Ⅰ.Cu薄膜与机械研磨处理Fe表面的腐蚀与扩散行为研究 Ⅱ.X-65钢表面高性能复合涂层缺陷处的局部腐蚀行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用双课题形式,以第一部分为主体内容。
     第一部分:
     腐蚀与扩散是材料的两个重要性能。在纳米材料的制备、工艺、失效分析及可靠性评估等领域中,均涉及到材料的腐蚀与扩散问题。然而,到目前为止,纳米材料方面的研究工作内容,主要集中在制备工艺,结构表征,组织结构与力学、电学、磁学、热学,光学及催化性能等方面的关系。腐蚀与扩散方面的研究较少涉及。澄清纳米材料中的腐蚀与扩散规律,对可控纳米结构的实现、纳米材料的稳定性、材料应用与失效分析及纳米化技术的产业应用等都具有重要意义。
     本文选取了两种典型工艺所制备的纳米材料作为研究对象,一个是真空蒸发方法所制备的纳米尺度金属Cu薄膜。研究了氧化传质前后薄膜组分、结构和形貌变化。建立了两种新的氧化传质表征方法,即透射光谱法与方块电阻法。着重研究了不同厚度体系下的Cu薄膜氧化传质的实验规律及其理论模型,发现极薄膜情况下由隧穿控制的快速场致迁移规律。另一个是表面机械研磨处理(SMAT)技术所制备的表面纳米化纯Fe。研究了表面纳米化处理对纯Fe的电化学腐蚀行为的影响,揭示了电化学腐蚀速率随纳米化程度加深而增加的特殊规律,并与表面纳米化316不锈钢进行了对比。利用二次离子质谱技术(SIMS)研究了Al在SMAT纯Fe纳米结构表层中的低温扩散性能,获取了相关扩散参数,发现Al在纳米晶表层中的加速扩散行为。
     主要研究结果如下:
     1.研究了140℃下7~25 nm厚度范围内Cu薄膜的氧化行为。采用真空蒸发法以不同沉积速率制备一系列Cu薄膜,利用原子力显微镜(AFM)观察其微观形貌,选取形貌良好的Cu薄膜样品。采用方块电阻和透射光谱两种方法为表征手段,得到7~25 nm范围内不同厚度Cu薄膜的氧化反应动力学曲线。结果表明,厚度极薄(d_(Cu)<14 nm)的Cu薄膜在140℃恒温下氧化反应出现异常加速,其动力学行为满足反对数生长规律。
     2.建立了基于方块电阻测量的原位表征Cu薄膜氧化反应动力学规律的方法。利用Cu薄膜方块电阻随氧化时间的变化情况,得到氧化产物厚度与氧化时间的关系。结果发现,当Cu膜较厚时,氧化反应动力学结果符合抛物线规律。还利用不同的氧化反应温度条件和对应的抛物线常数之间的关系得到体系的扩散激活能,并利用激活能推测其微观扩散机制。结果表明,该方法适用于表征纳米尺度薄膜的氧化反应体系。
     3.经SMAT处理后,纯Fe与316不锈钢的耐腐蚀性能均下降。晶粒细化是纯Fe耐蚀性能下降的主要原因。对316不锈钢样品而言,除晶粒细化因素外,表面纳米化后,316不锈钢发生马氏体相变,这种奥氏体和马氏体不同相的存在也会导致材料耐腐蚀性能的下降。
     4.在300~380℃温度范围内,Al在SMAT制备的纯Fe纳米晶表层中的扩散系数比Al在粗晶纯Fe中的扩散系数高6~7个量级,扩散激活能为1.40 eV,明显低于文献报道的Al在a-Fe中的扩散激活能(2.28 eV)。分析表明,扩散性能的提高源于纳米晶表层中大量高密度位错和高晶界储能的非平衡晶界,以及在随后的热处理过程中高密度位错的运动、湮灭过程。
     5.经SMAT处理的纯Fe样品在400℃低温固体粉末渗铝处理后,即可获得一定Al元素渗入。而通过低温结合中高温的接续渗铝法,可进一步显著改善渗层的质量,渗铝层的厚度更厚(约为20μm)且分布十分均匀连续。经过渗铝处理后,SMAT纯Fe样品的阳极腐蚀电流密度显著下降,且经低温接续渗铝处理的样品出现了明显的钝化行为,表明低温渗铝处理可显著改善SMAT样品的抗腐蚀性能。
     第二部分:
     电化学阻抗谱(EIS)技术被广泛应用于表征涂层性能以及钢铁基体在涂层下所发生的腐蚀反应。然而,传统的EIS测量所得的电化学阻抗信号来自于整个工作电极,它反映的是宏观电极的一个平均行为。这就会导致钢铁在涂层的一些微小缺陷,如针孔处所发生的局部电化学腐蚀反应过程“淹没”在平均信号之中。局部电化学阻抗谱(LEIS)技术的出现为研究涂层在局部的退化行为以及钢铁基体在涂层缺陷处所发生的局部腐蚀行为提供了广泛的可能性。目前,涂层/基底钢铁体系的电化学腐蚀行为研究,大多采用传统的整体阻抗分析,鲜有研究报道关注于电极表面的局部电化学阻抗特性。
     因此,本部分的工作采用局部电化学阻抗(LEIS)技术研究了涂覆有高性能复合涂层(HPCC)的管线钢样品,在涂层缺陷处的局部腐蚀过程与机制。考虑管线钢实际使用环境,实验介质为近中性pH的NS4溶液。并与针对整个工作电极测量所得的传统电化学阻抗谱结果进行了对比。该工作对揭示近中性pH溶液中,管线钢在涂层缺陷处的局部腐蚀行为有重要科学意义和实践意义。
     主要研究结果如下:
     1.涂层缺陷处的局部电化学阻抗信号与缺陷尺寸有密切联系。局部电化学阻抗谱结果表明:小尺寸缺陷(例如直径小于200μm)处所发生的局部腐蚀反应过程与机制随着时间发生变化。由于腐蚀产物的沉积以及大的涂层厚度/缺陷比例,使得扩散过程最终控制了界面的腐蚀反应。当涂层含有较大尺寸的缺陷时(如直径1000μm),低频处的局部电化学阻抗信号始终表现为缺陷处,基底金属界面所发生的电荷转移反应。由于缺陷的尺寸较大,体系较为开放,因此并没有观察到腐蚀产物沉积所带来的阻塞效应。
     2.通过与局部电化学阻抗谱结果对比,发现传统的针对整个含缺陷涂层的工作电极测量所得的电化学阻抗信号同时来自于涂层与缺陷处的信号,难以精确反映在小尺寸缺陷处所发生的局部电化学腐蚀过程与机制等信息。
Part 1:
     Corrosion and diffusion are two important properties of materials.They are involved in many fields,including preparation,application,failure analysis and reliability evaluation of nanomaterials.Up to date,majority studies on nanomaterials have been mainly focused on the preparation of nanomaterials,characterization of nanostructure and the properties of nanomaterials including mechanical,electric, optical,magnetic and catalytic properties.However,few studies have been concerned with corrosion and diffusion properties of nanomaterials.It is of significant importance to clarify the corrosion and diffusion behaviour of nanomaterials both in a scientifical and practical way.
     In this paper,two different typical nanomaterials were selected to investigate the corrosion and diffusion behaviour in nanomaterials.One is nanoscale Cu thin film prepared by vacuum deposition.The structure,composition and surface morphology change of Cu thin film after oxidation were studied.Two new methods for characterizing oxidation kinetics of thin films were established by using sheet resistance measurement or optical transmittance measurement.The oxidation behaviour of Cu thin films with different thicknesses was investigated,and an abnormal accelerated transport phenomenon controlled by tunneling effect was observed.Another is surface nanocrystallized Fe prepared by surface mechanical attrition treatment(SMAT).The effect of SMAT on the electrochemical corrosion behaviour of Fe was investigated,and the results showed that the corrosion rate increased with the increasing degree of nanocrystallization.The diffusion behaviour of A1 in SMAT Fe in low temperatures was studied by secondary ion mass spectroscopy(SIMS).The relevant diffusion parameters were obtained and accelerated diffusion behaviour of A1 in nanocrystalline surface layer of Fe was observed.
     The main results are as follows:
     1.The oxidation behaviour of Cu thin films with 7~25 nm thicknesses at 140℃was investigated.Cu thin films with smooth surface morphology were prepared by vacuum deposition with controlled evaporation rate.The oxidation kinetics of Cu thin films was characterized by using the sheet resistance and optical transmittance measurements.The results showed that the oxidation behaviour of Cu films was accelerated obviously when the thickness of Cu film was ultra thin(dcu<14 nm) and the oxidation kinetics followed inverse logarithm law.
     2.The oxidation kinetics of Cu thin films was also characterized by measuring the sheet resistance of Cu films during oxidation.It was found that when the film was relatively thick,the oxidation kinetics followed traditional parabolic law.Furthermore, the diffusion mechanism in Cu film during oxidation was discussed based on the value of the diffusion energy.The results showed that the method was effective for characterizing oxidation kinetics of nanoscale thin films.
     3.The corrosion resistances of both Fe and 316 stainless steels were decreased after surface mechanical attrition treatment(SMAT).Grain refinement was the main reason for decreasing corrosion resistance of Fe.For 316 stainless steels,besides the reason of grain refinement,the martensitic transformation during SMAT was another reason for deterioration of corrosion resistance.
     4.Within a temperature range of 300~380℃,the diffusivity of A1 in the nanocrystalline Fe prepared by SMAT was 6-7 orders of magnitude higher than that in coarse-grained Fe.The diffusion activation energy of A1 diffusion in nanocrystalline Fe was 1.40 eV,which was much smaller than that for the A1 diffusion inα-Fe (2.28eV).The enhanced diffusivity of A1 was originated from high density dislocations and a large volume fraction of nonequilibrium grain boundaries in nanocrystalline surface layer of Fe.
     5.Powder aluminizing could be achieved at a much lower temperature,i.e.,400℃,for SMAT sample.Furthermore,a much thicker(about 20μm) and more continuous aluminized layer was obtained by an optimized successive aluminizing process.The current density of the aluminized SMAT sample decreased significantly, and obvious passivation behaviour was found for the SMAT sample processed by successive aluminizing.The results suggested that lower aluminizing treatment of SMAT sample could significantly improve the corrosion resistance of SMAT sample.
     Part 2:
     Electrochemical impedance spectroscopy(EIS) technique has been used extensively to characterize the coating performance and the corrosion of steel under the coating.However,EIS measurement is associated with a major shortcoming,i.e., the measured impedance result is attributed to the electrochemical response of the whole electrode,reflecting an“averaged”behaviour of the macroscopic electrode.As a consequence,local electrochemical process occurring at micro-defect such as pinhole in the coating is“averaged”out.Therefore,analysis of EIS data is incapable of revealing the process and mechanism of localized electrochemical corrosion reaction of steel under coating with micro-scaled defects.Without such information,it will be impossible to develop a complete understanding of localized coating degradation and the resultant corrosion of the steel.
     Localized EIS(LEIS) measurements provide a promising alternative to investigate microscopically the coating degradation and localized corrosion of steel under coating.To date,there has been very limited work to characterize electrochemically the coating property for prevention of corrosion of steel,especially the localized corrosion process normally occurring at microdefects,such as pinholes in the coating.
     Therefore,in this work,LEIS measurements were performed on HPCC-coated pipe steel to investigate the localized corrosion process and mechanism of steel under the defected coating in a near-neutral pH solution.LEIS plots were measured either directly above the defect over a certain frequency range or by mapping the defected area at a single measurement frequency.For comparison,conventional EIS measurements were also conducted on the macroscopic electrode.It is anticipated that this research provides an essential insight into the mechanism of localized corrosion of steel under defected coating in near-neutral pH solution.
     The main results are as follows:
     1.The LEIS responses measured at the defected coating is dependent on the size of the defect.For small defects,e.g.,less than 200μm diameter,localized corrosion process and mechanism of steel,as indicated by the measured LEIS plots,change with time.The diffusion process dominates the interfacial corrosion reaction,which is due to the block effect of the deposited corrosion product combined with the geometrical factor of a large coating thickness/defect width ratio.In the presence of a big defect, e.g.,up to 1000μm,the LEIS responses measured at the defect are always featured by a coating impedance in the high-frequency range and an interfacial corrosion reaction in the low-frequency range.The block effect of corrosion product does not apply due to the relatively open geometry associated with the big defect.
     2.Conventional EIS measurements on a macroscopic-coated electrode reflect the“averaged”impedance results from both coating and defect.The information of the localized electrochemical corrosion processes and mechanisms at the small defect is lost,and the coating impedance information is“averaged”out when a big defect is contained.
引文
[1] Gleiter H. Nanocrystalline materials[J]. Prog. Mater. Sci., 2003, 33(4):223-315.
    [2] Suryanarayana C. Nanocrystalline materials[J]. Int. Mater. Rev., 1995,40(2):41-64.
    [3] Lu K. Nanocrystalline metals crystallized from amorphous solids: Nanocrystallization, structure, and properties[J]. Mat. Sci Eng. R-Rep., 1996, 16(4): 161-221.
    [4] Gleiter H. Nanostructured materials: State of the art and perspectives[J]. Nanostructured Mater., 1995, 6(1-4):3-14.
    [5] Gleiter H. Nanostructured materials: Basic concepts and microstructure[J]. Acta Materialia, 2000,48(1):1-29.
    [6] Liu KP, Yang BF, Yan HW, Fu ZP, Wen MW, Chen YJ, Zuo J. Strong room-temperature ultraviolet emission from nanocrystalline Zno and Zno: Ag films grown by ultrasonic spray pyrolysis[J]. Appl. Surf. Sci., 2008,255(5):2052-2056.
    [7] Pereira ALJ, Da Silva JHD. Disorder effects produced by the Mn and H incorporations on the optical absorption edge of gal-xmnxas:H nanocrystalline films[J]. J. Non-Cryst. Solids, 2008, 354(52-54):5372-5377.
    [8] Dupont V, Sansoz F. Quasicontinuum study of incipient plasticity under nanoscale contact in nanocrystalline aluminum[J]. Acta Mater., 2008, 56(20):6013-6026.
    [9] Yan WL, Fang L, Sun K, Xu YH. Thermodynamics of nanocrystilline formation in surface layer of hadfield steel by shot peening[J]. Mat. Sci. Eng. A-Struct., 2007,445:392-397.
    [10] Jankowski AF. Vapor deposition and characterization of nanocrystalline nanolaminates[J]. Surf. Coat. Tech., 2008, 203(5-7):484-489.
    [11] Maryam Azabou, Mohamed Khitouni, Abdelwaheb Kolsi. Characterization of nanocrystalline al-based alloy produced by mechanical milling followed by cold-pressing consolidation [J]. Mater. Charact., 2008, 60 (6):499-505.
    [12] Youssef KM, Koch CC, Fedkiw P S. Influence of pulse plating parameters on the synthesis and preferred orientation of nanocrystalline zinc from zinc sulfate electrolytes[J]. Electrochim. Acta, 2008, 54(2):677-683.
    [13] Cui XW, Wei WF, Liu HF, Chen WX. Electrochemical study of codeposition of al particle-nanocrystalline Ni/Cu composite coatings[J]. Electrochim. Acta, 2008, 54 (2):415-420.
    [14] Larsen SC. Nanocrystalline zeolites and zeolite structures: Synthesis, characterization, and applications[J]. J. Phys. Chem., 2007 111(50): 18464-18474.
    [15] Horwat D, Dehmas M, Aubry E, Zollinger J, Migot S, Pierson JF. Properties of nanocrystalline and nanocomposite WxZr1-x thin films deposited by co-sputtering [J]. Intermetallics,2009,17(6):421-426.
    [16]Pilar M,Sunol JJ,Escoda L,Saurina J,Arcondo,B.Synthesis and characterization of nanocrystalline Fe60X20B10P10(x=Co,Ni) alloys[J].J.Non-Cryst.Solids,2008,354(47-51):5129-5131.
    [17]La PQ,Ma JQ,Zhu YT,Yang J,Lu WM,Xue QJ,Valiev,RZ.Dry-sliding tribological properties of ultrafine-grained Ti prepared by severe plastic deformation[J].Acta Mater.,2005,53(19):5167-5173.
    [18]Zhao YH,Liao XZ,Jin Z,Valiev RZ,Zhu YT.Microstructures and mechanical properties of ultrafine grained 7075 A1 alloy processed by ECAP and their evolutions during annealing[J].Acta Mater.,2004,52:4589-4599.
    [19]Furukawa M,Horita Z,Nemoto M,Valiev RZ,Langdon TG.Microhardness measurements and the Hall-Petch relationship in an A1-Mg alloy with submicrometer grain size[J].Acta Mater.,1996,44(11):4619-4629.
    [20]Chen Y,Omar S,Keshri AK,Balani K,Babu K,Nino JC,Seal S,Agarwal A.Ionic conductivity of plasma-sprayed nanocrystalline Yttria-stabilized Zirconia electrolyte for solid oxide fuel cells[J].Scripta Mater.,2009,60(11):1023-1026.
    [21]Khalid Mujasam Batoo,Shalendra Kumar,Chan Gyu Lee,Alimuddin.Influence of A1 doping on electrical properties of Ni-Cd nano ferrites[J].Current Applied Physics,2009,9(4):826-832.
    [22]Reddy DS,Rao KN,Gunasekhar KR,Reddy NK,Kumar KS,Reddy PS.Annealing effect on structural and electrical properties of thermally evaporated Cd1-xMnxS nanocrystalline films[J].Mater.Res.Bull.,2008,43(12):3245-3251.
    [23]Huo JZ,Wei MZ.Characterization and magnetic properties of nanocrystalline nickel ferrite synthesized by hydrothermal method[J].Mater.Lett.,2009,63(13-14):1183-1184.
    [24]Flohrer S,Schafer R,Herzer G.Magnetic microstructure of nanocrystalline FeCuNbSiB soft magnets[J].J.Non-cryst.Solids.2008,354(47-51):5097-5100.
    [25]Korznikov AV,Dimitrov O,Korznikova GF,Dallas JP,Idrisova SR,Valiev RZ,Faudot F.Thermal evolution of high-purity and boron-doped sub-microcrystalline Ni3A1 produced by severe plastic deformation[J].Acta Mater.,1999,47(11):3301-3311.
    [26]Wang J,Iwahashi Y,Horita Z,Furukawa M,Nemoto M,Valiev RZ,Langdon TG An investigation of microstructural stability in an A1-Mg alloy with submicrometer grain size[J].Acta Mater.,1996,44(7):2973-2982.
    [27]Straumal B,Valiev R,Kogtenkova O,Zieba P,Czeppe T,Bielanska E,Faryna A.Thermal evolution and grain boundary phase transformations in severely deformed nanograined A1-Zn alloys[J].Acta Mater.,2008,56(20):6123-6131.
    [28]Anandakumar VM,Khadar MA.Synthesis,characterization and optical properties of nanocrystalline lead molybdate[J].Phys.Status Solidi A,2008,205(11):2666-2672.
    [29]Chawla AK,Singhal S,Gupta HO,Chandra R.Effect of sputtering gas on structural and optical properties of nanocrystalline tungsten oxide films[J].Thin Solid Films,2008,517(3):1042-1046.
    [30]Kulyk B,Essaidi Z,Kapustianyk V,Turko B,Rudyk V,Partyka M,Addou M,Sahraoui B.Second and third order nonlinear optical properties of nanostructured ZnO thin films deposited on alpha-BBO and LiNbO3[J].Opt.Commun.,2008,281(24):6107-6111.
    [31]Simonsen ME,Jensen H,Li ZS,Sogaard EG.Surface properties and photocatalytic activity of nanocrystalline titania films[J].J.Photoch.Photobio.A,2008,200(2-3):192-200.
    [32]Fresno F,Hernandez-Alonso MD,Tudela D,Coronado JM,Sofia J.Photocatalytic degradation of toluene over doped and coupled(Ti,M)O-2(m=Sn or Zr) nanocrystalline oxides:Influence of the heteroatom distribution on deactivation[J].Appl.Catal.B-Environ.,2008,84(3-4):598-606.
    [33]Balazs N,Mogyorosi K,Sranko DF,Pallagi A,Alapi T,Oszko A,Dombi A,Sipos,P.The effect of particle shape on the activity of nanocrystalline TiO2 photocatalysts in phenol decomposition[J].Appl.Catal.B-Environ.,2008,84(3-4):356-362.
    [34]刘刚,雍兴平,卢柯.金属材料表面纳米化的研究现状[J].中国表面工程,2001,3:1-5.
    [35]Lu K,Lu J.Surface nanocrystallization(SNC) of metallic materials-presentation of the concept behind a new approach[J].J.Mater.Sci.Technol.,1999,15(3):193-197.
    [36]Lu K,Lu J.Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment[J].Mat.Sci.Eng.A-Struct.,2004,375(Sp.Iss.SI):38-45.
    [37]Mordyuk,BN,Prokopenk,GI,Vasylyev,MA,Iefimov,MO.Effect of structure evolution induced by ultrasonic peening on the corrosion behavior of AISI-321 stainless steel[J].Mat.Sci.Eng.A-Struct.,2007,458(1-2):253-261.
    [38]Mordyuk BN,Prokopenko,GI.Ultrasonic impact peening for the surface properties'management[J].J.Sound Vib.,2007,308(3-5):855-866.
    [39]刘玉亮,熊天英,李铁藩,杨柯.超音速微粒轰击后40Cr钢表面的组织与性能[J].机械工程材料,2008,32(09):52-58.
    [40]刘阳,吕晓仁,张荣禄,李曙.超音速微粒轰击表面纳米化及其对耐磨性的影响[J].中国表面工程,2006,19(06):20-24.
    [41]Ba DM,Ma SN,Meng FJ,Li CQ.The investigation of surface nanocrystallization of structural steel induced by supersonic fine particles bombarding[J].Surface Engineering(Icse 2007),2008,373-374:811-814.
    [42]Hou LF,Wei YH,Liu BS,Xu BS.Microstructure evolution of AZ91D induced by high energy shot peening[J].T.Nonferr.Metal.Sot.,2008,18(5):1053-1057.
    [43]Ni ZC,Wang XW,Wang JY,Wu ED.Characterization of the phase transformation in a nanostruetured surface layer of 304 stainless steel induced by high-energy shot peening[J].Physica B-Condensed Matter,2003,334(1-2):221-228.
    [44]Wang AX,Liu G,Zhou L,Wang K,Yang XH,Li Y.Thermal stability of structure and hardness of the surface layer of 316L stainless steel after surface mechanical attrition treatment[J].Acta Metallurgica Sinica,2005,41(6):577-582.
    [45]Hacini L,Van LEN,Bocher P.Effect of impact energy on residual stresses induced by hammer peening of 304L plates[J].J.Mater.Process.Tech.,2008,208(1-3):542-548.
    [46]Liu J,Gou WX,Liu W,Yue ZE Effect of hammer peening on fatigue life of aluminum alloy 2A12-T4[J].Mater.Design,2009,30(6):1944-1949.
    [47]Lin YM,Lu J,Wang LP,Xu T,Xue QJ.Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel[J].Acta Mater.,2006,54(20):5599-5605.
    [48]Guo JY,Wang K,Lu L.Tensile properties of Cu with deformation twins induced by SMAT[J].J.Mater.Sci.Technol.,2006,22(6):789-792.
    [49]Tao NR,Tong WP,Wang ZB,Wang W,Sui ML,Lu J,Lu K.Mechanical and wear properties of nanostructured surface layer in iron induced by surface mechanical attrition treatment[J].J.Mater.Sci.Technol.,2003,19(6):563-566.
    [50]Wang YM,Wang K,Pan D,Lu K,Hemker KJ,Ma E.Microsample tensile testing of nanocrystalline copper[J].Scripta Mater.,2003,48(12):1581-1586.
    [51]Hou LF,Wei YH,Liu BS,Xu BS.Investigation on the microstructure of AZ91D magnesium alloy after surface mechanical attrition treatment[J].Rare Metal Mat.Eng.,2008,37(3):530-533.
    [52]Wei YH,Liu BS,Hou LF,Xu BS,Liu G.Characterization and properties of nanocrystalline surface layer in Mg alloy induced by surface mechanical attrition treatment[J].J.Alloy.Compd.,2008,452(2):336-342.
    [53]葛利玲,路彩虹,井晓天,卢正欣,刘忠良.40Cr钢表面纳米化组织与性能的研究[J].表面技术,2008,37(02):11-13.
    [54]张俊宝,刘志文 宋洪伟 吴杰 史弼 熊天英.高能机械加工表面纳米化40Cr钢组织结构与力学性能[J].航空材料学报,2004,24(06):11-15.
    [55]Roland T,Retraint D,Lu K,Lu J.Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment[J].Scfipta Mater.,2006,54(11):1949-1954.
    [56]Zhang HW,Hei ZK,Liu G,Lu J,Lu K.Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment[J].Acta Mater.,2003,51(7):1871-1881.
    [57]Liu G,Wang SC,Lou XF,Lu J,Lu K.Low carbon steel with nanostructured surface layer induced by high-energy shot peening[J].Scfipta Mater.,2001,44(8-9):1791-1795.
    [58]Yang CH,Hodgson PD,Liu QC,Ye L.Geometrical effects on residual stresses in 7050-T7451 aluminum alloy rods subject to laser shock peening[J].J.Mater.Process.Tech.,2008,201(1-3):303-309.
    [59]Zhang C,Kalyanaraman R.In-situ nanostructured film formation during physical vapor deposition[J].Appl.Phys.Lett.,2003,83(23):4827-4829.
    [60]Singh J,Wolfe DE.Nanostructured component fabrication by electron beam-physical vapor deposition[J].J.Mater.Eng.Perform.,2005,14(4):448-459.
    [61]章壮健.薄膜物理讲义[M].上海:复旦大学材料科学系,1996:33.
    [62]Nordman O,Nordman N.Electron and photon induced metal diffusion in amorphous As50Se50 thin films coated with two metal layers[J].Opt.Commun.,2001,193(1-6):147-151.
    [63]Shui M,Yue LH,Hua YM,Xu ZD.The decomposition kinetics of the SiO2 coated nano-scale calcium carbonate[J].Thermochimica Acta,2002,386(1):43-49.
    [64]Tao NR,Sui,ML,Lu J,Lu K.Surface nanocrystallization of iron induced by ultrasonic shot peening[J].Nanostructrural Materials,1999,11(4):433-440.
    [65]Liu G,Lu J,Lu K,Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening Mat.Sci.Eng.A-Struct.,2000,286(1):91-95.
    [66]Tao NR,Wang ZB,Tong WP,Sui ML,Lu J,Lu K.An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment[J].Acta Mater.,2002,50(18):4603-4616.
    [67]卑多慧,吕坚,顺剑锋,卢柯,潘健生.表面纳米化预处理对低碳钢气体渗氮行为的影响[J].材料热处理学报,23(1):19-24.
    [68]Zhang HW,Wang L,Hei ZK,Liu G,Lu J,Lu K.Low-temperature plasma nitriding of AISI 304 stainless steel with nano-structured surface layer[J].Z.Metalld.,2003,94(10):1143-1147.
    [69]Tong WP,Han Z,Wang LM,Lu J,Lu K.Low-temperature nitriding of 38CrMoAl steel with a nanostructured surface layer induced by surface mechanical attrition treatment[J].Surf.Coat. Tech.,2008,202(20):4957-4963.
    [70]Wang ZB,Lu J,Lu K.Wear and corrosion properties of a low carbon steel processed by means of SMAT followed by lower temperature chromizing treatment[J].Surf.Coat.Tech.,2006,201(6):2796-2801.
    [71]Wang ZB,Lu J,Lu K.Chromizing behaviors of a low carbon steel processed by means of surface mechanical attrition treatment[J].Acta Mater.,2005,53(7):2081-2089.
    [72]黄继华著.金属及合金中扩散[M].北京:冶金工业出版社,1996.
    [73]马兹希拉特著,赖和怡,刘国勋译.合金扩散和热力学[M].北京:冶金工业出版社,1984.
    [74]胡赓详,蔡珣.材料科学基础[M].上海:上海交通大学出版社,2000:119.
    [75]白新德.材料腐蚀与控制[M].北京:清华大学出版社2005.
    [76]Javaherdashti R.How corrosion affects industry and life[J].Anti-Corros.Method.M.,2000,47(1):30-34.
    [77]Payer JH,Boyd WK,Dippold DG,Fisher WH.NBS-Battelle cost of corrosion study(70billion),Part 1-7[J].Material Performance,1980,19(5):34;(6):19-20;(7):17-18;(8):40-41;(9):51-53;(10):27-28;(11)32-34.
    [78]Pierre R.Roberge.Handbook of Corrosion Engineering[M].New York:McGraw-Hill.2000:2.
    [79]柯伟.中国腐蚀调查报告[M].北京:化学工业出版社,2003.
    [80]黄彦良,曹楚南,林海潮,吕明.1Cr13不锈钢的应力腐蚀开裂和应力腐蚀的缓蚀剂[J].腐蚀科学与防护技术,1994,6(4):344-347.
    [81]张艳成,吴荫顺,张健.带锈铸铁与304不锈钢的电偶腐蚀[J].腐蚀科学与防护技术,2001,13(2):66-70.
    [82]李玉荣,朱梅五,孔小东.船用12CrNiMoV钢与常用管材在海水介质中的电偶腐蚀行为研究[J].腐蚀与防护,2004,25(8):336-338.
    [83]党政军,张鸿俭,隋志成,于尔靖.草酸法检测铁素体不锈钢对晶间腐蚀的敏感性[J].沈阳工业学院学报,2000,19(4):41-46.
    [84]李美栓.金属的高温腐蚀[M].北京:冶金工业出版社,2001:79.
    [85]Rudolphi AK,Jacobson S.Stationary loading,fretting and sliding of silver coated copper contacts-Influence of corrosion films and corrosive atmosphere[J].Tribol.Int.,1997,30(3):165-175.
    [86]Shim JJ,Kim JG.Copper corrosion in potable water distribution systems:Influence of copper products on the corrosion behavior[J].Mater.Lett.,2004,58(14):2002-2006.
    [87]Aastrup T,Wadsak M,Schreiner M,Leygraf C.Experimental in situ studies of copper exposed to humidified air[J].Corros.Sci.,2000,42(6):957-967.
    [88]Asami K,Moriya T,Hashimoto K,Masumoto T.Roles of temperature and humidity in the oxidation of sputter-deposited Cu-Ta alloys in air[J].Corros.Sci.,2002,44(2):331-344.
    [89]严川伟,何毓番,林海潮,曹楚南.铜在含SO2大气中的腐蚀初期规律和机理[J].中国有色金属学报,2000,10(5):645-648.
    [90]Kleber C,Hilfrich U,Schreiner M.In situ TM-AFM investigations of the early stages of degradation of silver and copper surfaces[J].Appl.Surf.Sci.,2007,253(7):3712-3721.
    [91]Fitzgerald KP,Naim J,Atrens A.The chemistry of copper patination[J].Corros.Sci.,1998,40(12):2029-2050.
    [92]Steigerwald JM,Murarka SP,Gutmann RJ,Duquette DJ.Chemical processes in the chemical-mechanical polishing of copper[J].Mater.Chem.Phys.,1995,41(3):217-228.
    [93]何捍卫,胡岳华,黄可龙.铜在甲胺介质铁氰化钾化学-机械抛光液中的电化学行为[J].应用化学,2001,18(11):893-897.
    [94]Guenbour A,Kacemi A,Benbachir A.Corrosion protection of copper by polyaminophenol films[J].Prog.Org.Coat.,2000,39(2-4):151-155.
    [95]朱达川,宋明昭 杨定明 涂铭旌.高导电的铜碲合金抗氧化性能的研究[J].功能材料,2004,35(06):713-715.
    [96]周国洪,李华伦 胡锐.铜铝合金的氧化分析[J].西北工业大学学报,2002,20(02):176-179.
    [97]Kleber C,Schreiner M.In situ TM-AFM investigations of the influence of zinc and tin as alloy constituents of copper to the early stages of corrosion[J].Appl.Surf.Sci.,2003,217(1-4):294-301.
    [98]Hiroyuki Miyamoto,Kohei Harada,Takuro Mimaki,Alexei Vinogradov,Satoshi Hashimoto.Corrosion of ultra-fine grained copper fabricated by equal-channel angular pressing[J].Corros.Sci.,2008,50(5):1215-1220.
    [99]Liou HK,Huang JS,Tu KN.Oxidation of Cu and Cu3Ge thin-films[J].J.Appl.Phys.,1995,77(10):5443-5445.
    [100]Ding PJ,Lanford WA,Hymes S,Murarka SR Annealing of boron-implanted corrosion-resistant copper-films[J].J.Appl.Phys.,1993,74(2):1331-1334.
    [101]Ding PJ,Wang W,Lanford WA,Hymes S,Murarka SR Thermal annealing of buried al barrier layers to passivate the surface of copper-films[J].Appl.Phys.Lett.,1994,65(14):1778-1780.
    [102]王晓震,王二敏赵新清.离子注入铜薄膜后的氧化行为[J].航空材料学报,1999,19(04):22-26.
    [103]Hymes S,Kumar KS,Murarka SP,Ding PJ,Wang W,Lanford WA.Thermal stability of copper silicide passivation layers in copper-based multilevel interconnects[J].J.Appl.Phys.,1998,83(8):4507-4512.
    [104]Hymes S,Murarka SP,Shepard C,Lanford WA.Passivation of copper by silicide formation in dilute silane[J].J.Appl.Phys.,1992,71(9):4623-4625.
    [105]Brusic V,Frisch MA,Eldridge BN,Novak FP,Kaufman FB,Rush BM,Frankel GS.Copper corrosion with and without inhibitors[J].J.Elecchem.Soc.,1991,138(8):2253-2259.[106]Li J,Mayer JW.Refractory-metal nitride encapsulation for copper wiring[J].Mrs Bull.,1993,18(6):52-56.
    [107]Itow H,Nakasaki Y,Minamihaba G,Suguro K,Okano H.Self-aligned passivation on copper interconnection durability against oxidizing ambient annealing[J].Appl.Phys.Lett.,1993,63(7):934-936.
    [108]Li J,Mayer JW,Colgan EG.Oxidation and protection in copper and copper alloy thin-films[J].J.Appl.Phys.,1991,70(5):2820-2827.
    [109]Li JA,Mayer JW,Shachamdiamand Y,Colgan EG.Formation of tin-encapsulated copper structures in a NH ambient[J].Appl.Phys.Lett.,1992,60(24):2983-2985.
    [110]Ding PJ,Lanford WA,Hymes S,Murarka SP.Effects of the addition of small amounts of A1to copper-corrosion,resistivity,adhesion,morphology,and diffusion[J].J.Appl.Phys.,1994,75(7):3627-3631.
    [111]Lahiri SK,Singh NKW,Heng KW,Ang L,Goh LC.Kinetics of oxidation of copper alloy leadframes[J].Microelectr.J.,1998,29(6):335-341.
    [112]Gao W,Gong H,He J,Thomas A,Chan L,Li S.Oxidation behaviour of Cu thin films on Si wafer at 175-400℃[J].Mater.Lett.,2001,51(1):78-84.
    [113]Iijima J,Lim JW,Hong SH,Suzuki S,Mimura K,Isshiki M.Native oxidation of ultra high purity Cu bulk and thin films[J].Appl.Surf.Sci.,2006,253(5):2825-2829.
    [114]王寿山,胡安民,李明,沈宏,毛大立.铜镀层对IC引线框架表面抗氧化失效的作用[J].上海交通大学学报,2007,41增刊:5-8.
    [115]张莉,严学俭,朱国栋,曾志刚,沈淼,A.Pohlers.铜薄膜在100℃~400℃下氧化行为的微观表征[J].真空科学与技术学报,2006,26(04):268-271.
    [116]Wang DQ,Shi ZY.Aluminizing and oxidation treatment of 1Cr18Ni9 stainless steel[J].Appl.Surf.Sci.,2004,227(1-4):255-260.
    [117] Chiang KT, Wallace TA, Clark RK. Dynamic oxidation of a Cu-30vol.%Cr coating on a copper-based alloy[J]. surf. Coat. Tech., 1996, 86(1-3):48-53.
    [118] Vermoyal JJ, Frichet A, Dessemond L. Contribution to the understanding of the ZrNb(1%)O(0.13%) oxidation mechanism at 500 degrees C in dry air[J]. J. Nucl. Mater., 2004, 328(1):31-45.
    [119] Tao NR, Wu XL, Sui ML, Lu J, Lu K. Grain refinement at the nanoscale via mechanical twinning and dislocation interaction in a nickel-based alloy[J]. J. Mater. Res., 2004, 19(6):1623-1629.
    [120] Jiang P, Wei Q, Hong YS, Lu J, Wu XL. In situ synthesis of nanocrystalline intermetallic layer during surface plastic deformation of zirconium[J]. Surf. Coat. Tech., 2007, 202(3):583-589.
    [121] Zhu KY, Vassel A, Brisset F, Lu K, Lu J. Nanostructure formation mechanism of alpha-titanium using SMAT[J]. Acta Mater., 2004, 52(14):4101-4110.
    [ 122] Guo FA, Trannoy N, Lu J. Microstructural analysis by scanning thermal microscopy of a nanocrystalline Fe surface induced by ultrasonic shot peening[J]. Superlattice Microst., 2004, 35(3-6):445-453.
    [123] Wu X, Tao N, Hong Y, Xu B, Lu J, Lu K. Microstructure and evolution of mechanically -induced ultrafine grain in surface layer of al-alloy subjected to USSP[J]. Acta Mater., 2002, 50 (8):2075-2084.
    [124] Tao NR, Zhang HW, Lu H, Lu K. Development of nanostructures in metallic materials with low stacking fault energies during surface mechanical attrition treatment (SMAT)[J]. Materials Transactions, 2003,44(10): 1919-1925.
    [125] Guo FA, Zhu KY, Trannoy N, Lu J. Examination of thermal properties by scanning thermal microscopy in ultrafine-grained pure titanium surface layer produced by surface mechanical attrition treatment[J]. Thermochim. Acta, 2004, 419(1-2):239-246.
    [126] Vinogradov A, Mimaki T, Hashimoto S, Valiev R. On the corrosion behaviour of ultra-fine grain copper[J]. Scripta Mater., 1999,41(3):319-326.
    [127] Luo W, Qian C, Wu XJ, Yan M. Electrochemical corrosion behavior of nanocrystalline copper bulk[J]. Mat. Sci. Eng. A-Struct., 2007, 452:524-528.
    [128] Zhang B, Li Y, Wang FH. Electrochemical corrosion behaviour of microcrystalline aluminium in acidic solutions[J]. Corr. Sci., 2007, 49(5):2071-2082.
    [129] Rofagha R, Langer R, Elsherik AM, Erb U, Palumbo G, Aust KT. The corrosion behavior of nanocrystalline nickel[J]. Scripta Metall. ET Mater, 1991, 25(12):2867-2872.
    [130] Rofagha R, Erb U, Ostrander D, Palumbo G, Aust KT. The effects of grain size and phosphorus on the corrosion of nanocrystalline Ni-P Alloys[J].Nanostructured Mater.,1993,2(1):1-10.
    [131]Zeiger W,Schneider M,Schamweber D,Worch H.Corrosion behaviour of a nanocrystalline FeA 18 alloy[J].Nanostruct.Mater.,1995,6(5-8):1013-1016.
    [132]Barbucci A,Fame G;Matteazzi P,Riccieri R,Cerisola(i Corrosion behaviour of nanocrystalline Cu90Nil0 alloy in neutral solution containing chlorides[J].Corrosion Science,1999,41(3):463-475.
    [133]Wang XY,Li DY.Mechanical and electrochemical behavior of nanocrystalline surface of 304 stainless steel[J].Electrochim.Acta,2002,47(24):3939-3947.
    [134]王天生,于金库,董冰峰,张福成.1Cr18Ni9Ti不锈钢的喷丸表面纳米化及其对耐蚀性的影响[J].2005,41(9):51-54.
    [135]Li N,Li Y Wang S,Wang FH.Electrochemical corrosion behavior of nanocrystallized bulk 304 stainless steel[J].Electrochim.Acta,2006,52(3):760-765.
    [136]吕爱强,张洋,李瑛,刘刚,刘春明.表面纳米化对316L不锈钢性能的影响[J].材料研究学报,2005,19(2):118.124.
    [137]石继红,武保林,刘刚.316L不锈钢表面纳米化后腐蚀性能研究[J].材料工程,2005,10:42-46.
    [138]李雪莉,李瑛,王福会,雍兴平.USSP表面纳米化Fe-20Cr合金的腐蚀性能及机制研究[J].中国腐蚀与防护学报,2002,22(6):326-329.
    [139]王广厚,韩民.纳米微晶材料的结构和性质[J].物理学进展,1990,10(3):248.289.
    [140]Horvath J,Birringer R,Gleiter H.Diffusion in nanocrystalline material[J].Solid State Commun.,1987,62(5):319-322.
    [141]Kolobov YR,Grabovetskaya GP,Ivanov MB,Zhilyaev AP,Valiev RZ.Grain boundary diffusion characteristics of nanostructured nickel[J].Scripta Mater.,2001,44(6):873-878.
    [142]Miitschele T,Kirchheim R.Hydrogen as a probe for the average thickness of a grain-boundary[J].Scripta Metallurgica,1987,21(8):1101-1104.
    [143]Wurschum R,Farber P,Dittmar R,Scharwaechter P,Frank W,Schaefer HE.Thermal vacancy formation and self-diffusion in intermetallic Fe3Si nanocrystallites of nanocomposite alloys[J].Phys.Rev.Lea.,1997,79(24):4918-4921.
    [144]Tong WP,Tao NR,Wang ZB,Lu J,Lu K.Nitriding iron at lower temperatures[J].Science,2003,299(5607):686-688.
    [145]Wang ZB,Tao NR,Tong WP,Lu J,Lu K.Diffusion of chromium in nanocrystalline iron produced by means of surface mechanical attrition treatment[J].Acta Mater.,2003, 51(14):4319-4329.
    [146]Malynych SZ,Chumanov G.Vacuum deposition of silver island films on chemically modified surface[J].J.Vac.Sci.Technol.A,2003,21(3):723-727.
    [147]Wanf KZ,Xue ZQ,Ouyang M,Wang DW,Zhang HX,Huang CH.A new polynitrile πacceptor for electronic switching devices[J].Chemical Physics Letters,1995,243(3-4):217-221.
    [148]叶钢锋,严学俭,潘钢,张群,章壮健,华中一.纳米晶粒Ag-TCNQ络合物薄膜的制备及电双稳特性[J].真空科学与技术,2001,21(2):91-95.
    [149]向伟,赖祖武,罗四维,方仁昌,李文治.离子束增强沉积TiN薄膜的研究[J].真空科学与技术学报,1998,18(4):308-312.
    [150]乔学亮,孙增辉,程宇航,陈建国,熊锋,王洪水,邓德圣.N含量对CN薄膜折射率的影响[J].硅酸盐学报,2003,31(5):465-469.
    [151]陈路,王元樟,巫艳,吴俊,于梅芳,乔怡敏,何力.分子束外延CdTe(211)B/Si复合衬底材料[J].红外与毫米波学报,2005,24(4):245-249.
    [152]孔梅影,曾一平,李晋闽.MBE InGaAs/GaAs量子点及其红外吸收波长调制[J].半导体学报,2003,24(增刊):78-81.
    [153]Debnath AK,Joshi N,Muthe KP,Vyas JC,Aswal DK,Gupta SK,Yakhmi JV.Surface and electrical-transport studies of Ag/Al bilayer-structures grown by molecular beam epitaxy[J].Appl.Surf.Sci.,2006,243(1-4):220-227.
    [154]侯文义,赵兴国,孙亦蕙,袁庆龙,梁伟.同基合金非磁控电弧离子镀镀层结构特征[J].材料热处理学报,2005,26(3):64-66.
    [155]Koski K,Holsa J.Properties of Zirconium oxide thin films deposited by pulsed reactive magnetron sputtering[J].Surface and Coating Technology,1999,120-121:303-312.
    [156]史波,李贺军,李克智,付前刚.化学气相沉积制备MoSi2涂层分析[J].材料导报,2005,19(7):37-40.
    [157]Kamalasanan MN,Chandra S.Sol-Gel synthesis of ZnO thin films[J].Thin Solid Films,1996,288(1-2):112-115.
    [158]朱永法,张利,姚文清,曹立礼.TiCl4溶胶.凝胶法制备TiO2纳米粉体[J].物理化学学报,999,15(9):784-788.
    [159]Marina Nieto-Su(?)rez,Nuria Vila-Romeu,Inmaculada Prieto.Influence of different factors on the phase transitions of non-ionic Langrnuir monolayers.Applied Surface Science,2005,246(4):387-391.
    [160]Satoru Isoda,Kouichi Akiyama,Satoshi Nishikawa,Satoshi Ueyama,Hiroshi Miyasaka,Tadashi Okada.Quantum electron tunneling in flavin-porphyrin hetero-type Langrnuir-Blodgett films[J].Thin Solid Films,2004,466(1-2):285-290.
    [161]华中一.真空实验技术[M].上海:上海科学技术出版社,1986:343.
    [162]Liu XJ,Cai X,Mao JF,Jin CE ZnS/Ag/ZnS nano-multilayer films for transparent electrodes in flat display application[J].Appl.Surf.Sci.,2001,183(1-2):103-110.
    [163]Rauh M,Wiβmann P.The oxidation kinetics of thin copper films studied by ellipsometry[J].Thin Solid Films,1993,228(1-2),121-124.
    [164]陈国珍,黄贤智,刘文远,郑朱梓,王尊本编著.紫外.可见光分光光度法(上册)[M].北京:原子能出版社,1987:3.
    [165]吴玮巍,蒋益明,郭峰,钟澄,刘平,李劲.湿度对Cu/TCNQ金属有机双层膜化学传质的影响研究[J].化学学报,2005,63(20):1913-1916.
    [166]Marzouk HA,Kim JS,Reucroft PJ,Jacob RJ,Robertson JD,Eloi C.Evaluation of copper chemical-vapor-deposition films on glass and Si(100) substrates[J].Appl.Phys.A-Mater.,1994,58(6):607-613.
    [167]Rober J,Kaufrnann C,Gessner T.Structure and electrical-properties of thin copper-films deposited by MOCVD[J].Appl.Surf.Sci.,1995,91(1-4):134-138.
    [168]Kissine VV,Voroshilov SA,Sysoev VV.A comparative study of SnO2 and SnO2:Cu thin films for gas sensor applications[J].Thin Solid Films,1999,348(1-2):304-311.
    [169]Wagner C.The theory of the warm-up process[J].Z.Phys.Chem,1933,21(1/2):25-41.
    [170]Kucera J,Navratil K.Diffusion growth of oxide layers on gas single-crystals[J].Thin Solid Films,1990,191(2):211-220.
    [171]刘明辉,张丽莎,贾志勇,唐一文,余颖.化学浴沉积法制备纳米氧化亚铜薄膜[J].华中师范大学学报(自然科学版),2006,40(1):75-78.
    [172]Mott NF.A theory of the formation of protective oxide films on metals[J].Trans.Faraday Soc.,1939,35(2):1175-1177.
    [173]O'Reilly M,Jiang X,Beechinor JT,Lynch S,Nidheasuna CN,Patterson JC,Crean GM.Investigation of the oxidation behaviour of thin film and bulk copper[J].Appl.Surf.Sci.,1995,91(1-4):152-156.
    [174]Vernon WHJ.The formation of protective oxide films on copper and brass by exposure to air at various temperatures[J].J.Chem.Soc.,1926,2273-2282.
    [175]陶乃镕.表面机械研磨导致的Fe和Inconel 600表面纳米化微观结构及晶粒细化机制研究[D].博士学位论文,沈阳:中科院金属研究所,2003年.
    [176]Kung SC.High-temperature coating for titanium aluminides using the pack-cementation technique[J].Oxid.Met.,1990,34(3-4):217-228.
    [177]Green SW,Stott FH.The effectiveness of aluminizing in protecting iron-base alloys in sulfidizing gases at high-temperature[J].Oxid.Met.,1991,36(3-4):239-252.
    [178]Kim KY,Jung HG,Seong BG,Hwang SY.Improvement of cyclic high-temperature corrosion-resistance of pack-aluminized heat-resistant stainless-steels[J].Oxid.Met.,1994,41(1-2):11-35.
    [179]Sivakumar R.An investigation of pack-aluminide coating on steel[J].Oxid.Met.,1982,17(5-6):391-405.
    [180]Houngniou C,Chevalier S,Larpin JP.High-temperature-oxidation behavior of iron-aluminide diffusion coatings[J].Oxid.Met.,2006,65(5-6):409-439.
    [181]Xiang ZD,Datta PK.Kinetics of low-temperature pack aluminide coating formation on alloy steels[J].Metall.Mater.Trans.A.,2006,37A(11):3359-3365.
    [182]Xiang ZD,Burnell-Gray JS,Datta PK.Aluminide coating formation on nickel-base superalloys by pack cementation process[J].J.Mater.Sci.,2001,36(23):5673-5682.
    [183]Bouayad A,Gerometta C,Belkebir A,Ambari A.Kinetic interactions between solid iron and molten aluminium[J].Mat.Sci.Eng.A-struct.,2003,363(1-2):53-61.
    [184]孙守功.高温合金k417气体渗铝[J].金属热处理,1998,11:41.
    [185]Park HH,Lee KT,Shin HS.Simultaneous chromizing-aluminizing diffusion coating of austenitic stainless steel by a two-step CVD process[J].Oxid.Met.,1998,50(5-6):377-387.
    [186]占勤,杨洪广,赵崴巍,袁晓明.渗铝.真空预氧化制备FeAl/A12O3防氚渗透涂层性能[J].材料热处理学报,2008,29(02):158-161.
    [187]李忠扬.钢的固体表面渗铝[M].北京:机械工业出版社,1973:16.
    [188]Zaikov GE.Progress in Chemical and Biochemical Physics,Kinetics and Thermodynamics[M].New York:Nova Publishers,2008:7.
    [189]Klug HP,Alexander LE.X-ray diffraction procedures for polycrystalline and amorphous materials[M].New York:Wiley,1974:661.
    [190]Michler T,Naumann J.Hydrogen environment embrittlement of austenitic stainless steels at low temperatures[J].Int.J.Hydrogen Energ.,2008,33(8):2111-2122.
    [191]Elices M,Caballero L,Valiente A,Ruiz J,Martin A.Hydrogen embrittlement of steels for prestressing concrete:The FIP and DIBt tests[J].Corrosion,2008,64(2):164-174.
    [192]褚武扬,乔立杰等著.断裂与环境断裂[M].北京:科学出版社,2000:133-152.
    [193]Olson GB,Cohen M.Kinetics of strain-induced martensitic nucleation[J].Metall.Trans.1975,A6(4):791-795.
    [194]Li Y,Wang F,Liu G.Grain size effect on the electrochemical corrosion behavior of surface nanocrystallized low-carbon steel[J].Corros.,2004,60(10):891-896.
    [195]Cigada A,Mazza B,Pedeferri P.Stress corrosion cracking of cold-working austenitic stainless steels[J].Corrosion Science,1982,22(6):558-578.
    [196]Wang LC,Li DY.Mechanical,electrochemical and tribological properties of nanocrystalline surface of brass produced by sandblasting and annealing[J].Surf.Coat.Technol.,2003,167(2):188-196.
    [197]Wu XQ,Jing HM,Zheng YG,Yao ZM,Ke W.Study on high-temperature naphthenic acid corrosion and erosion-corrosion of aluminized carbon steel[J].J.Mater.Sci.,2004,39(3):975-985.
    [198]Green SW,Stott FH.Aluminizing of iron-nickel-base alloys for resistance to high-temperature gaseous environments[J].Corr.Sci.,1992,33(3):345-359.
    [199]Wurschum R,Herth S,Brossmann U.Diffusion in nanocrystalline metals and alloys-a status report[J].Adv.Eng.Mater.,2003,5(5):365-372.
    [200]Gleiter H.Nanocrystalline materials[J].Prog.Mater.Sci.,1989,33(4):223-315.
    [201]戚正风.固态金属中的扩散与相变[M].北京:机械工业出版社,1998:22.
    [202]Callister WD.Materials Science and Engineering:an Introduction(5th ed.)[M].New York:John Wiley & Sons,2000:106.
    [203]Denner SG.Jones RD.Kinetic interactions between aluminium liquid and iron steel solid for conditions applicable to hot-dip aluminizing[J].Metals Technology,1977,4(3):167-174.
    [204]Heesemann A,Schmidtke E,Faupel F,Kolb-Telieps A,Klower J.Aluminum and silicon diffusion in Fe-Cr-A1 alloys[J].Script.Mater.,1999,40(5):517-522.
    [205]Kaur I,Mishin Y,Gust W.Fundamentals of grain and interphase boundary diffusion[M].Chichester,West Sussex:John Wiley&Sons,1995:307.
    [206]Suzuki A,Mishin Y.Atomistic modeling of point defects and diffusion in copper grain boundaries[J].Interface Science,2003,11(1):131-148.
    [207]Hutchinson B,Ridley N.On dislocation accumulation and work hardening in hadfield steel[J].Scripta Mater.,2006,55(4):299-302.
    [208]Fewell MP,Priest JM,Baldwin MJ,Collins GA,Short KT.Nitriding at low temperature[J].Surf.Coat.Tech.,2000,131(1-3):284-290.
    [209]Inoue A,Nitta H,Iijima Y.Grain boundary self-diffusion in high purity iron[J].Acta Mater.,2007,55(17):5910-5916.
    [210]Trkei ZS,Bernardini J,Beke DL.Grain-boundary diffusion in B2 intermetallic compounds:effect of ordering on diffusion in the Fe3A1 and FeCo compounds[J].Acta Mater.,1999,47(4):1371-1378
    [211]Frangini S,Decristofaro NB,Mignone A,Lascovich J,Giorgi R.A combined electrochemical and XPS study on the passivity of B2 iron aluminides in sulphuric acid solution[J].Corros.Sci.,1997,39(8):1431-1442.
    [212]曹楚南.腐蚀电化学[M].北京:化学工业出版社,1994:37.
    [213]Masahashi N,Kimura G,Oku M,Komatsu K,Watanabe S,Hanada S.Corrosion behavior of iron-aluminum alloys and its composite steel in sulfuric acid[J].Corros.Sci.,2006,48(4):829-839.
    [214]Schaepers D,Strehblow HH.An XPS and ISS investigation of passive layers on binary Fe-Al alloys[J].Corros.Sci.,1997,39(12):2193-2213.
    [215]Voevodin N,Jeffcoate C,Simon L,Khobaib M,Donley M.Characterization of pitting corrosion in bare and sol-gel coated aluminum 2024-T3 alloy[J].Surf.Coat.Tech.,2001,140(1):29-34.
    [216]Liu Y,Meng GZ,Cheng YF.Electronic structure and pitting behavior of 3003 aluminum alloy passivated under various conditions.Electrochim Acta.,2009,DOI:10.1016/j.electacta.2009.02.058
    [217]Mansfeld F.Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coatings[J].J.Appl.Electrochem.,1995,25(3):187-202.
    [218]Mansfeld F,Perez FJ.Surface modification of aluminum alloys in molten salts containing CeCl3[J].Thin Solid Films,1995,270(1-2):417-42.
    [219]Tsal CH,Mansfeld F.Determination of coating deterioration with EIS:PartⅡ.Development of a method for field testing of protective coatings[J].Corrosion,1993,49(9):726-737.
    [220]Scully JR,Hensley ST.Lifetime prediction of organic coatings on steel and magnesium using electrochemical impedance methods[J].Corrosion,1994,50(9):705-716.
    [221]Mansfeld F.Models for the impedance behavior of protective coatings and cases of localized corrosion[J].Electrochim.Acta,1993,38(14):1891-1897.
    [222]Lee CC,Mansfeld F.Automatic classification of polymer coating quality using artificial neural networks[J].Corros.Sci.,1999,41(3):439-461.
    [223]张鉴清,曹楚南.电化学阻抗谱方法研究评价有机涂层.腐蚀与防护[J],1998,19(3):99-104.
    [224]Zhang JT,Hu JM,Zhang JQ,Cao CN.Studies of impedance models and water transport behaviors of polypropylene coated metals in NaCl solution[J].Prog.Org.Coat.,2004,60(49):293-301.
    [225]Hu JM,Zhang JQ,Cao CN.Determination of water uptake and diffusion of Cl-ion in epoxy primer on aluminum alloys in NaCl solution by electrochemical impedance spectroscopy[J].Prog.Org.Coat.,2003,46(4):273-279.
    [226]Zhang JT,Hu JM,Zhang JQ,Cao CN.Studies of water transport behavior and impedance models of epoxy-coated metals in NaCl solution by EIS[J].Prog.Org.Coat.,2004,51(2):145-151.
    [227]Zou F,Thierry D.Localized electrochemical impedance spectroscopy for studying the degradation of organic coatings[J].Electrochim.Acta,1997,42(20-22):3293-3301.
    [228]Annergren I,Zou F,Thierry D.Application of localised electrochemical techniques to study kinetics of initiation and propagation during pit growth[J].Electrochim.Acta,1999,44(24):4383-4393.
    [229]King F,Been J,Worthingham R,Rubie G.Laboratory and field investigations of the performance of HPCC coatings,In:International pipeline conference,Calgary,Canada;2004,Volume:1:53-58.
    [230]Howell GR,Cheng YF.Characterization of high performance composite coating for the northern pipeline application[J].Prog.Org.Coat.,2007,60(2):148-152.
    [231]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2004:3-9.
    [232]查全性.电极过程动力学导论[M].北京:科学出版社,2004:104-107.
    [233]田昭武.电化学研究方法[M].北京:科学出版社,1984:235-239.
    [234]Kuta J,Yeager E,Techniques of Electrochemistry[M].Wiley-Interscience,1972,Vol.1,Chapter 3.
    [235]Philippe LVS,Walter GW,Lyon SB.Investigating localized degradation of organic coatings -Comparison of electrochemical impedance spectroscopy with local electrochemical impedance spectroscopy[J].J.Electrochem.Soc.,2003,150(4):B111-B119.
    [236]Baril G;Blanc C,Keddam M,Pebere N.Local electrochemical impedance spectroscopy applied to the corrosion behavior of an AZ91 magnesium alloy[J].J.Electrochem.Soc.,2003,150(10):B488-B493.
    [237]Jorcin JB,Aragon E,Merlatti C,Pebere N.Delaminated areas beneath organic coating:A local electrochemical impedance approach[J].Corros.Sci.,2006,48(7):1779-1790.
    [238]Corfias C,Pebere N,Lacabanne C.Characterization of a thin protective coating on galvanized steel by electrochemical impedance spectroscopy and a thermostimulated current method[J].Corros.Sci.,1999,41(8):1539-1555.
    [239]Gu B,Yu WZ,Luo JL,Mao X.Transgranular stress corrosion cracking of X-80 and X-52pipeline steels in dilute aqueous solution with near-neutral pH[J].Corrosion,1999,55(3):312-318.
    [240]Walter GW.A critical review of the protection of metals by paints[J].Corros.Sci.,1986, 26(1):27-38.
    [241] Hepburn BJ, Callow LM, Scantlebury JD. Electrochemical impedance of coated metal-electrodes, Part 6: The effect of acid-media[J]. J. Oil Colour Chem. Assoc, 1984, 67(7): 193-197.
    [242] Callow LM, Scantlebury JD. Electrochemical impedance on coated metal-electrode, Part 1: Polarization effects[J]. J. Oil Colour Chem. Assoc, 1981, 64(2):83-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700