)系列样品用溶胶-凝胶法在900oC烧结6h后已经成单相,为正交钙钛矿结构。Pr1-xSrxCo0.8Fe0.2O3-δ(0.2≤x≤0.6)有很高的电导率,在温度范围(300-800oC)内,所有样品的电导率均在279S/cm以上,达到了对中温SOFC阴极材料的要求(≥100S/cm)。当x=0.4测量温度为300oC时,样品的电导率达到了最大值1024 S/cm。在温度范围30-850oC内,Pr0.6Sr0.4Co0.8Fe0.2O3-δ的平均热膨胀系数(TEC)为19.69×10?6 K?1,但比Ce0.85Gd0.15O1.925( GDC )电解质的TEC(12.56×10-6 K-1 ,我们实验室所测)大,所以采用Pr0.6Sr0.4Co0.8Fe0.2O3-δ(PSCF)-GDC复合材料做燃料电池的阴极。
     利用交流阻抗谱研究了以GDC为电解质,不同烧结温度下PSCF-GDC的电化学性能,再结合SEM给出的微观结构结果发现,PSCF-GDC阴极的最佳烧结温度是1000oC。经此温度烧结后的PSCF-GDC复合阴极的极化电阻在800oC时是0.046。制备以电解质为支撑体的单电池(NiO-GDC/GDC/PSCF-GDC),进行性能测试, 800Ωcm2oC时,功率密度达到520mW/cm2, 750 oC时功率密度达到435 mW /cm2,600oC时功率密度达到303 mW /cm2。
A fuel cell is an energy conversion device with a high efficiency and a low pollution. Different from the traditional cells that can only reserve energy, it generates electricity from fuels such as hydrogen, natural gas and other hydrocarbons. The fuel cell is also called a cell because it is composed of electrolyte, anode and cathode, which are the same for a normal cell. The electrolyte is sandwiched by the two electrodes. The fuel cell is also different from the traditional power generation methods. Because it is not limited by the Carnot cycle, fuel cell has advantages of higher energy conversion efficiency and lower polluted gases emission over the traditional generator. Recently with the natural resource exhaustion and environment deterioration, developing efficient and environmental friendly energy techniques is necessary. Since fuel cell just matches such requirements, it attracts the interests all over the world.
     As the fourth generation fuel cell, SOFC (Solid Oxide Fuel Cell) has many outstanding advantages, which is better than other fuel cells. Firstly, equipped with all solid components, it eliminates the problems that liquid electrolyte fuel cell faces, such as corrosion and leakage of liquid electrolytes. Secondly operating at high temperatures, its electrode reaction is so fast that it is unnecessary to use noble metals as electrodes. Thus the cost of the cells can be minimized. The most outstanding advantage of SOFC is that it uses a large scale of fuels, from the hydrogen, carbon monoxide to the natural gas or even other combustive gases.
     Intermediate temperature solid oxide fuel cell (IT-SOFC) is the tendency of the solid oxide fuel cell commercializing development. The traditional cathode material La1?xSrxMnO3 (LSM) is deemed to be one of the most promising cathode materials for high temperature SOFCs because of its outstanding electrochemical performance, thermal and chemical stability and relatively good compatibility with yttria-stabilized zirconia (YSZ). However, with decreasing temperature, its electrical conductivity is greatly reduced and the cathode resistance is increased rapidly. so it is important to develop new cathode materials with high performance at intermediate temperature.
     In recent years, Ln1?xSrxCo1?yFeyO3?δ(Ln = La, Sm, Nd, Gd, Dy) has become the cathode material of choice for IT-SOFCs, because of its high electronic and ionic conductivity as well as its high catalytic activity for oxygen reduction. In our study, Cathode materials consisting of Pr1-xSrxCo0.8Fe0.2O3?δ(x=0.2–0.6) were prepared by the sol–gel process for intermediate-temperature solid-oxide fuel cells (IT-SOFCs). Pr1-xSrxCo0.8Fe0.2O3?δ(x=0.2–0.6) had an orthorhombic perovskite structure after sintering at 900°C for 6h. The electrical conductivities were all higher than 279 S cm-1, which met the demand for IT-SOFC. At the same time, we compared the conductivity values for each proportion at the 450°C, 600°C, 750°C. We found that Pr0.6Sr0.4Co0.8Fe0.2O3?δhad the highest conductivity, which is 989S/cm, 901 S/cm and 730 S/cm at 450°C, 600°C, 750°C, respectively. Therefore, we choose Pr1-xSrxCo0.8Fe0.2O3-δcathode to make other tests, for the Pr1-xSrxCo0.8Fe0.2O3-δ(0.2≤x≤0.6) system. The average thermal expansion coefficients of Pr0.6Sr0.4Co0.8Fe0.2O3?δbetween 30 to 850°C are about 19.69×10-6 K-1. The result of these samples was slightly higher than that of Ce0.85Gd0.15O1.925 (GDC) (12.56×10-6 K-1, measured by our lab.) electrolyte. In order to decrease thermal expansion coefficient we fabricated composite electrodes which can match well with GDC electrolyte. The SEM images of Pr0.6Sr0.4Co0.8Fe0.2O3?δ(PSCF) cathodes sintered at 1000oC showed a smaller grain size and reasonable porosity to ensure gas diffusion. Also the cathode appeared to be in good contact with the dense electrolyte pellet.
     Using impedance spectra, the electrochemical performance of PSCF–GDC composite cathode in the temperature range of 650-800 oC on GDC electrolyte, and the effect of sintering temperature on performance of cathode were investigated. The area specific resistance (ASR) value of PSCF–GDC sintered at 1000oC on GDC electrolyte is 0.046Ωcm2 at 800oC, which is much lower than the 0.516Ωcm2 measured at 800oC for PSCF–GDC sintered at 1050oC. Its value is a little lower than that of PSCF–GDC sintered at 950oC, which is 0.05Ωcm2. And considering the SEM photos of PSCF–GDC sintered at 1000oC, we think 1000oC is the appropriate sintering temperature for this composite cathode. At the same time, we obtained the activation energy from the slope of lnR vt 1000 / T curve at different sintering temperature for PSCF-GDC composite cathode, which can further demonstrates that the best sintering temperature is 1000 oC. We also tested the overpotential for PSCF-GDC composite cathode, it can be predicted that the weak polarization properties of this cathode can improve performance of electrode significantly, and the PSCF-GDC composite cathode is a potential cathode material. We measured the power densities of the GDC-supported fuel cells by using PSCF–GDC as composite cathode. The maximum power density of the cell with the PSCF–GDC composite cathode was 520mWcm-2, 435 mWcm-2 and 303 mWcm-2 at 800 oC, 750 oC and 700 oC, respectively.
     These results above mentioned indicate that PSCF–GDC composite cathode is a promising cathode material for IT-SOFC.
引文
[1] T. A. Damberger. Fuel Cells for Hospitals[J]. J. Power Sources, 1998, 71:45~50
    [2]韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备[J].科学出版社, 2004:3
    [3]李瑛,王林山.燃料电池[J].冶金工业出版社, 2002:1
    [4]隋智通,隋升,罗冬梅.燃料电池及其应用[J].冶金工业出版社, 2004:2~4
    [5]石井弘毅.燃料电池原理与应用[J].科学出版社,2003:1~19
    [6]刘凤君高效环保的燃料电池发电系统及其应用[J].北京机械工业出版社, 2005.
    [7]电气学会·燃料电池发电世纪系统技术调查专门委员会编著燃料电池[J].技术北京化学工业出版社, 2004.
    [8] M. C. Williams, S. C. Singhal. Mass-produced ceramic fuel cells for low-cost power [J].Fuel Cells Bulltin, 2000, 3: 8-11
    [9] Tu H.Y.,Takeda Y.,Imanishi N.,et al. Ln0.6Sr0.4Co0.8Fe0.2 ( Ln= La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells[J]. Solid State Ionics,1999, 117:277-281.
    [10] Lee H.Y.,Jang J.H.,Seung M.O. Cathode activity and interfacial stability of Y0.8Ca0.2Co1-xFexO3/ YSZ electrodes for solid oxide fuel cells[J]. Journal of the electrochemical society,1999, 146(5):1707-1716.
    [11]夏正才,唐超群. Lal-xSrxMnO3阴极材料的导电机理研究[J].物理学报, 1999,48(8):1518-1521.
    [12]徐志弘,温廷琏,吕之奕.高温燃料电池阴极材料La(Sr)MnO3的电导性能研究[J].无机材料学报,1994,9(4):489-492.
    [13]赵兵,张瑞海,卢立柱等. Lal-xSrxMnO3超细粉性能研究[J].功能材料,1997,28(5):500-503.
    [14]符晓铭,唐春和,唐亚平等.固体氧化物燃料电池阴极材料Lal-xSrxMnO3研究[J].清华大学学报(自然科学版),1998,38(5):80-83.
    [15] S.Yoon, J.Han, S.Nam, T.Lim, I.Oh, S.Hong, Y.Yoo, H.Lim, Performance of anode supported solid oxide fuel cell with La0.85Sr0.15MnO3 cathode modified by sol–gel coating technique[J]. J. Power Sources, 2002 106:160–166.
    [16] J.M.Ralph, J.A.Kilner, B.C.H.Steele, Improving Gd-doped ceria electrolytes for low temperature solid oxide fuel cells[J]. Mater.Res.Soc.Symp.Proc, 2001, 575: 309.
    [17] N.T.Hart, N.P.Brandon, M.J.Day, N.Lapena-Rey, Functionally graded composite cathodes for solid oxide fuel cells[J], J. Power Sources, 2002, 106: 42–50.
    [18] R. Doshi, V.L. Richards, J.D. Carter, X.P.Wang, M.Krumpelt. Instability of amorphous Ru-Si-O thin films under thermal oxidation [J]. J.Electrochem. Soc, 1999, 146: 1273–1278.
    [19] H.Y.Tu, Y.Takeda, N.Imanishi, O.Yamamoto.Ln1-xSrxCoO3 (Ln=Sm, Dy) for the Electrode of Solid Oxide Fuel Cells[J]. Solid State Ionics.1997,100:283~288
    [20] S.P.S.Badwal, K.Foger, Materials for solid oxide fuel cells[C], Mater.Forum 21, 1997.
    [21] E.Maguire, B.Gharbage, F.M.B.Marques, J.A.Labrincha, Cathode materials for intermediate temperature SOFCs[J], Solid State Ionics, 2000 127: 329–335.
    [22] Norrlon O,Glad M,Mosbach K.Acrylic polymer preparations containing recognition sites obtained by imprinting with substrates[J]. J Chromatography,1984,299(1):29-41.
    [23] Piletsky S A,Piletskaya E V,Yano K,et a1. A biomimetic receptor system for sialic acid based on molecular imprinting [J].Anal Lett,1996,11:157—159.
    [24] F. Riza, Ch. Ftikos, F.Tietz, W. Fischer. Preparation and characterization of Ln0 .8 Sr 0.2F e 0.8 Co 0.2 O3 ?x (Ln=La, Pr, Nd, Sm, Eu, Gd)[J] Journal of the European Ceramic Society, 2001, 21: 1769–1773.
    [25] L. Qiu, T. Ichikawa, A. Hirano, N. Imanishi, Y, Takeda. Ln Sr Co Fe O (Ln=Pr, Nd, Gd; x=0.2, 0.3) for the electrodes of solid oxide fuel cells1?x x 1?y y 3?δ[J]. Solid State Ionics, 2003, 158: 55–65.
    [26] Yilxnaz E,Haupt K,Mosbaeh K.A new Chem Int Ed En—g1,2000,39:2115–2123.
    [27] Zongping Shao, Sossina M. Haile. A high-performance cathode for the next generation of solid-oxide fuel cells[J]. Nature, 2004, 431: 170-173.
    [28] Z.Shao,H.Dong,G.Xiong. Performance of a mixed-conducting ceramic membrane reactor with high oxygen permeability for methane conversion[J]. J.Membr.Sei, 2001,183: 181.
    [29] H.H.Wang,R.Wang,D.T.Liang,W.S.Yang.Experimental and Modeling Studies on Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCF) Tubular Membranes for Air Separation[J]. J.Membr.Sci, 2004, 243: 405~415.
    [30] L.Tan, X.H.Gu, L.Yang, W.Q.Jin, L.X.Zhang, N.P.Xu. Influence of Powder Synthesis Methods on Microstructure and Oxygen Permeation Performance of Ba0.5Sr0.5Co0.8Fe0.2O3-δPerovskite-Type Membranes[J]. J.Membr. Sci, 2003, 212: 157~165.
    [31] ChibaR,Yoshimura.F,Skaurai Y. An investigation of LaNi1-xFexO3: as a cathode material for solid oxide fuel cells[J].Solid State Ionics,1999,124: 281-288.
    [32] R.Chiba, F.Yoshimura, Y.Sakurai. An Investigation of LaNi1-xFex O 3 as a Cathode Material for Solid Oxide Fuel Cells[J]. Solid State Ionics, 1999, 124: 281~288.
    [33] V.V.Kharton, A.P.Viskup, E.N.Naumovich, V.N.Tikhonovich. Oxygen Permeability of LaFe1-xNixO3-δ[J]. Solid Solutions.Mater.Res.Bull, 1999, 34: 1311~1317.
    [34]李娜,吕喆.中温固体氧化物燃料电池阴极材料GdBaCo2O5+δ的性能研究.哈尔滨:哈尔滨工业大学, 2007.
    [35] Kharton V V , Tsipis E V , Yaremchenko A A, et al. 1 Surface2 limited oxygen transport and electrode properties of La2Ni0.18Cu0.12O4 +δ[J]. Solid State Ionics, 2004, 166 (1 - 2): 327– 3371.
    [36] Shaw C , Kilner J1Oxygen change in Pr2NiO4 +δat high temperature and direct formation of Pr4Ni3O10–δ[J]. Proceed 4th European Solid Oxide Fuel Cell Forum[C]. 1 Luzerland, 2002, 1: 5861.
    [37] Van Herle J. , Horita T., Kawada T. et al. Solid State Ionics, 1996, 86—88 (PartⅡ): 1 255-1 263
    [38] Shuk.P,wiemhofer H.D.,Guth U,et al. Oxide ion conducting solid electrolytes based on Bi2O3[J]. Solid State Ionies,1997,89(3-4):179-196.
    [39]魏丽,陈诵英,王琴.中温固体氧化物燃料电池电解质材料的研究进展[J].稀有金属, 2003,27(2): 286一298.
    [40] Zhang T S, M A J, Kong L B, et al. A ging behavior and ionic conductivity of ceria-based ceramics: a comparative study [J]. Solid State Ionics, 2004,170 :209—217.
    [41]王航娟,揭雷飞,董新法,等.CeO2在氢化催化反应中的作用[J].电源技术, 2002, 26(1): 43—46.
    [42] Hormes J, Pantelouris M, Balazsg B, et al. X -ray absorption nearedge structure (X A N ES)m easurem ents ofceria-based solid electrolytes [J]. Solid State Ionics, 2000, 136: 945—954.
    [43]梁广川,刘文西,陈玉如,等.Sm ,Gd共同掺杂的CeO2基电解质性能研究[J].硅酸盐学报, 2000, 28(1): 44—46.
    [44]中国科学院半导体研究所理化分析中心研究室,半导体的检测与分析[J].科学出版社,1984:435~466.
    [45] H.Tu, U.Stimming. Advances, aging mechanisms and lifetime in solid oxide fuel cells[J]. J.power Sources, 2004,127(1-2):284-293.
    [46]许兴艳,夏长荣,彭定坤,孟广耀.中低温固体氧化物燃料电池研制[J].电池,2000,34(3):222-223.
    [47] B. C. H. Steele. Materials for IT-SOFC Stacks-35 Years R&D: The Inevitability of Gradualnes[J]. Solid State Ionics. 2000, 134:3~20.
    [48] S. Souza, S. J. Visco, L. C. D. Jonghe. Thin-Film Solid Oxide Fuel Cell withHigh Performance at Low-Temperature [J]. Solid State Ionics, 1997, 98: 57~61.
    [49] H. Inaba, H. Tagawa. Ceria-Based Solid Electrolytes [J]. Solid State Ionics, 1996, 83:1~16.
    [50] S.J. Skinner, Int. J. Inorg. Mater. 3 (2001) 113–121.
    [51] E. Boehm, J.-M. Bassat, M.C. Steil, P. Dordor, F. Mauvy, J.-C. Grenier. Oxygen transport properties of La 2 Ni 1?xC u xO 4 +δmixed conducting oxides [J]. Solid State Sci, 2003, 5: 973–981.
    [52] L.-W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin. Structure and electrical properties of La1 ?xS r xC o1 ?yF e yO 3 . Part 1. The system La0 .8 Sr 0.2 Co1 ?yF e yO 3 [J]. Solid State Ionics, 1995, 76: 259–271.
    [53] T. Ishihara, M. Honda, T. Shibayama, H. Minami, H. Nishiguchi, Y. Takita. Intermediate temperature solid oxide fuel cells using a new LaGaO based oxide ion conductor - I. Doped SmCoO as a new cathode material33 [J]. Electrochem.Soc, 1998145: 3177–3183.
    [54] E.P. Murray, S.A. Barnett, La(Sr)MnO–(Ce,Gd)O composite cathodes for solid oxide fuel cells3 2?x[J]. Solid State Ionics, 2001, 143: 265–273.
    [55] C.J. Fu, K. Sun, N.Q. Zhang, X.B. Chen, D.R. Zhou. Electrochemical characteristics of LSCF-SDC composite cathode for intermediate temperature SOFC [J]. Electrochim.Electrochim. Acta, 2007, 52: 4589–4594.
    [56] K.T. Lee, A. Manthiram. Characterization of Nd Sr CoO (0≤x≤0.5) cathode materials for intermediate temperature SOFCs1-x x 3?δ[J]. Electrochem. Soc, 2005, 152 (1): A197–A204.
    [57] Stevenson J W,Armstrong T E, Chrneim R D,et al. Electrochemical properties of mixed conducting perovskites La1 -x M xC o 1-yF e y O3 ?δ(M=Sr,Ba,Ca)[J]. Electrochem.Soc, 1996, 143(9): 2722-2729.
    [58] Tai L W, Nasrallah M M,Anderson H U, er al. Structure and electrical properties of La 1 ? x Sr x Co1 ? yF e yO 3 ?δ. Part 2. The system La 1 ? x Sr xC o 0.2 Fe 0.8O 3 [J]. Solid State Ionics,1995, 76: 273-283.
    [59]林祖骥,郭祝昆,孙成文,李世椿,陈昆刚,田顺宝,严东生。快离子导体[A],上海科学技术出版社,1983: 299.
    [60] H. Y. Tu, Y. Takeda, N. Imanishi, O. Yamamoto. Ln1-x SrxCoO3 (Ln=Sm, Dy) for the electrode of Solid Oxide Fuel Cells [J]. Solid State Ionics, 1997, 100: 283~288.
    [61] Lee K T,Manthiram A. Characterization of Nd Sr Co Fe O (0≤y≤0.5) cathode materials for intermediate temperature solid oxide fuel cells0.6 0.4 1?y y 3?δ[J]. Solid State Ionics, 2005, 176(17): 1527-1527
    [62]新型中温固体氧化物燃料电池阴极材料Fe掺杂Sm0.5Sr0.5CoO3性能研究吕洪,赵斌元,孙刚,吴宇骥,胡克鳌.无机化学学报[J],2006,22(11):1967-1972
    [63] Jianfeng Gao, Xingqin Liu, Dingkun Peng, Guangyao Meng. Electrochemical behavior of Ln Sr Co Fe O (Ln=Ce, Gd, Sm, Dy) materials used as cathode of IT-SOFC0.6 0.4 0.2 0.8 3?δ[J]. Catalysis Today, 2003, 82: 207–211.
    [64]李强,范勇,孙丽萍,赵辉,霍丽华.类钙钛矿型中温固体氧化物燃料电池Sm1 .5 Sr 0.5 Ni x Co 1-x O4 +δ阴极材料的制备与电化学性能研究[J].黑龙江大学自然科学. 2007.
    [65]李艳.固体氧化物燃料电池复合阴极的制备及性能研究[D].哈尔滨:哈尔滨工业大学,2004.
    [66] H. Ullmann, N. Trofimenko, F. Tietz, D. St?ver. Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes [J]. A. Ahmad-Khanlou, Solid State Ionics, 2000, 138: 79–90.
    [67] J.-H. Wan, J.-Q. Yan, J.B. Goodenough, LSGM-based solid oxide fuel cell with 1.4 W/cm(2) power density and 30 day long-term stability [J]. J. Electrochem. Soc, 2005, 152: A1511–A1515.
    [68] T. Ishihara, T. Kudo, H. Matsuda, Y. Takita, The effects of alkoxy functional-groups on atmospheric-pressure chemical-vapor-deposition using alkoxysilane and ozone [J]. Electrochem. Soc, 1995, 142: 1519–1524.
    [69] S. Kim, S.Wang, X. Chen, Y.L. Yang, N.Wu, A. Ignatiev, A.J. Jacobson, B. Abeles, Oxygen surface exchange in mixed ionic electronic conductors: Application La0.5Sr0.5Fe0.8Ga0.2O3-delta [J]. J.Electrochem. Soc, 2000 147: 2398–2406.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700