Ca_2Fe_2O_5粉体的制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ca_2Fe_2O_5材料具有独特的晶体结构、高的电子离子混合导性、催化活性和化学稳定性以及低的热膨胀系数等特点,使其在工业催化,磁性,氧传感,高温电导等领域中具有潜在的应用前景。特别是在SOFC材料方面,与其他电池材料相比有着无法比拟的优势。Ca_2Fe_2O_5粉体制备是其材料的制备及功能充分发挥的关键,但目前常用的传统固相反应法合成Ca_2Fe_2O_5粉体工艺,反应温度高,合成时间长,限制了它们的广泛应用且不利于性能的发现和研究。所以新的高效节能的制备工艺是目前研究的重点。
     高能球磨处理可使原料粒度细化、结构缺陷浓度增高、化学位能提高,粉体反应活化能降低,促使原料在较低的温度下合成产物。依据此特点,本文分别以CaO-Fe_2O_3和CaCO_3-Fe_2O_3为原料,采用高能球磨结合固相反应的方法来制备Ca_2Fe_2O_5粉体。结果显示,当Ca与Fe摩尔比例合适时,经过球磨处理的CaCO_3-Fe_2O_3混合在800℃经过适当的保温很容易合成纯的单相Ca_2Fe_2O_5粉体,而以在CaO-Fe_2O_3体系,则因容易产生杂质相而很难实现。原因是CaCO_3-Fe_2O_3体系中混合粉末经机械球磨首先破碎的是Fe_2O_3颗粒,这些Fe_2O_3不仅会降低反应合成温度而且利于Ca的扩散;且体系中存在利于空气中氧进入的气体通道(CaCO_3分解时留下的),这些进入的氧可抑制结构中[FeO4]四方体转化成[FeO_6],而CaO体系缺少这样的氧通道。研究发现,在CaCO_3-Fe_2O_3体系中,随着球磨时间的延长,合成Ca_2Fe_2O_5粉体保温时间也相应的减短。混合粉末球磨活化3h后,在800℃保温24h才可得到纯的单相Ca_2Fe_2O_5粉体;球磨活化时间延长到30h时,在800℃只需保温6h即可实现。但是保温时间越短合成的粉体的结晶度降低,同时随着保温时间的减短,合成的粉体粒度越来越细,在30h时合成的粉体粒度低于100nm。除此而外,粉体的形貌也发生变化,由块状逐渐变为片状最后转为球状的颗粒。研究指出,采用分段烧结合成粉体,其结晶度可以大大提高。
     另外,研究了采用SCS-液相燃烧法制备Ca_2Fe_2O_5粉体。液相燃烧法的特点是有机燃料和金属盐溶液可以在较低温度下(≤500℃)迅速燃烧反应,燃烧放出的热能自发的维持反应继续进行;另外燃烧放出的热能可使原料反应温度很快加热到1600℃以上,加速反应的进行,在短时间内合成低温下难合成的复杂的氧化物产物。本文以Fe(NO_3)_3、Ca(NO3)2为原料,以CO(NH2)2为助燃剂合成Ca_2Fe_2O_5粉体。借助XRD、SEM等测试手段,分析了燃烧过程及反应合成产物温度,并重点讨论了燃烧温度因素对合成钙铁石型的Ca_2Fe_2O_5粉体物相及形貌的影响,同时探讨了燃烧法合成的Ca_2Fe_2O_5粉体的反应过程。研究结果表明,燃烧温度达700℃时,原料全部反应合成Ca_2Fe_2O_5粉体,产物形貌为颗粒分布均匀的球状颗粒。
Ca_2Fe_2O_5have opened a new vista in view of their technologicalapplications such as magnetocaloric refrigeration, heterogeneous catalysis,catalytic material and ceramic membranes and high-temperature electrochemicaldevice and so on. Especially, compared with nomoral SOFCs cathode materials,Ca_2Fe_2O_5employed as cathode in solid oxide fuel cells has incomparableadvantage. Systhesis fine powders enhanced performance full playing. But fewpapers reported systhesis methods of Ca_2Fe_2O_5materials. So far, it was only usedthat solid-state synthesis of Ca_2Fe_2O_5proceeds. However, this demonstrates thatthe conventional solid-state synthesis of Ca_2Fe_2O_5proceeds very slowly andrequires higher temperatures, which lmitted Ca_2Fe_2O_5materials to be employedwidly. Thus, creating efficient and simple synthesis of Ca_2Fe_2O_5methods isimportant in further study.
     The activation properties of mechanical partical would be improved, such assize of particals refined, concentrations of lattice defects increased, chemicalpotentials improved, powder reaction activation reduced. This would enhance thereaction going under lower temperature. The present paper reported a novelsynthetic method--high energy milling, for preparation of the brownmilleritestructural Ca_2Fe_2O_5powder. It was revealed the high-purity powders ofbrownmillerite structural Ca_2Fe_2O_5were completely prepared under800℃frommechanical carbonate/oxide mixtures. While high-purity Ca_2Fe_2O_5powders werehardly synthesis in CaO/Fe2O3system via uniform treatment. The reason of thedifferent behaviour of the carbonate/oxide and oxide/oxide precursor systemsduring the processing may lie in both the different chemical affinity andmechanical properties of CaCO_3and CaO. Fe2O3nonapowders which can reducethe reaction temperature and be benifical for Ca diffusion at low temperaturereation had appeared after the CaCO_3/Fe2O3mixtures milled3h,but CaO/Fe_2O_3mixtures didn’t. Large pore passageway would leave in the position of CaCO_3decomposing, then air passing into pore passageway easily formed oxygen enrichment, which is favour in preparing Ca_2Fe_2O_5powders.
     What’ more, the powders has been mechanically activated (by high energymilling) for different time and then annealed at800°C. With the help of XRDand SEM analysis, the changes of phase and structure under different millingtime and annealed at800°C for different soaking time were analyzed, and thereaction mechanism was also discussed. It was revealed that the soaking time ofsysthesis Ca_2Fe_2O_5powder annealed at800°C decreased with milling timeenlongth. The mixtures milled3h completely systhsized pure Ca_2Fe_2O_5powderwith a85%degree of crystallization at800°C for24h, but the mixtures milled30h needed6h soaking time and the degree of crystallization of powders wasabout73%in detail. Meanwhile, the microstructures of Ca_2Fe_2O_5powder wasvital different with each other. With the milling time enlongth, themicrostructures had change from cube powders going by plane to globlularparticals, the size of which was lower100nm. Then, pure and high degree ofcrystallization(above on90%)Ca_2Fe_2O_5powders were needed16h prepared bymultistep soaking at800°C. Compared with powders prepared by onestepsoaking, the microstructure composed with more short and more uniformgrading cube particles.
     In addition, the pure Ca_2Fe_2O_5powders were also prepared by the lowtemperature liqude phase combustion method (SCS). SCS is a method in whichthe saturated solution of metal nitrate (antioxidant) and organic matter (fuel)usually heated at a definite temperature, then metal nitrate fastly react using thereleased energy of the organicfuel, and the energy enhance the reactiontemperature to1600℃. In this paper, the as-synthesized powders werecharacterized by XRD, SEM. The results indicated that the single Ca_2Fe_2O_5powders prepared from Fe nitrate/Ca nitrate with the fuel of urea at700℃wereuniform grading porticals structure.
引文
[1] W.D. Cheng, H. Zhang, F.K. Zheng, et al. Electronic Structures and Linear Optics ofA2B2O5(A=Mg, Ca, Sr) Pyroborates[J]. Chemistry of Materials,2000,12(12):3591-3594.
    [2] Svein St len, Chris E. Mohn, P. Ravindran, et al. Topography of the Potential EnergyHypersurface and Criteria for Fast-Ion Conduction in Perovskite-Related A2B2O5Oxides[J]. Journal of Chemical PhysicsB,2005,109(25):12362-12365
    [3] Evgeny V.Antipov, Artem M. Abakumov, Sergey Ya.Istomin. Target-Aimed Synthesis ofAnion-Deficient Perovskites[J]. Inorganic Materials,2008,47(19):8543-8552
    [4] Helen M. Palmer, Alan Snedden, Adrian J. Wright, et al. Crystal Structure and MagneticProperties of Ca2MnAlO5.5, an n=3Brownmillerite PhaseChemistry of Materials,2006,18(5):1130-1133
    [5] Sergey V. Chernov, Yuri A. Dobrovolsky, Sergey Ya, et al. Sr2GaScO5, Sr10Ga6Sc4O25,and SrGa0.75Sc0.25O2.5: a Play in the Octahedra to Tetrahedra Ratio in Oxygen-DeficientPerovskites [J]. Inorganic Materials,2012,51(2):1094-1103
    [6] Yan Li, Zhiyong Fan, Jia G. Lu, et al. Synthesis of Magnesium Borate (Mg2B2O5)Nanowires by Chemical Vapor Deposition Method[J]. Chemistry of Materials,2004,16(13):2512-2514.
    [7] James Seddon, Emmanuelle Suard and Michael A.Hayward.Topotactic Reduction ofYBaCo2O5and LaBaCo2O5: Square-Planar Co(I) in an Extended Oxide [J]. Journal of theAmerican Chemical Society,2010,132(8):2802-2810.
    [8] Francesco Giannici, Alessandro Longo, Antonella Balerna, et al. Indium Doping inBarium Cerate: the Relation between Local Symmetry and the Formation and Mobility ofProtonic Defects. Chemistry of Materials,200719(23):5714-5720.
    [9] N. Sharma, K.M. Shaju, G.V. Subba Rao, B.V.R. Chowdari. Mixed Oxides Ca2Fe2O5andCa2Co2O5as Anode Materials for Li-ion Batteries[J]. Electrochimica Acta,2004,49:1035-1043.
    [11] Qiang Li, Liping Sun, Lihua Huo,et al. Electrode Properties of Co-doped Ca2Fe2O5asNew Cathode Materials for Intermediate-temperature SOFCs[J]. Hydrogen Energy,2010,35:9151-9157.
    [12] V.V.Sharygin, E.V.Sokol, Ye.Vapnik. Minerals of the Pseudobinary PerovskitePrownmillerite Peries from Combustion Metamorphic Larnite Rocks of the HatrurimFormation [J] Russian Geology and Geophysics,2008,49(10):709-726.
    [13] Thomas G. Parsons, Hans D.Hondt, Joke Hadermann et al. Synthesis and StructuralCharacterization of La1xAxMnO2.5(A=Ba, Sr, Ca) Phases: Mapping the Variants of theBrownmillerite Structure [J]. Chemistry of Materials,2009,21(22):5527-5538.
    [14] Francesco Giannici, Alessandro Longo, Antonella Balerna, et al. Proton Dynamics InBaZrO3: Insights on the Atomic and Electronic Structure from X-ray AbsorptionSpectroscopy Chemistry of Materials,2009,21(13):2641-2649.
    [15] P.Berastegui1, S.G.Eriksson, S.Hull, A Neutron Diffraction Study of the TemperatureDependence of Ca2Fe2O5[J]. Materials Research Bulletin,1999,34(2):303-314.
    [16] S. Maeda, N. Tsuya, J. Phys. Magnetic and Electrical Anisotropies of Iron Sulfide SingleCrystals[J]. Physics and Chemistry of Solids,1958,7(4):281-289.
    [17] Hannes Kr u&&ger, VolkerKahlenberg, V clavPetrek, et al. High-temperature StructuralPhase Transition in Ca2Fe2O5Studied by In-situ X-ray Diffraction and TransmissionElectron Microscopy[J]. Journal of Solid State Chemistry,2009,182:1515-1523.
    [18] E.F. Bertaut, P.Blum, G. Magnano. Magnetic and Electrical Anisotropies of Iron SulfideSingle Crystals[J]. Physics and Chemistry of Solids,1967,28(7):1089-1092
    [19] E.F. Bertaut, P.Blum, A.Sagnieres. Structure Ferrite Bicalciqueet Dela Brownmillerite [J].Acta Crystalline,1959,12:149-159.
    [20] H.D.Zhou, J.B.Googenough. Ratation of Magnetocrystalline Easy Axis in Ca2Fe2O5[J].Solid State Science,2005,7:656-659.
    [21] Takeda, Takayoshi, amaguchi, Yasuo. Magnetic Structure of Ca2Fe2O5[J]. The PhysicalSociety of Japan, Volume,1968,24(3):446-452.
    [22] LM Corliss, JM Hastings, W. Kunnmann. Magnetic Structures and ExchangeInteractions in the Systems CaCrxFe2–xO4and Ca2CrxFe2–xO5[J]. Acta Crystallographica,1966,21(Suppl.A):95.
    [23] Emily Asenath-Smith, Indunil N. Lokuhewa, Scott T. Misture, et al. P-TypeThermoelectric Properties of the Oxygen-deficient Perovskite Ca2Fe2O5in theBrownmillerite Structure[J]. Journal of Solid State Chemistry,2010,183:1670-1677.
    [24] Carlo B. Azzoni, Maria Cristina Mozzati, Vincenzo Massarotti. New Insights into theMagnetic Properties of the Ca2Fe2O5Ferrite[J]. Solid State Sciences,2007,9:515-520.
    [25] S.B. Hana, F.F. Abdel-Mohsen, H.S. Emira, Crypt-Restricted Loss and DecreasedProtein Expression of Cytochrome c Oxidase Subunit I as Potential Hypothesis-DrivenBiomarkers of Colon Cancer Risk [J]. Interceram,2005,54:106-113.
    [26] M.V.Patrakeeva, I.A Leonidova, V.L Kozhevnikova, et al. Ion–electron Transport inStrontium Ferrites: Relationships with Structural Features and Stability [J]. Solid StateSciences,2004,6(9):907-913.
    [27] V.V. Khartona, I.P. Marozaub, N.P. Vyshatkoa, et al. Oxygen Ionic Conduction inBrownmillerite CaAl0.5Fe0.5O2.5+δ[J]. Materials Research Bulletin,2003,38(5):773-782.
    [28] Shaula A.L, Pjvak.Y.V. Ionic Conductivity of Brownmillerite-type Calcium Ferrite underOxidizing Conditions[J]. Solid State Ionics,2006,177:2923-2930.
    [29] Hocine Ben Moussa, Bariza Zitoun, Kafia Oulmi, et al. Hydrogen Consumption andPower Density in a Co-flow Planar SOFC[J]. Hydrogen Energy,2009,34(11):5022-5031.
    [30] A. Demina, P. Tsiakarasb, E. Gorbovaa, S. Hramovaa. A SOFC Based on a Co-ionicElectrolyte [J]. Power Sources,3004,131(1-2):231-236.
    [31] Rambabu Kandepu, Lars Imsland, Bjarne A. Foss, Christoph Stiller, et al. Modeling andControl of a SOFC-GT-based Autonomous Power System[J]. Energy,2007,32(4):406-417.
    [32] M. Cal, M.G.L. Santarelli, P. Leone. Design of Experiments for Fitting RegressionModels on the Tubular SOFC: Screening Test, Response SurfaceAnalysis and Optimization [J]. Hydrogen Energy,2007,32(3):343-358.
    [33] Kafia Oulmi, Bariza Zitouni, Hocine Ben Moussa, et al. Total Polarization Effect on theLocation of Maximum Temperature Value in Planar SOFC[J]. Hydrogen Energy,2011,36(6):4236-4243.
    [34] H.Mounir, A.E.Gharad, M.Belaiche, M.Boukalouch. Thermo-fluid and ElectrochemicalModeling of a Multi-bundle IP-SOFC-Technology for Second Generation HybridApplication[J]. Energy Conversion and Management,2009,50(10):2685-2692.
    [35] Ellen Ivers-Tifféea, André Webera, Klaus Schmidb, Volker Krebsb. MacroscaleModeling of Cathode Formation in SOFC[J]. Solid State Ionics,2004,174(1-4):223-232.
    [36] Yaofan Yi, Ashok D. Rao, Jacob Brouwer, et al. Analysis and Optimization of a SolidOxide Fuel Cell and Intercooled Gas Turbine (SOFC–ICGT) Hybrid Cycle[J]. PowerSources,2004,132(1-2):77-85.
    [37] Jan Van herle, F. Maréchal, S. Leuenberger, et al. Energy Balance Model of a SOFCCogenerator Operated with Biogas [J]. Power Sources,2003,118(1-2):375-383.
    [38]李强,薛兆辉,赵辉等.新型固体氧化物燃料电池阴极材料Ca2-xSrxFe2O5的电化学性能的研究[J].无机化学学报,2009,25(9):1349-1353.
    [39] Shaula A.L, Pjvak.Y.V. Ionic Conductivity of Brownmillerite-type Calcium Ferriteunder Oxidizing Conditions[J]. Solid State Ionics,2006,177:2923-2930.
    [40]刘丽华,王浩,张丽.纳米AxByOz的制备及光催化活性的研究.纳米材料和溶液化学浮选,2010,10.
    [41] H.D. Zhou, J.B.Goodenough. Electronic behavior of Three Oxygen Non-stoichiometricFe4+/Fe3+Oxoperovskites[J]. Journal of Solid State Chemistry,2005,178:3679-3685.
    [42]杨秋华,傅希贤.纳米LaMO3(M=Cr, Mn, Fe, Co)化合物的光催化氧化活性分析[J].硅酸盐通报,2003,31(3):254-258.
    [43]邓积光,王国志,张玉娟等.钙钛矿型氧化物的制备与光催化性能研究进展[J].中国稀土学报,2006,24(2):80-93.
    [44] DONG Shu-hua,田贵山,FENG Liu.钙钛矿La1-xSrxMnO3纳米晶光催化活性[J].中国有色金属学报,2008,18(7):1353-1357.
    [45] Xiaodong Ma, Minghui Zheng, Wenbin Liu, et al. Dechlorination of HexachlorobenzeneUsing Ultrafine Ca-Fe Composite Oxides[J]. Hazardous MaterialsB,2005,127:156-162.
    [46] M.D. Carvalho, L.P. Ferreira, J.C. Waerenborgh, et al. Lopes Structure and MagneticProperties of Ca2Fe1-xMnxAlO5+δ [J]. Journal of Solid State Chemistry,2008,181:2530-2541.
    [47] Qiang Li, Liping Sun, Lihua Huo,etal. Electrode Properties of Co-doped Ca2Fe2O5asNew Cathode Materials for Intermediate-temperature SOFCs[J]. Hydrogen energy,2010,35:9151-9157.
    [48] VFritzPhillipp, WaltraudWertl. High-temperature Structural Phase Transition inCa2Fe2O5Studied by In-situ X-ray Diffraction and Transmission Electron Microscopy[J].Journal of Solid State Chemistry,2009,182:1515-1523.
    [49]肖广志,王建华,周威等.球磨时间对6%A l2O3弥散强化Cu组织和性能的影响[J].粉末冶金技术,2010,28(5):370-375.
    [50]周超,李国平,罗运军.球磨时间对Fe2O3/Al纳米复合材料性能的影响[J].固体火箭技术,2010,33(4):445-448.
    [51] W.N. Zhang, H.Y. Wang, P.J. Wang, et al. Effect of Cr content on the SHS reaction ofCr–Ti–C system [J]. Alloys and Compounds,2008,465:127-131.
    [52]胡志强.无机材料科学基础教程[M].北京:化学工业出版社,2007:346-349.
    [53]席生岐,屈晓燕.高能球磨固态扩散反应研究[J].材料科学与工程,2000,3(8):88-91.
    [54] V.Berbenni, A.Marini, C.Milanese, et al. Solid State Formation of Calcium Ferrites fromThermal Decomposition of Mixtures Ca3(C6H5O7)2·4H2O–Fe2(C2O4)3·6H2O The Role ofMechanical Activation on the Mechanism of the Thermal Decomposition and theTemperature of the Ferrites Formation [J]. Analytical and Applied Pyrolysis,2008,82:255-259.
    [55] L.A. Isupova, S.V. Tsibulya, G.N. Kryukova, et al. Mechanochemical Synthesis andElectrochemical Characterization of Nano Crystalline Calcium Ferrite[J]. CatalysisLetters,2002,141(10):1451-1457.
    [56]郑文君,赵鸿喜,徐明明等. Srl-χBiχFe03-σ (χ≤0.50)的柠檬酸盐法制备和导电性[J].无机材科学报,2000,15(3):451-455.
    [57]徐庆,黄端平,陈文等. La0.6Sr0.4Co0.8Fe0.2O3钙钛矿型复合氧化物的柠檬酸法合成与电导性能[J].中国稀土学报,2003,21(5):4550-451.
    [58] YingJie Zhu, WeiWei Wang, RuiJuan Qi, et al. Microwave-Assisted Synthesis ofSingle-Crystalline Tellurium Nanorods and Nanowires in Ionic Liquids[J]. AngewandteChemie,2004,116(11):1434-1438.
    [59] Amy Lew, Peter O. Krutzik, Matthew E. Hart, et al. Increasing Rates of Reaction:Microwave-Assisted Organic Synthesis for Combinatorial Chemistry[J]. CombinatorialChemistry,2002,4(2):95-105.
    [60] R.B.Schwarz, W.L.Johnson. Formation of an Amorphous Alloy by Solid-State Reactionof the Pure Polycrystalline Metals[J]. Physical Review Letters,1983,51:415-418.
    [61] Virginie Niel Dr, Amber L. Thompson, M. Carmen Mu oz Prof. Dr, et al.Crystalline-State Reaction with Allosteric Effect in Spin-Crossover, InterpenetratedNetworks with Magnetic and Optical Bistability[J]. Angewandte Chemie,2003,115(32):3890-3893.
    [62]韦瑞松,段文贵,梁健林等.氢化松香聚乙二醇柠檬酸酯的微波辅助合成[J].生物质化学工程,2007,41(4):17-21.
    [63] J.H. Ryu, J.W. Yoon, C.S. Lim, W.C. Oh. Microwave-assisted Synthesis of CaMoO4Nano-powders by a Citrate Complex Method and Its Photoluminescence Property[J].Alloys and Compounds,2005,3909(1-2):245-249.
    [64] Jeong Ho Ryu, Jong-Won Yoon, Chang Sung Lim, et al. Microwave-assisted Synthesisof Barium Molybdate by a Citrate Complex Method and Oriented Aggregation[J].Materials Research Bulletin,2005,40(9):1468-1476.
    [65] Yang Yang, Zhengquan Cao, Yinshan Jiang, et al. Photoinduced StructuralTransformation of SrFeO3and Ca2Fe2O5During Photodegradation of Methyl Orange[J].Materials Science and EngineeringB,2006,132:311-314.
    [66] Nathalie Bellec, Frdric Lerouge, Benot Pichon, ectal. Precursors of OrganizedOrganic-Inorganic Hybrid Materials by Sol-Gel Chemistry[J]. Organic Chemistry,2005,1:136-146.
    [67]匡文兴,范以宁,姚凯文等.溶胶-凝胶法制备Ce-Mo复合氧化物超细粒子催化剂[J].催化学报,1997,18(2):157-159.
    [68] Suh-Cem Pang, Marc A. Anderson, Thomas W.Chapmanb. Novel Electrode Materialsfor Thin-Film Ultracapacitors: Comparison of Electrochemical Properties ofSol-Gel-Derived and Electrodeposited Manganese DioxideElectrodeposited ManganeseDioxide[J]. The Electrochemical Society,2002,147(2):444-450.
    [69] Yi, Guanghua, Wu, Zheng, Sayer, Michael. Preparation of Pb(Zr,Ti)O3Thin Films bySol Gel Processing: Electrical, Optical, and Electro-optic Properties[J]. Applied Physics,1988,64(5):2717-2724.
    [70] Manfred, T.Reetz, Dipl.-Biochem, Albin Zonta, et al. Efficient HeterogeneousBiocatalysts by Entrapment of Lipases in Hydrophobic Sol–Gel Materials[J].Angewandte Chemie,1995,34(3):301-303.
    [71] Lubomir Spanhel, Marc A. Anderson. Semiconductor Clusters in the Sol-gel Process:Quantized Aggregation, Gelation, and Crystal Growth in Concentrated Zinc OxideColloids[J]. America Chemesitry, Social,1991,113(8):2826-2833.
    [72] Detlef W. Bahnemann, Claudius. Kormann, Michael R. Hoffmann. Preparation andCharacterization of Quantum Size Zinc Oxide: a Detailed Spectroscopic Study[J].Physical Chemistry1987,91(14):3789-3798.
    [73] Yu Lu, Yadong Yin, BrianT. Mayers, Younan Xia. Modifying the Surface Properties ofSuperparamagnetic Iron Oxide Nanoparticles through A Sol Gel Approach[J]. NanoLetters,2002,2(3):183-186.
    [74] Chen-Chi Wang, Jackie Y. Ying. Sol Gel Synthesis and Hydrothermal Processing ofAnatase and Rutile Titania Nanocrystals[J]. Chemistry Material,1999,11(11):3113-3120.
    [75] Zheng Miao, Dongsheng Xu, Jianhua Ouyang, et al. Electrochemically Induced Sol GelPreparation of Single-Crystalline TiO2Nanowires[J]. Nano Letters,2002,2(7):717-720.
    [76] Chang Liu, Pengmei, Zhenhong Yuan, Fang Yan, et al. The Nanometer MagneticSolid Base Catalyst for Production of Biodiesel[J]. Renewable Energy,2010,35:1531-1536.
    [77]王玉晓,高艳婷. NiO/Ca2Fe2O5催化剂可见光下催化分解水制氢[J].石油化工,2009,38(1):10-14.
    [78] I. G. Minyaylova, I. A. Presnyakov, K. V. Pokholok, et al. Hyperfine Interactions andDynamic Characteristics of119Sn Dopant Atoms in Ca2Fe2O5[J]. Journal of Solid StateChemistry,2000,151:313-316.
    [79] Joseph Wang. Nanomaterial-based Electrochemical Biosensors[J]. Analyst,2005,130:421-426.
    [80] Jinjun Shi, Yongfa Zhu, Xinrong Zhang. Recent Developments in Nanomaterial OpticalSensors[J]. TrAC Trends in Analytical Chemistry,2004,23(15):351-360.
    [81]纪守峰,李桂春.超细粉体团聚机理研究进展[J].中国矿业,2006,15(8):54-56.
    [82]王大志,侯碧辉.纳米氧化锆的物相与尺寸效应[J].分析测试学报,1997,16(5):1-4.
    [83]邹正光,李金莲等.高能球磨在复合材料制备中的应用[J].硅酸盐工业,2002,22(2):174-179.
    [84] F. Tavangarian, R. Emadi, A. Shafyei. Influence of Mechanical Activation and ThermalTreatment Time on Nanoparticle Forsterite Formation Mechanism[J]. PowderTechnology,2010,198:412-416.
    [85] Zhongwei Zhao, Youxin Zhang, Xingyu Chen, et al. Effect of Mechanical Activation onthe Leaching Kinetics of Pyrrhotite[J]. Hydrometallurgy,2009,99:105-108.
    [86] SanjayKumar, RakeshKuma. Mechanical Activation of Flyash: Effect on Reaction,Structureand Properties of Result in Ggeo polymer[J]. Ceramics International,2010,3843:1-9.
    [87] Yuan Tiechui, Cao Qinyuan, Li Jie. Effects of Mechanical Activation onPhysicochemical Properties and Alkaline Leaching of Hemimorphite[J].Hydrometallurgy C,2010,104:136-141.
    [88] P. Bala′z. Mechanical Activation in Hydrometallurgy[J]. Minerial Process,2003,72:341-354.
    [89] Velislav M. VidojkoviC, Andjelka R. Brankovit, SinGa D.J. Milogevik. MechanicalActivation of (SeO2+Na2CO3) Mixture and Sodium Selenite Synthesis[J]. MaterialsLetters,1997,31:55-60.
    [90]谢平波,张慰萍.纳米Ln2O3:Eu(Ln=Gd,Y)荧光粉的燃烧法合成及其光致发光性质[J].无机材料学报,1998,13(1):53-58.
    [91]刘胜利,王淑彬,苏锵.燃烧法合成铝酸盐发光粉的研究[J].应用化学,1997,14(1):59-61.
    [92]严学华,杨新波,程晓农等.燃烧法合成高纯度负热膨胀材料ZrW2O8粉体[J].硅酸盐学报,2006,34(9):1066-1074.
    [93]徐志刚,程福祥,周彪等. CoFe2O4纳米材料的燃烧法合成及磁性研究[J].科学通报,2000,45(17):1837-1841.
    [94] M. L. Trudeau, R. Schulz. Structural Changes During High-energy Ball Milling ofIron-based Amorphous alloys: Is High-energy Ball Milling Equivalent to a ThermalProcess?[J]. American Physical Society,1990,64:99-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700