Ti-Al-N基硬质涂层的热稳定性能、微结构及其力学、切削性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ti-Al-N涂层具有优良的高温抗氧化性能和力学性能成为目前应用最普遍的刀具涂层材料,其晶体结构和力学性能在很大程度上取决于涂层中的Al含量,当Al含量超过TiN的固溶度时,立方相(c)Ti-Al-N向六方(h)转化而使其力学性能显著降低。因此,Ti-Al-N涂层中Al含量的控制显得尤为重要。但是,现在普遍采用的溅射沉积技术制备的涂层成分经常会偏离靶材成分,涂层成分的精确控制难度很大。近来,Ti-Al-N涂层的热稳定性能受到越来越多的关注,亚稳的c-TiAlN在高温(约1000℃)时会向其稳定相c-TiN和h-AlN转化,从而导致涂层失效。然而,h-AlN的形成需要经过调幅分解析出c-AlN作为过渡相才能实现,调幅分解的发生引起涂层的时效硬化现象的发生。到目前为止,Ti-Al-N涂层的时效硬化现象的研究还不够深入,特别是其应用基本上还没有涉及。在实际切削应用中,尤其是对于干式高速切削,切削区域的温度经常高于Ti-Al-N的热分解温度(约1000℃)。为了抑制Ti-Al-N涂层的高温分解过程,在Ti-Al-N涂层中添加第四组元以提高涂层的力学性能和热稳定性已成为目前刀具涂层的前沿研究领域。
     本论文从溅射过程中Ti、Al原子的不同丢失情况出发,揭示了各种沉积条件下沉积的Ti-Al-N涂层的组成和结构的变化机理。Ti-Al-N基涂层的热稳定性为本论文的另一研究重点。本论文首次详细研究了不同Al含量、不同晶体结构的Ti-Al-N涂层的时效硬化现象,并深入地研究了Ti-Al-N涂层的时效硬化在切削刀具上的应用。本研究还发现:通过Si、Zr元素的加入形成的Ti-Al-X-N四元涂层改善了涂层的热稳定性和力学性能。在此基础上对Ti-Al-Si-N涂层的微结构进行了改进,成功地实现了其在工业上的应用。所取得的主要研究成果如下:
     1.应用角度、散射丢失机理详细地分析了反应溅射Ti_(0.5)Al_(0.5)复合靶材制备Ti-Al-N涂层时不同氮化靶材表面的Ti、Al原子丢失情况,并在此基础上研究了各种沉积条件下制备的Ti-Al-N涂层的成分与微结构的变化。本研究为溅射沉积Ti-Al-N涂层的组成控制提供了系统的理论指导,使Ti-Al-N涂层成分的精确控制成为可能。本研究还表明:在涂层制备过程中,通过调整沉积参数来减小沉积原子的表面扩散能力有利于提高Al在c-TiAlN涂层中的固溶度。
     2.Ti-Al-N涂层的热分解过程需先经过调幅分解析出亚稳相的c-AlN相作为过渡,然后再转变为稳定的h-AlN相,调幅分解的发生伴随着时效硬化的出现。Ti-Al-N涂层的调幅分解与时效硬化效应与涂层中的Al含量密切相关。高的Al含量会驱使调幅分解与时效硬化在低温区间出现,同时涂层的失效温度也相应的在低温区出现。Ti-Al-N涂层的时效硬化特性为热处理Ti-Al-N涂层刀片并改善其切削性能提供了可能。热处理后的时效硬化改善了涂层的车削性能。但对于铣削加工,合适的热处理工艺则显得尤为重要。通过在700-800℃温度区间快速冷却,而在其它温度区间缓慢冷却,可在增加涂层硬度的同时,减少热处理过程对硬质合金的韧性及涂层与基体的结合强度的影响,从而改善了涂层刀片的铣削性能。
     3.Ti-Al-N涂层中添加Si形成的nc-Ti_(1-x)Al_xN/a-Si_3N_4纳米晶复合结构大幅改善了涂层的硬度和热稳定性能。nc-Ti_(1-x)Al_xN/a-Si_3N_4的热分解过程也会发生调幅分解,从而引起时效硬化。(Ti_(0.45)Al_(0.55))_(0.93)Si_(0.07)在1100℃高温时仍能维持高硬度值~42.4GPa。
     4.Zr元素的加入在降低Ti-Al-N涂层时效硬化的起始温度的同时,还可提高c-AlN向h-AlN的转变温度。因而在Ti-Al-N体系中加入Zr可改善涂层的热稳定性、延长了其时效硬化温度区间,从而有利于涂层的高温应用。
     5.研究Ti-Al-N与Ti-Al-Si-N在切削刀具上的应用,并通过多层界面结构进一步改善了其切削性能,实现这两种涂层的产业化应用。
     TiN/TiAlN多层涂层的界面强化作用增加了涂层的硬度并改善了涂层与基体之间的结。因而无论是车削还是铣削加工,多层涂层都表现出比TiN、Ti-Al-N单层涂层更好的切削性能。
     nc-Ti_(1-x)Al_xN/a-Si_3N_4纳米晶复合结构改善了涂层的耐磨性与热稳定性,因而提高了其车削性能。然而,nc-Ti_(1-x)Al_xN/a-Si_3N_4涂层与基体低的结合强度、高的内应力及脆性使其铣削性能下降。通过结构设计制备的TiAlN-TiAlSiN双层和TiAlN/TiAlSiN多层涂层刀片不仅可以降低涂层内应力,而且还增加了涂层与基体的结合强度。低的内应力和高的结合强度有利于改善涂层刀片的铣削性能。特别是TiAlN/TiAlSiN多层涂层刀片在不降低车削性能的前提下,大幅度改善了涂层刀片铣削性能。
Ti-Al-N coatings have become the most widely used coating for dry machining due to their high temperature oxidation resistance and excellent mechanical peroperties.The chemical composition of Ti-Al-N coatings basically determines their structure and properties.For Al contents exceeding the cubic solid solubility,a mixed cubic-NaCl and hexagonal-ZnS(h-AlN) structure is formed,which results in reduced coating properties.The Al content of Ti-Al-N coatings has a significant effect on their structure and properties.The composition of the coating deposited using sputtering technology can deviate from that of the corresponding target,which makes it difficult to control the composition of sputtered film.Recently,increasing attention has been concentrated on the thermal stability of Ti-Al-N coatings.The transformation of(c) TiAlN into the c-TiN and c-AlN at elevated temperature of~1000℃results in a drop of mechanical properties.However,this transformation involves an intermediate step of c-AlN by spiondal decomposition,and concomitant increase of the hardness occurs.Nevertheless,there is only limited information on the age-hardening of Ti-Al-N coatings so far,especially for its industrial application.The cutting temperature during high speed and dry cutting exceeds the decomposition temperature(~1000℃) of Ti-Al-N.Therefore,a considerable effort was done by alloying Ti-Al-N based coatings with several elements to improve their mechanical properties and thermal stability.
     Here,we study the compositional and structural evolution of sputtered Ti-Al-N coatings with different deposition parameters allowing for the different loss states of sputtered Ti,and Al atoms.Additionally,the thermal stability and age-hardening of Ti-Al-N coatings with variable Al content and structure are investigated.Furthermore,we also focus on the age-hardening application of Ti-Al-N coatings on cutting application.The incorporation of Si and Zr into Ti-Al-N coatings significantly improves their mechanical properties and thermal stability.And the commercial process of Ti-Al-Si-N coatings after adjustment of their structure is realized.This thesis is comprised of the following five parts:
     1.The different poisoning state of the Ti and Al particles of Ti_(0.5)Al_(0.5) target in addition to scattering and angular losses causes a significant compositional and structural modification during preparation of Ti-Al-N with different deposition parameters.This mechanism makes it possible to compositional control of sputtered Ti-Al-N.The decreased surface-diffusion process of deposited atoms by adjustment of deposition parameters allows for the higher Al solid solution in TiN.
     2.The decomposition of Ti-Al-N coating into the stable phases c-TiN and h-AlN involves an intermediate step associated with the formation step of c-AlN.Ti-Al-N coating undergoes spinodal decomposition with the formation of nm-sized cubic TiN and AlN domains resulting in an increase of hardness.The spiondal decomposition and age-hardening of Ti-Al-N coating have an affinity with Al content,where Ti-Al-N coating with higher Al content permits the occurrence of spiondal decomposition and failure at lower temperature.The turning and milling performance of coated inserts can be optimized by a post-deposition annealing treatment, where the coating undergoes age-hardening,combined with a cooling condition allowing for high cohesion and fracture toughness of the cemented carbide.The latter is essential during milling.The improvement during milling is only obtained if the cooling after annealing at 900℃is performed in three steps.The temperature is decreased from 900 to 800℃by a vacuum furnace cooling,from 800 to 700℃by Ar-flow cooling, and further to RT again vacuum furnace cooling.
     3.The higher hardness and improved thermal stability are obtained by incorporation of Si into Ti-Al-N coatings due to the formation of special three-dimensional net structure consisting of nanocrystalline(nc) TiAlN encapsulated in an amorphous(a) Si_3N_4 matrix phase.Such a strucutre hinders the generation of h-AlN during high temperature annealing.The spiondal decomposition of nc-TiAlN/a-Si_3N_4 coatings also causes the age-hardening,where the hardness of~42.4 GPa after annealing of (Ti_(0.45)Al_(0.55))_0.93 Si_(0.07) coatings at 1100℃is acquired.
     4.Ti-Al-N coatings alloyed with Zr significantly improve the thermal stability,where Ti-Al-Zr-N coatings allow the occurrence of spiondal decomposition at lower temperature and also retard the decomposition of h-AlN at higher temperature.The incorporation of Zr into Ti-Al-N coatings widens the temperature region of age-hardening and is benefit to its high temperature application.
     5.The application of Ti-Al-N and Ti-Al-Si-N coatings on cutting tools is investigated.The performance of coated tools is further improved by multilayer structure,and thus realizes the commercial process.
     The interfaces of TiN/TiAlN multilayers increase the hardness and improve the cohesion strength with substrate.Therefore,the TiN/TiAlN multilayer coated inserts behaves better turning and milling performances compared to TiN and Ti-Al-N coated inserts.
     The turning performance of nc-TiAlN/a-Si_3N_4 coated inserts can be increased due to the higher hardness and improved thermal stability, However,a decrease in milling properties is obtained owe to their higher stress,brittleness and worse adhesion between coating and substrate.The structural adjustment of Ti-Al-Si-N coating into TiAlN-TiAlSiN bilayer and TiAlN/TiAlSiN multilayer coatings further improves the machining performance including both turning and milling.
引文
[1]Matthews A.,Datta P.K..Surface Engineering Casebook,.Woodhead Publishing Ltd,Cambridge,1996.23
    [2]Bunshah R.F.,McGuire G.M.,Rossnagel S.M Handbook of hard coatings.Noyes Publications,New Jersey,2001.4
    [3]Hocking M.G.,Vasantasree V.,Sidky P.S.,Metallic and Ceramic Coatings.Wiley,New York.1989
    [4]Okamoto A.,Serikawa T.Reactive sputtering characteristics of silicon in Ar-N_2mixture.Thin Solid Films,1986:137,143-151
    [5]Safi I.Recent aspects concerning DC reactive magnetron sputtering of thin films:a review.Surf.Coat.Technol,2000,127:203-218
    [6]唐伟忠.薄膜材料制备原理,技术及应用.冶金工业出版社,1998.
    [7]Anders A.Physics of arcing,and implications to sputter deposition.Thin Solid Films,2006,502:22-28
    [8]Boxman R.L.,Goldsmith S.Mass and surface conductivity gain on polymer surfaces metallized using vacuum arc deposition.Thin Solid Films,1993,236:341-346
    [9]Grill A.Cold Plasma in Materials Fabrication.Wiley-IEEE Press,New Jersey,1994
    [10]Ray A.K.,Agarwala R.P.Surface Coating for Advanced Materials.Trans.Tech.Publications,New Hampshire,1997.61
    [11]Mitterer C.,Komenda-Stallmaier J.,Losbichler P.,et al.Sputter deposition of decorative boride coatings.Vacuum,1995,46:1281-1294
    [12]Losbichler P.,Mitterer C.,Nanocrystalline hard coatings within the quasi-binary system TiN-TiB_2.Surf.Coat.Technol,1997,7:567-573
    [13]Mitterer C.,Ott H.-M.,Komenda-Stallmaier J.,et al.Sputtered decorative hard coatings within the system LaB_6---ZrB_2.Journal of Alloys and Compounds,1996,239:183
    [14]Waldhauser W.,Mitterer C.,Laimer J.,et al.Structure and electron emission characteristics of sputtered lanthanum hexaboride films.Surf.Coat.Technol,1995,74/75:890-896
    [15]Kelesoglu E.,Mitterer C.,Kazmanli M.K.,et al.Microstructure and properties of nitride and diboride hard coatings deposited under intense mild-energy ion bombardment. Surf. Coat. Technol, 1999,116-119: 133-140
    [16] Alami J., Bolz S., Sarakinos K. High power pulsed magnetron sputtering: Fundamentals and applications. In press
    [17] Helmersson U., Latternann M., Bohlmark J., et al. Ionized physical vapor deposition (IPVD): A review of technology and applications. Thin Solid Films, 2006, 513: 1-24
    [18] Chapman B. N. Glow Discharge Processes. John Wiley & Sons Inc., New York, 1980
    [19] Escrivao M. L., Moutinho A. M. C., Maneira M.J.P. Planar magnetron glow discharge on copper - The Thornton relation revisited. Journal of Nuclear Materials, 1993,200:300-304
    [20] Window B., Savvides N. Unbalznced dc magnetrons as sources of high ion fluexes. J. Vac. Sci. Technol. A, 1986,4: 453-456
    [21] Window B. Issues in magnetron sputtering of hard coatings. Surf. Coat. Technol, 1996,81:92-98.
    [22] Sproul W. D. Multi-cathode unbalanced magnetron sputtering systems. Surf. Coat. Technol, 1991,49: 284-289.
    [23] Waits R. K. Planar magnetron sputtering. J. Vac. Sci. Technol. A, 1978, 15: 179-187
    [24] Ivanov I., Kazansky P., Hultman L., et al. Influence of an external magnetic field on the plasma characteristics and deposition conditions during DC Planar Magnetron Sputtering. J. Vac. Sci. Technol. A, 1994,12: 314-317.
    [25] Petrov I., Adibi F., Greene J. E., et al. Use of an extrernally applied axial magnetic field to control ion/neutral flux rations incident at the substrate during magnetorn sputter deposition. J. Vac. Sci. Technol. A, 1992 10: 3283-3286
    [26] Kelly P. J., Beevers C. F., Henderson P. S., et al. A comparison of the properties of titanium-based films produced by pulsed and continuous DC magnetron sputtering. Surf. Coat. Technol, 2003,174-175: 795-800
    [27] Sproul W. D., Christie D. J., Carter D.C. Control of reactive sputtering processes. Thin Solid Films, 2005,491: 1-17
    [28] Sellers J. Asymmetric bipolar pulsed DC: The enabling technology for reactive PVD. Surf. Coat. Technol, 1998, 98: 1245-1250
    [29] Amell R. D., Kelly P. J., Bradley J. W. Recent developments in pulsed magnetron sputtering. Surf. Coat. Technol, 2004, 188-189: 158-163
    [30] Lee J. W., Tien S. K., Kuo Y. C. The effects of pulse frequency and substrate bias to the mechanical properties of CrN coatings deposited by pulsed DC magnetron sputtering. Thin Solid Films, 2006,494: 161-167
    [31] Barshilia H. C., Rajam K. S. Reactive sputtering of hard nitride coatings using asymmetric-bipolar pulsed DC generator. Surf. Coat. Technol, 2006, 201: 1827-1835
    [32] Audronis M., Kelly P. J., Leyland A., et al. Microstructure of direct current and pulse magnetron sputtered Cr-B coatings. Thin Solid Films, 2006, 515: 1511-1566
    [33] Vlcek J., Pajdarova A. D., Musil J. Pulsed dc magnetron discharges and their utilization in plasma surface engineering. Contributions to Plasma Physics, 2004,44: 426-436
    [35] Backer H., Henderson P. S., Bradley J.W., et al. A comparison of the properties of titanium-based films produced by pulsed and continuous DC magnetron sputtering. Surf. Coat. Technol, 2003,174-175: 795-800
    [36] Moiseev T., Cameron D. C. Pulsed dc operation of a Penning-type opposed target magnetron. J. Vac. Sci. Technol, 2005, A23: 66-71
    [37] Audronis M., Kelly P. J., Arnell R. D., et al. The structure and properties of chromium diboride coatings deposited by pulsed magnetron sputtering of powder targets. Surf. Coat. Technol, 2005,200: 1366-1371
    [38] Oks E., Brown I. G., Dickinson M.R. Elevated ion charge states in vacuum arc plasmas in a magnetic field. Appl. Phys. Lett, 1995,67: 200-204
    [39] Boxman R. L., Goldsmith S. Macroparticle contamination in cathodic arc coatings: generation, transport and control. Surf. Coat. Technol, 1992, 52: 39-50
    [40] Harris S. G., Doyle E.D., Wong Q.-C, et al. Reducing the macroparticle content of cathodic arc evaporated TiN coatings. Surf. Coat. Technol., 2004,183: 283-294
    [41] Martin P. J., Bendavid A., Takikawa H. Ionized plasma vapour deposition and filtered arc deposition; Processes, properties and application. J. Vac. Sci. Technol, 1999, A17:2351-2359
    [42] Anders A. Approaches to rid cathodic arc plasmas of macro- and nanoparticles: A review. Surf. Coat. Technol, 1999,120-121: 319-330
    [43] Greene J. Handbook of Crystal Growth. Elsevier Science Publishers, 1993.
    [44] Petrov I., Barna P. B., Hultman L., et al. Microstructural evolution during film growth. J. Vac. Sci. Technol, 2003,21 (5): S117-S128
    [45] Movchan B. A., Demchish A. V. Physics of Metals and Metallography, 1969, 28, 83.
    [46] Thornton J. A. High rate thick film growth. Rev. Mater. Sci, 1977, 7: 239-260.
    [47] Barna P. B., Adamik M. NATO Advanced Research workshop on Protective Coatings and Thin Films: Synthesis. Characterization and Applications, Kluwer Academic Publishers, Alvor, Portugal, 1996
    [48] Messier R., Giri A. P., Roy R. A. Revised structure zone for thin film physical structure. J. Vac. Sci. Technol. A, 1984 2: 500
    [49] Mattox D. M., Particle bombardment effects on thin-film deposition: a review. J. Vac. Sci. Technol. A, 1989, 7(3): 1105-1114
    [50] Rossnagel S. M., Energetic particle bombardment of films during magnetron sputtering. J. Vac. Sci. Technol. A, 1989, 7: 1025-1029
    [51] Ensinger W. Low energy ion assist during deposition - an effective tool for controlling thin film microstructure. Nucl. Instr. Meth. Phys. Res. B, 1997, 127-128: 796-808
    [52] Carlberg M. H., Munger E. P, Chirita V. Molecular-dynamics studies of defect generation in epitaxial Mo/W superlattices, Phys. Rev. B. 1996, 54 (3) :2217-2224
    [53] Andrew J. D., Andrea M. H., Eric C., et al. Stress and microstructure evolution in thick sputtered films. Acta Materialia, 2009, 57: 2055-2065
    [54] Ehiasarian A. P., M(?)nz W. D., Hultman., et al. High power pulsed magnetron sputtered CrN_x films. Surf. Coat. Technol, 2003,163-164: 267-272
    [55] Hovsepian P. E., Kok N. Y., Ehiasarian A. P., et al. Structure and tribological behaviour of nanoscale multilayer C/Cr coatings deposited by the combined steered cathodic arc/unbalanced magnetron sputtering technique. Thin Solid Films, 2004, 447-448: 7-13
    [56] De Keijser. ThH., Langford J. I., Mittemeijer E. J., et al. Use of the Voigt function in a single-line method for the analysis of X-ray-diffraction line broadening. J. Appl. Cryst, 1982,15: 308-314
    [57] Langford J. I. Rapid method for analyzing breadths of diffraction and spectral-lines using Voigt function. J. Appl. Cryst, 1978,11: 10-14
    [58] Karlsson L., Hultman L., Sundgren J. -E. Influence of residual stresses on the mechanical properties of TiC_xN_(1-x)(x = 0, 0.15, 0.45) thin films deposited by arc evaporation. Thin Solid Films, 2000, 371: 167-177
    [59] Ghafoor. N., Eriksson F., Persson P. O., et al. Effects of ion-assisted growth on the layer definition in Cr/Sc multilayers. Thin Solid Films, 2008, 516: 4977-4982
    [60] Flink A., Larsson. T., Sj(?)len J., et al. Influence of Si on the microstructure of arc evaporated (Ti, Si)N thin films; evidence for cubic solid solutions and their thermal stability. Surf. Coat. Technol, 2005,200: 1535-1542
    [61] Wilcock J. D., Campbell D. S. A sensitive bending beam apparatus for measuring the stress in evaporated thin films. Thin Solid Films, 1969, 3: 3-12
    [62] Nix W. D. Mechanical properties of thin films. Met. Trans. A, 1989, 20: 2217-2245
    [63] Ghafoor. N., Eriksson F., Persson P. O., et al. Effects of ion-assisted growth on the layer definition in Cr/Sc multilayers. Thin Solid Films, 2008, 516: 4977-4982
    [64] Aimer J., Oden M., Hultman L., Hakansson G. Microstructural evolution during tempering of arcevaporated Cr-N coatings. J. Vac. Sci. Technol. A, 2000, 18: 121-130
    [65] Mittemeijer E. J., Cheng L., Brakman C. M. Analysis of nonisothermal transformation kinetics; tempering of iron-carbon and iron-nitrogen martensites. Met. Trans. A. 1988,19: 925-932
    [66] Oettel H., Wiedemann R., Preissler S., Residual stresses in nitride hard coatings prepared by magnetron sputtering and arc evaporation. Surf. Coat. Technol, 1995, 74: 273-278
    [67] Herr W., Broszeit E. The influence of a heat treatment on the microstructure and mechanical properties of sputtered coatings. Surf. Coat. Technol, 1997, 97: 335-340
    [68] Mitterer C., Holler F., Heim D. Application of hard coatings in aluminium die casting - soldering,erosion and thermal fatigue behaviour. Surf. Coat. Technol, 2000,125: 233
    [69] Perry A. J. On the existence of point defects in physical vapor deposited films of TiN, ZrN, and HfN. J. Vac. Sci. Technol. A, 1988, 6: 2140-2148
    [70] Holleck H., Advanced concepts in PVD hard coatings. Metall, 1989,7: 614-624
    [71] Hovsepian P. E., Munz W. -D. Recent progress in large-scale production of nanoscale multilayer/superlattice hard coatings. Vacuum, 2003,96: 27-36
    [72] Barsoum M. W. The M_(N+1) AX_N phases: a new class of solids. Prog. Solid. State. Chem, 2000,28: 201-281
    [73] Shin C. -S., Kim Y. -W., Hellgren N., et al. Epitaxial growth of metastable d-TaN layers on MgO (001) using low-energy, high-flux ion irradiation during ultrahigh vacuum reactive magnetron sputtering. J. Vac. Sci. Technol. A, 2002, 20 (6): 2007-2017
    [74]Lee T.-Y.,Kodambaka S.,Wen J.G.,et al.Directed nanostructural evolution in Ti_(0.8)Ce_(0.2)N layers grown as a function of low-energy,high-flux ion irradiation.Appl.Phys.Lett,2004;,84(15):2796-2798
    [75]Musil J.,Vlcek J.,Zeman P.,et al.Morphology and microstructure of hard and superhard Zr-Cu-N nanocomposite coatings.Jap.J.Appl.Phys,2002,41:6529-6533
    [76]Musil J.,Zeman P.,Hruby H.,Mayrhofer P.H.ZrN/Cu nanocomposite film-a novel superhard material.Surf.Coat.Technol,1999,120-121:179-183
    [77]Mitterer C.,Losbichler P.,Hofer F.,et al.Nanocrystalline hard coatings within the quasi-binary system TiN-TiB_2.Vacuum,1998,50(3-4):313-318
    [78]Veprek S.,Nesladek P.,Niederhofer A.,et al.Recent progress in the superhard nanocrystalline composites:towards their industrialization and understanding of the origin of the superhardness.Surf.Coat.Technol,1998,108-109:138-147
    [79]Musil J.,Hruby H.Superhard nanocomposite Ti_(1-x)Al_xN films prepared by magnetron sputtering.Thin Solid Films,2000,365:104-109
    [80]Veprek S.,Haussmann M.,Reiprich S.,et al.Novel thermodynamically stable and oxidation resistant superhard coating materials.Surf.Coat.Technol,1996,86-87:394-401
    [81]Holleck H.Metastable coatings-prediction of composition and structure.Surf.Coat.Technol,1988,36:151-159
    [82]Holleck H.,Schulz H.Preparation and behaviour of wear-resistant TiC/TiB_2,TiN/TiB_2 and TiC/TiN coatings with high amounts of phase boundaries.Surf.Coat.Technol,1988,36:707-714
    [83]潘金生.,仝健民.,田民波.材料科学基础.清化大学出版社,1998.
    [84]PalDey S.,Deevi S.C.Single layer and multilayer wear resistant coatings of (Ti,Al)N:a review.Mat.Sci.Eng.A,2003,342:58-79
    [85]Vetter J.,Scholl H.J.,Knotek O.(TiCr)N coatings deposited by cathodic vacuum arc evaporation.Surf.Coat.Technol,1995,74-75:286-291
    [86]Grimberg.,Zhitomirsky V.N.,Boxman R.L.,et al.Multicomponent Ti-Zr-N and Ti-Nb-N coatings deposited by vacuum arc.Surf.Coat.Technol,1998,108-109:154-159.
    [87]Li G.Q.,Ma T.C.,Zhang T.,et al.Computer simulation of multicomponent ion beam enhanced deposition of(TiMo)N films.Surf.Coat.Technol,1998,110:1-3
    [88]Zlatanovic M.,Munz W.D.Wear resistance of plasma-nitrided and sputter-ion-plated hobs. Surf. Coat. Technol, 1990,41: 17-30
    [89] Kimura A., Hasegawa H., Yamada K., et al. Metastable Ti_(1-x)Al_xN Films withDifferent Al Content. J. Mat. Sci. Lett, 2000,19: 601-602
    [90] Tentardini E. K., Kwietniewski K., Perini F., et al. Deposition and characterization of non-isostructural (Ti_(0.7)Al_(0.3)N)/(Ti_(0.3)Al_(0.7)N) multilayers. Surf. Coat. Technol, 203: 1176-1181
    [91] Kimura A., Hasegawa., Hiroyuki., et al., Effects of Al content on hardness, lattice parameter and microstructure of Ti_(1-x)Al_xN films, Surf. Coat. Technol, 1999,120-121: 438-441
    [92] Donohue L. A., Cawley J., Brooks J. S., et al. Deposition and Characterization of TiAlZrN Films Produced by a Combined Steered Arc and Unbalanced Magnetron Sputtering Technique. Surf. Coat. Technol, 1995, 74/75:123-134
    [93] Anderbouhr S., Ghetta V., Blanquet E., et. al. LPCVD and PACVD (Ti, A1)N films: morphology and mechanical properties, Surf. Coat. Technol. 1999, 115: 103-110
    [94] Gredic T., Zlatanovic M. Plasma Deposition of (Ti, A1)N Coating at various Magnetron Discharge Power Levels. Surf. Coat. Technol, 1991,48:25-30
    [95] Zlatanovic M., Gredic T. Substrate induced Changes of TiN and (Ti,Al)N Coatings Due to Plasma Nitriding. Surf. Coat. Technol, 1994,63:35-41
    [96] Lewis D. B., Wadsworth I., Mirny W. -D., et. al. Structure and stress of TiAlN/CrN super lattice coatings as a function of CrN layer thickness, Surf. Coat. Technol, 1999,116-119: 284-291
    [97] Hakansson G., Sundgren J. E., Mcintyre D., et al. Microstructure and Properties of Polycrystalline. Metastable Tio.5Alo.5N Alloys Grown by D.C. Magnetron Sputter Deposition. Thin solid Film, 1987,153: 55-65
    [98] Smith I. J., Gillbvand D. Dry Cutting Performance of HSS Twist Drills Coated with Improved TiAlN. Surf. Coat. Technol, 1997, 90: 164-171
    [99] Erturk E., Heurel H. J., Dederichs H. -G., et al. Comparison of the Steered Arc and Random Arc Techniques. Surf. Coat. Technol, 1989,39/40: 455-464
    [100] Jehn H. A., Hofmann S., Ruckborn V. E., et al. Morphology and properties of sputtered (Ti, A1)N layers on high speed steel substrates as a function of deposition temperature and sputtering atmosphere. J. Vac. Sci. Tech. A, 1986. 4/6: 2701-2705
    [101] Knotek O., Bohmer M., Leyendecker T. On structure and properties of sputtered Ti and Al based hard compound films. J. Vac. Sci. Tech. A, 1986,4/6: 2695-2700
    [102]Kim J.W.,Abraham S.,Kim K.H.,et al.Comparative study on the oxidation resistance between Ti-Al-Si-N and Ti-Al-N coatings.Diffusion and Defect Data pt.B:Solid State Phenomena,2006,118:317-322
    [103]Cremer R.,Neuschutz D.Combinatorial approach to the oxidation resistance of (Ti,Al)N and Ti-Al-Si-N hard coatings.Acta Metallurgica Sinca,2002,15(1):6-14
    [104]Esaka F.,Furuya K.,Shimada H.,et al.Composition dependence of the initial oxidation behaviour of Ti_(1-x)Al_xN(x=0.20,0.45.0.65) films studied by XAS and XPS.Sur.Int.Analy,1999,27:1098-1106
    [105]Inoue S.,Uchida H.,Yoshinaga Y.,et al.Oxidation behaviour of(Ti_(1-x)Al_x)N films prepared by r.f.reactive sputtering.Thin Solid Films,1997,300:171-176
    [106]Mayrhofer P.H.,H(o|¨)rling A.,Karlsson L.,et al.Self-organized nanostructures in the Ti-Al-N system.Appl.Phys.Lett,2003,83:2049-2051
    [107]H(o|¨)rling A:,Hultman L.,Oden M.,et al.Thermal stability of arc evaporated high aluminum-content Ti_(1-x)Al_xN thin films.J.Vac.Sci.Tech.A,2002,20:1815-1823
    [108]Mayrhofer P.H.,Music D.,Schneider J.M.Influence of the Al distribution on the structure,elastic properties,and phase stability of supersaturated Ti_(1-x)Al_xN.J.Appl.Phys,2006,100:094906-094909
    [109]Veprek S.,Maritza J.G.,Veprek-Heijman.Industrial applications of superhard nanocomposite coatings..Surf.Coat.Technol,2008,202:5063-5073
    [110]Veprek S.,Maritza G.J.,Veprek-Heijman.,et al.Chemistry,physics and fracture mechanics in search for superhard materials,and the origin of superhardness in nc-TiN/a-Si_3N_4 and related nanoeomposites.J.Phy.Chem.Solid.2007,68:1161-1168
    [111]Veprek S.,Maritza J.G.,Veprek-Heijman.The formation and role of interfaces in superhard nc-MenN/a-Si_3N_4 nanocomposites.Surf.Coat.Technol,2007,201:6064-6070
    [112]Fang Q.F.,Liu Q.,Li S.Z.,et al.Internal friction studies of nanocomposite superhard nc-TiN/a-Si_3N_4 and nc-(Ti_(1-x)Al_x)N/a-Si_3N_4 films.Mat.Sci.Eng.A,2006,442:328-33
    [113]Veprek S.,M(a|¨)nnling H.-D.,Karvankova P.,et al.The issue of the reproducibility of deposition of superhard nanocomposites with hardness of ≥50GPa.Surf.Coat.Technol,2006,200:3876-3885
    [114]Veprek S.,Maritza G.J.,Veprek-Heijman.,et al.Different approaches to superhard coatings and nanocomposites.Thin Solid Fillms,2005,476:1-29
    [115]Veprek S.,M(a|¨)nnling H.-D.,Jilek M.,et al.Avoiding the high-temperature decomposition and softening of(Al_(1-x)Ti_x)N coatings by the formation of stable superhard nc-(Al_(1-x)Ti_x)N/a-Si_3N_4 nanocomposite.Mat.Sci.Eng.A,2004,366:202-205
    [116]Veprek S.,Argon A.S.Mechanical properties of superhard nanocomposites.Surf.Coat.Technol,2001,146-147:175-182
    [117]Franz R.,Neidhardt J.,Kaindl R.,et al.Influence of phase transition on the tribological performance of arc-evaporated AlCrVN hard coatings.Surf.Coat.Technol,2009,203:1101-1105
    [118]Pfeiler M.,Kutschej.K.,Penoy M.,et al.The effect of increasing V content on structure,mechanical and tribological properties of arc evaporated Ti-Al-V-N coatings.Surf.Coat.Technol,2009,27:502-506
    [119]Moser M.,Mayrhofer P.H.Yttrium-induced structural changes in sputtered Ti_(1-x)Al_xN thin films.Scripta Mater.2007,57:357-359
    [120]Moser M.,Mayrhofer P.H.,Clemens H.On the influence of coating and oxidation on the mechanical properties of r-TiAl based alloy.Intermetallics,16:1206-1211
    [121]Moser M.,Mayrhofer P.H.,Szekely L.,et al.Influence of bipolar pulsed DC magnetron sputtering on elemental composition and micro-structure of Ti-Al-Y-N thin films.Surf.Coat.Technol,2008,203:148-155
    [122]Kutschej K.,Fateh H.,Mayrhofer P.H.,et al.Comparative study of Ti_(1-x)Al_xN coating alloyed with Hf,Nb,and B.Surf.Coat.Technol,2005,200:113-117
    [123]Thornton J.A.Magnetron sputtering:basic physics and application to cylindrical magnetrons.J.Vac.Sci.Technol,1978,15:171-177
    [124]Petrov I.,Orlinov V.,Ivanov I.,et al.Electrostatic probe measurements in the glow discharge plasma of a D.C.magnetron sputtering system.Contrib.Plasma Phys,1988,28:157-161
    [125]Mitterer C.,Mayrhofer P.H.,Kelesoglu E.,et al.Internal growth parameters-a suitable basis for comparison of PVD coatings.Z.Metallkd.1999,90:602-607.
    [126]岳建岭.硬质纳米多层膜的微结构、超硬效应和高温稳定性的研究[博士论文]上海:上海交通大学,2008
    [127]Oliver W.C.,Pharr G.M.An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiment.J.Mater.Res,1992,7(6):1564-1583
    [128] Kelly P. J., Amell R .D. Magnetron sputtering: A review of recent developments and applications. Vacuum, 2000, 56: 159-172
    [129] Musil J., Baroch P., Vl(?)ek J., et al. Reactive magnetron sputtering of thin films: Present status and trends. Thin Solid Films, 2005,475: 208-218
    [130] Berg S., Nyberg T. Fundamental understanding and modeling of reactive sputtering processes. Thin Solid Films, 2005,476: 215-230
    [131] Kutschej K., Mayrhofer P. H., Kathrein M., et al. Structure, mechanical and tribological properties of sputtered Ti_(1-x)Al_xN coatings with 0.5≤x≤0.75. Surf. Coat. Technol, 2005. 200: 2358-2365
    [132] Mayrhofer P. H., Mitterer C., Clemens H., et al. Microstructural design of hard coating. Prog. Mater. Sci, 2006, 51: 1032-1114
    [133] Rovere F:, Mayrhofer P. H. Impact of yttrium on structure and mechanical properties of Cr-Al-N thin films. J. Vac. Sci. Technol. A, 2007, 25: 1336-1340
    [134] Wilier J., Pompl S., Ristow D. Sputter-deposited WB_x films. Thin Solid Films 1990,188: 157-163
    [135] Mitterer C. Borides in Thin Film Technology. J. Solid State Chem, 1997, 133: 133-138
    [136] Rauch J. Y., Rousselot C, Martin N. Structure and composition of Ti_xAl(1-x)N thin films sputter deposited using a composite metallic target. Surf. Coat. Technol, 2002, 157: 138-143
    [137] Neidhardt J., Mraz S., Schneider J. M., et al. J. App. Phys. 2008, 104: 063304-063309
    [138] Mayrhofer P. H., Fischer F. D., B(?)hm H. J., et al. Energetic balance and kinetics for the decomposition of supersaturated Ti_(1-x)Al_xN. Acta. Mater. 2007, 55: 1441-1446
    [139] Chen L., Du Y., Mayrhofer P. H., et al. The influence of age-hardening on turning and milling performance of Ti-Al-N coated inserts. Surf. Coat. Technol, 2008,202:5158-5161
    [140] Kutschej K., Mayrhofer P. H., Kathrein M., et al. A new low-friction concept for Ti_(1-x)Al_xN based coatings in high-temperature applications. Surf. Coat. Technol, 2004, 188-189: 358-363
    [141] Chen L., Du Y., Wang S. Q., et al. A comparative research on physical and mechanical properties of (Ti, A1)N and (Cr, A1)N PVD coatings with high Al content. Int. J. Refract. Met. Hard. Mater, 2007, 25: 400-404
    [142] Rauch J. Y., Rousselot C., Martin N., et al. Characterization of ( Ti_(1-x)Al_x)N films prepared by radio frequency reactive magnetron sputtering. J. Eur. Ceram. Soc, 2000,20:795-799
    [143] Hasegawa H., Kimura Y., Suzuki T. Ti_(1-x)Al_xN, Ti_(1-x)Zr_xN and Ti_(1-x)Cr_xN films synthesized by the AIP method. Surf. Coat. Technol, 2000,132: 76-80
    [144] Adibi F., Petrov I., Greene J. E., et al. Effects of high-flux low-energy (20-100 eV) ion irradiation during deposition on the microstructure and preferred orientation of Ti_(0.5)Al_(0.5_N alloys grown by ultra-high-vacuum reactive magnetron sputtering. J. Appl. Phys. 1993, 73: 8580-8589
    [145] Meng L. J., Santos M. P. Characterization of titanium nitride films prepared by d.c. reactive magnetron sputtering at different nitrogen pressures. Surf. Coat. Technol, 1997,90:64-69
    [146] Zotova S. G., Kaltofen R., Sebald T. DC reactive magnetron sputter deposition of (111) textured TiN films - Influence of nitrogen flow and discharge power on the texture formation. Surf. Coat. Technol, 2000,127: 144-148
    [147] Ekpe S. D., Bezuidenhout L. W., Dew S.K. Deposition rate model of magnetron sputtered particles. Thin Solid Films, 2005,474: 330-336
    [148] Oliveira J. C, Manaia A., Dias J. P., et al. The structure and hardness of magnetron sputtered Ti-Al-N thin films with low N contents (< 42 at.%) Surf. Coat. Technol, 2006, 200: 6583-6587
    [149] Alami J., Sarakinos K., Mark G., et al. On the deposition rate in a high power pulsed magnetron sputtering discharge. Appl. Phys. Lett, 2006, 89: 154104-154106
    [150] Shew B. Y., Huang J. L. The effects of nitrogen flow on reactively sputtered TiAIN films. Surf. Coat. Technol, 1995, 71: 30-36
    [151] Nyberg T., Nender C., H(?)gberg H., et al. The influence of the deposition angle on the composition of reactively sputtered thin films. Surf. Coat. Technol. 1997, 94-95: 242-246
    [152] Gall D., Kodambaka S., Wall M. A., et al. Pathways of atomistic processes on TiN(OOl) and (111) surfaces during film growth: An ab initio study. J. Appl. Phys, 2003, 93: 9086-9094
    [153] Ailing B., Karimi A., Hultman L., et al. First-principles study of the effect of nitrogen vacancies on the decomposition pattern in cubic Ti1-xAlxN1-y. Appl. Phys. Lett, 2008, 92: 071903-071906
    [154] Cahn J. W. On spinodal decomposition. Acta. Metall, 1961,9 : 795-801.
    [155] Mayrhofer P. H., Hultman L., Schneider J. M., et al. Spiondal decomposition of cubic Ti_(1-x)Al_xN: Comparison between experiments and modeling. In. J. Mat. Res, 2007,98(11): 1054-1059
    [156] Moser M., Mayrhofer P. H. Thermal stability of Ti-Al-Y-N films deposited by bipolar pulsed DC magnetron sputtering. Submitted to Surf. Coat. Technol. 2009
    [157] Koehler J.S . Attempt to design a strong solid. Phys. Rev. B, 1970, 2: 547-551
    [158] Lehoczky S. L. Strength enhancement in thin layered Al-Cu laminates. J. Appl. Phys, 1978, 49: 5479-5485
    [159] Helmersson U., Todorova S., Barnett S. A., et al. Growth of single-crystal TiN/VN strained-lay superlattice with extremely high mechanical hardness. J. Appl. Phys, 1987,62:481-484
    [160] Veprek S. New development in superhard coatings: the superhard nanocrystalline -amorphous composites. Thin Solid Films, 1998, 317: 449-454
    [161] Zeman P., Cerstry R., Mayrhofer P. H., et al. Structure and propertiers of hard and superhard Zr-Cu-N nanocomposite coatings. Mat. Sci. Eng. A, 2000,289: 189-197
    [162] He J. L., Setsuhara Y., Shimizn I., et al. Structure refinement and hardness enhancement of titanium nitride films by addition of copper. Surf. Coat. Technol, 2001,137: 38-42
    [163] Mayrhofer P. H., Mitterer C., Wen J. G., et al. Thermally induced self-hardening of nanocrystalline Ti-B-N thin films. J. Appl. Phys, 2006,100: 044301-044307
    [164] Musil J., Hruby H. Superhard nanocomposite Ti_(1-x)Al_xN films prepared by magnetron sputtering. Thin Solid Films, 2000, 365: 104-109
    [165] Heister U., Hesse J. K., SzczyrbowskJ,. Et al. New developments in the field of MF-sputtering with dual magnetron to obtain higher productivity for large area coatings Proceedings. Annual Technical Conference - Society of Vacuum Coaters, 1998: 187-192
    [166] Friedrich C., Berg G., Broszeit E., et al. Measurement of the hardness of hard coatings using a force indentation function. Thin Solid Films, 1996, 290-291: 216-220
    [167] Schi0tz J., Tolla F. D. D., Jacobsen K.W. Sofening of nanocrystalline metals at very small grain sizes. Nature, 1998, 391: 561-563.
    [168] Veprek S. The search for novel, superhard materials. J. Vac. Sci. Technol. A, 1999,17: 2401-2420
    [169]Yang S.M.,Chang Y.Y.,Wang D:Yung.,et al.Mechanical properties of nano-structured Ti-Si-N films synthesized by cathodic arc evaporation.Journal of Alloys and Compounds,2007,440:375-379
    [170]Nose M.,Deguchi Y.,Mae T.,et al.Influence of sputtering conditions on the structure and properties of Ti-Si-N thin films prepared by r.f.-reactive sputtering.Surf.Coat.Technol,2003,174-175:261-265
    [171]Veprek S.,Reiprich S.A concept for the design of novel superhard coatings.Thin solid films,1995,268:64-71
    [172]Veprek S.,Haussmann.,Reiprich S.,et al.Novel thermodynamically stabile and oxidation resistant superhard coating materials.Surf.Coat.Technol,1996,86-87:394-401
    [173]Perez-Mariano J.,Lau K.-H.,Sanjurjo A.,et al.TiSiN nanocomposite coatings by chemical vapor deposition in a fluidized bed reactor at atmospheric pressure (AP/FBR-CVD).Surf.Coat.Technol,2006,201:2217-2225
    [174]Niederhofer A.,Bolom T.,Nesladek P.,et al.The role of percolation threshold for the control of the hardness and thermal stability of super-and ultrahard nanocomposites.Surf.Coat.Technol,2001,146-147:183-188
    [175]Niederhofer A.,Nesladek P.,Moto K.,et al.Structural properties,internal stress and thermal stability of nc-TiN/a-Si_3N_4,nc-TiN/TiSi_x and nc-(Ti_(1-y)Al_ySi_x)N superhard nanocomposite coatings reaching the hardness of diamond.Surf.Coat.Technol,1999,120-121:173-178
    [176]Lin Z.,Ho C:Y:Unlubricated friction and wear behaviors of ZrN coatings against hardened steel.Materials Science Forum,2008,591-593:860-864
    [177]Deng J.,Liu J.,Zhao J.,et al.Wear mechanisms of PVD ZrN coated tools,in machining.Int.J.Refract.Met.Hard.Mater,2008,26(3):164-172
    [178]Deng J.,Liu J.,Zhao J.,et al.Friction and wear behaviors of the PVD ZrN coated carbide in sliding wear tests and in machining processes.Wear,2008,264(3-4):298-301
    [179]Heinrich S.,Schirmer S.,Hirsch D.,et al.Comparison of ZrN and TiN formed by plasma based ion implantation & deposition.Surf.Coat.Technol,2008,202(11):2310-2313
    [180]Uglov V.V.,Anishchik V.M.,Zlotski S.V.,et al.Structural and mechanical stability upon annealing of arc-deposited Ti-Zr-N coatings.Surf.Coat.Technol,2008,202(11):2278-2281
    [181] Purushotham K. P., Ward L. P., Brack N., et al. Tribological studies of Zr-implanted PVD TiN coatings deposited on stainless steel substrates. Wear, 2003, 254: 589-596
    [182] Hasegawa H., Kimura A., Suyuki. T. Microhardness and structural analysis of (Ti,Al)N, (Ti,Cr)N, (Ti,Zr)N and (Ti,V)N films. J. Vac. Sci. Technol. A, 2000, 18: 1038-1040
    [183] Donohue L. A., Cawley J., Brooks J. S. Deposition and characterisation of arc-bond sputter Ti_xZr_yN coatings from pure metallic and segmented targets. Surf. Coat. Technol, 1995, 72: 128-138
    [184] Hoerling A., Sj(?)len J., Willmann H., et al. Thermal stability, microstructure and mechanical properties of Ti_(1-x)Al_xN thin films. Thin Solid Films, 2008, 516: 6421-6431
    [185] Wasa K. Structures and resistive properties of sputtered Ti-Zr-Al-N. Thin Film, 1972,10: 367-375
    [186] Sheng S. H., Zhang R. F., Veprek S. Phase stabilities and thermal decomposition in the Ti_(1-x)Al_xN system studied by ab initio calculation and thermodynamic modeling. Acta Materialia, 2008, 56: 968-976
    [187] Santana A. E., Angenete J., Stiller K. Microstructure of oxide scales on aluminide diffusion coatings after short time oxidation at 1050 °C. Surf. Coat. Technol, 2004,177-178: 152-157
    [188] Bouzakis K. -D., N. Michanilidis, S. Hadjiyiannis, et al. Improvement of PVD coated inserts cutting performance, through appropriate mechanical treatments of substrate and coating surface. Surf. Coat. Technol, 2001,146-147: 436-442
    [189] Bouzakis K. -D., Skordaris G., Hadjiyiannis S., et al. The effect of annealing duration at deposition temperature on the strength properties gradation of PVD films and on the wear behaviour of coated cemented carbide inserts. Surf. Coat. Technol, 2006,200:4500-4510
    [190] Fox-Rabinovich G.S., Endrino J.L., Beake B.D., et al. Impact of annealing on microstructure, properties and cutting performance of an AlTiN coating. Surf. Coat. Technol, 2006,201: 3524-3529
    [191] Fox-Rabinovich G.S., Endrino J.L., Beake B.D., et al. Effect of temperature of annealing below 900 °C on structure, properties and tool life of an AlTiN coating under various cutting conditions. Surf. Coat. Technol, 2008,202: 2985-2992
    [192] Upadhyaya G. S. Materials science of cemented carbides - An overiew. Materials and Design,2001,22:483-489
    [193]Musil J.,Hruby H.Superhard nanocomposite Ti_(1-x)Al_xN films prepared by magnetron sputtering.Thin Solid Films,2000,365:104-109
    [194]Mayrhofer P.H.,Tischler G,Mitter C.Microstructure and mechanical/thermal properties of Cr-N coatings deposited by reactive unbalanced magnetron sputtering.Surf.Coat.Technol,2001,142-144:68-74
    [195]Bertoti I.Characterization of nitride coatings by XPS.Surf Coat Technol 2002;151-152:194-203

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700