分子筛负载纳米TiO_2的制备及其吸附与光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米TiO_2因光催化氧化还原能力强、价廉、无毒和物理化学性质稳定等优点备受人们关注。精细纳米TiO_2粉末直接用于废水处理中尽管其降解效率高,但存在分离回收难且易失活等问题,限制了其实际应用。制备负载型纳米TiO_2光催化剂,既可以解决催化剂分离回收的难题,还可以克服催化剂颗粒易团聚和稳定性差的缺点,甚至在载体-TiO_2复合物表面产生一个底物富集环境,提高光催化降解效率。本文在查阅大量文献的基础上,综述了分子筛负载TiO_2催化剂及其疏水改性的研究进展,确定了本文关于微孔HZSM-5负载纳米TiO_2降解甲基橙的研究和含模板剂具有疏水性的MCM-41及其负载TiO_2对有机氯化物的吸附与光催化降解研究在理论和实际中的意义。
     分别以钛氧草酸铵、钛酸丁酯和P25型TiO_2为钛源,相应采用浸渍法、溶胶-凝胶法和固相扩散法制备了三种HZSM-5分子筛负载型纳米TiO_2光催化剂,并在紫外光下对甲基橙(MO,methyl orange)进行了光催化降解性能考察。结果表明,采用方法简单易控制且无需有机溶剂的浸渍法制备的催化剂对MO的去除效果相较用溶胶-凝胶法和固相扩散法制备的样品更好。在此基础上,采用浸渍法制备催化剂,考察了TiO_2负载量和分子筛的Si/Al比对甲基橙降解率的影响。实验表明,TiO_2负载量为15 wt%、HZSM-5分子筛Si/Al=500时,TiO_2/HZSM-5催化剂对降解MO具有更高的催化活性。应用X射线衍射(XRD)、紫外-可见漫反射光谱(UV-vis DRS)和BET比表面积分析等技术对催化剂结构进行表征,结果表明,光催化剂具有较高的比表面积,并且TiO_2在分子筛外表面分散良好,导致其具有高的光催化活性。
     以未煅烧含有机模板剂的MCM-41(记作MCM-41-dry)和已煅烧MCM-41(记作MCM-41-cal)为吸附剂对邻氯苯酚(o-CP,To-chlorophenolT)和邻氯硝基苯(o-CNB,To-chloronitrobenzeneT)进行吸附实验。结果表明,相比MCM-41-cal,MCM-41-dry对o-CP和o-CNB有更高的吸附能力,这可能归因于模板剂的存在使MCM-41-dry具有更高的疏水性。此外,还研究了吸附剂的用量、pH值、目标污染的初始浓度和共存离子等因素对MCM-41-dry吸附效果的影响。研究表明,pH值和共存的离子对MCM-41-dry的吸附效果影响较大,MCM-41-dry对o-CP的吸附容量高于o-CNB,MCM-41-dry对o-CP和o-CNB的吸附符合Freundlich吸附平衡模型。
     分别以MCM-41-dry和MCM-41-cal为载体制备负载型纳米TiO_2催化剂,并在紫外光下对o-CP进行了光催化降解性能考察。结果表明,含模板剂的TiO_2/MCM-41-dry催化剂对o-CP及其中间产物有更短的降解去除时间。此外,还研究了溶液pH值和o-CP初始浓度对TiO_2/MCM-41-dry光催化降解o-CP的影响。结果表明,在pH值为2~11范围内,pH值越高,光催化完全降解o-CP的时间越短;反应物的初始浓度越高,相同反应条件下,其完全降解o-CP的时间越长。
Nano-TiO_2 has received much attention due to its strong redox ability, chemical stability,non-toxicity, and cheapness. However, the nano-TiO_2 powder is easy to lose in liquid-phasephotocatalytic reaction and difficult to be collected after the reaction, which disturbs therecycle of photocatalyst and hampers the practical applications of nano-TiO_2 powder.Immobilization of nano-TiO_2 overcomes the difficulties in separation and recycles ofphotocatalyst, enhances the concentration of substrates near the TiO_2, as well as restrainsaggregation and deactivation of the catalyst particles. In this work, the research on nano-TiO_2supported on zeolites or porous silica and their hydrophobical modification was reviewed.Therefore, the significance of theory and practice about the study on photocatalyticdegradation of MO over TiO_2/HZSM-5, as well as adsorption and photocatalytic properties ofTiO_2/MCM-41, which includes cationic template within the framework of MCM-41-drymaterials, has been shown in this paper.
     TiO_2/HZSM-5 photocatalysts were prepared by impregnation, sol-gel, and solid statedispersion methods, using ammonium titanyl oxalate, tetrabutyl titanate, and P-25 as titaniumsource, respectively. The photocatalytic reactivity of the prepared samples for the degradationof methyl orange (MO) under UV light irradiation were investigated. The catalyst prepared bysimple, easy to control and organic-solvent-free impregnation method showed a higherphotocatalytic activity than that prepared by sol-gel and solid state dispersion methods. Inaddition, effect of Si/Al ratios and TiOB2 Bloadings on catalyst, which prepared by impregnation,for photocatalytic activity of degradation of MO were investigated. It was found that, at 15wt% and Si/Al=500, TiO_2/HZSM-5 showed a higher photocatalytic activity. The structure ofthe catalysts were characterized by XRD、UV-vis DRS and BET technologies. It was foundthat TiO_2/HZSM-5 prepared by impregnation had a higher surface area and the nano-TiO_2particles well dispersed on the surface of zeolite leading to a higher photocatalytic activity.
     The effect of surfactant template in MCM-41 on the removal of o-CP and o-CNB wasinvestigated. The comparison of adsorption of o-CP and o-CNB on uncalcined MCM-41noted as MCM-41-dry) and calcined MCM-41 (noted as MCM-41-cal) was investigated.MCM-41-dry exhibited significant adsorption capacity for o-CP and o-CNB as compared to MCM-41-cal, which may be because of the hydrophobicity created by surfactant template inMCM-41-dry. In addition, batch adsorption studies were carried out to study the effect ofvarious parameters like adsorbent dose, pH, initial concentration and the presence ofco-existing ions. It was found that adsorption of o-CP and o-CNB depends upon the solutionpH as well as co-existing ions present in the aqueous solution. . From the sorption studies itwas observed that the uptake of o-CP was higher than that of o-CNB. The equilibriumadsorption data for o-CP and o-CNB was analyzed by using Freundlich adsorption isothermmodel.
     The photocatalytic activity of TiO_2 supported on MCM-41-dry and MCM-41-cal wasinvestigated using the photooxidation of o-CP as test reactions. The photocatalytic activity ofTiO_2 supported on MCM-41-dry was observed to be higher than that of TiO_2 supported onMCM-41-cal. Moreover, it was found that the photocatalytic activity of TiO_2/MCM-41-dryincreased with the increase in pH value of reactant solution and decrease in initialconcentration of o-CP.
引文
[1] Honda K, Fujishima A. Electrochemical Photocatalysis of Water at a Semiconductor Electrode [J]. Nature. 1972(238): 37-38.
    [2]张建博,费学宁.光催化技术降解污水中有机污染物的研究进展[J].天津建设科技. 2006, 16(2): 56-58.
    [3] Chen X, Mao S S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications[J]. Chemical Reviews. 2007, 107(7): 2891-2959.
    [4]江海军,张瑾,奚丽荷,等. TiO_2半导体光催化剂在污水处理中的研究进展[J].材料导报. 2007, 21(F05): 54-57.
    [5] Frank S N, Bard A J. Heterogeneous Photocatalytic Oxidation of Cyanide and Sulfite in Aqueous Solutions at Semiconductor Powder [J]. Journal of Physical Chemistry. 1977, 81: 1484-1488.
    [6] Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCBs in the presence of titanium dioxide in aqueous suspensions[J]. Bulletin of Environmental Contamination and Toxicology. 1976, 16: 697-701.
    [7]戴清,路春娥.载钛中孔二氧化硅分子筛的光催化性能[J].催化学报. 1999, 20(3): 312-316.
    [8]许凤秀,冯光建,刘素文,等. TiO_2降解有机染料废水的研究进展[J].硅酸盐通报. 2008, 27(5): 991-995.
    [9] Torimoto T, Ito S, Kuwabata S, et al. Effect of adsorbents used as supports for titanium dioxide loading on photocatalytic degradation of propyzamide[J]. Environment Science Technology. 1996, 30(11): 1275-1281.
    [10] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystar Template Mechanism[J]. Nature. 1992, 359(22): 710-712.
    [11]徐纯芳,黄妙良,程应汉.沸石分子筛负载纳米TiO_2的研究进展[J].矿产保护与利用. 2004(5): 21-26.
    [12]颜桂炀. ZSM-5沸石的铁物种化学状态及光催化作用本质研究[D].福州大学, 2006.
    [13]卢晓平,戴文新,王绪绪,等.纳米TiO_2的负载化及其在环境光催化中的应用[J].应用化学. 2004, 21(11): 1081-1087.
    [14]刘晓荣,丁琳.纳米TiO_2的光催化作用及负载[J].上海应用技术学院学报. 2003, 3(3): 189-193.
    [15]冷文华,张莉.负载二氧化钛光催化降解水中对氯苯胺(PCA)[J].环境科学. 2000, 21(6): 46-50.
    [16]吴凤清,阮圣平.一种新型纳米TiO_2涂膜及其光催化性能的研究[J].高等学校化学学报. 2000, 21(10): 1578-1580.
    [17] Matsumoto Y, Ishikawa Y, Nishida M, et al. A new electrochemical method to prepare mesoporous titanium (IV) oxide photocatalyst fixed on alumite substrate[J]. Journal of Physical Chemistry B. 2000, 104(17): 4204-4209.
    [18] Kang M, Lee J H, Lee S H, et al. Preparation of TiO_2 film by the MOCVD method and analysis for decomposition of trichloroethylene using in situ FT-IR spectroscopy[J]. Journal of Molecular Catalysis A: Chemical. 2003, 193(1-2): 273-283.
    [19]陈德明,王亭杰.纳米TiO_2的性能、应用及制备方法[J].材料工程. 2002(11): 42-47.
    [20] Zhang X, Lei L. Effect of preparation methods on the structure and catalytic performance of TiO_2/AC photocatalysts[J]. Journal of Hazardous Materials. 2008, 254(8): 2406-2412.
    [21] Wang Y H, Liu X Q, Meng G Y. Preparation and properties of supported 100% titania ceramic membranes[J]. Materials Research Bulletin. 2008, 43(6): 1480-1491.
    [22] Marugan J, Aguado J, Gernjak W, et al. Solar photocatalytic degradation of dichloroacetic acid with silica-supported titania at pilot-plant scale[J]. Catalysis Today. 2007, 25(1): 59-67.
    [23] Petkowicz D I, Brambilla R, Radtke C, et al. Photodegradation of methylene blue by in situ generated titania supported on a NaA zeolite[J]. Applied Catalysis A. 2009, 313(2): 574-578.
    [24] Mahalakshmi M, Priya S V, Arabindoo B, et al. Photocatalytic degradation of aqueous propoxur solution using TiO_2 and H beta zeolite-supported TiO_2[J]. Journal of Hazardous Materials. 2009, 161(1): 336-343.
    [25] Takeuchi M, Deguchi J, Hidaka M, et al. Enhancement of the photocatalytic reactivity of TiO_2 nano-particles by a simple mechanical blending with hydrophobic mordenite (MOR)zeolite[J]. Applied Catalysis B: Environmental. 2009, 89(3-4): 406-410.
    [26]赵晖,孙杰. TiO_2光催化剂载体及提高其光催化活性的研究进展[J].江苏环境科技. 2006, 19(4): 52-55.
    [27] Liu X, Iu K, Thomas J K. Encapsulation of TiO_2 in zeolite Y[J]. Chemical Physics Letters. 1992, 13(1): 57-64.
    [28]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社, 2002: 191-192.
    [29] Xu Y, Langford C H. Enhanced Photoactivity of a Titanium(IV) Oxide Supported on ZSM5 and Zeolite A at Low Coverage[J]. Journal of Physical Chemistry. 1995, 99(29): 11501-11507.
    [30] Xu Y, Langford C H. Photoactivity of titanium dioxide supported on MCM-41, zeolite X, and zeolite Y[J]. Journal of Physical Chemistry B. 1997, 101(16): 3115-3121.
    [31] Yahiro H, Miyamoto T, Watanabe N, et al. Photocatalytic partial oxidation of alpha- methylstyrene over TiO_2 supported on zeolites[J]. Catalysis Today. 2007, 120(2): 158-162.
    [32] Li G, Zhao X S, Ray M B. Advanced oxidation of orange II using TiO_2 supported on porous adsorbents: The role of pH, HB2BOB2B and OB3B[J]. Separation and Purification Technology. 2007, 55(1): 91-97.
    [33] Reddy E P, Davydov L, Smirniotis P. TiO_2-loaded zeolites and mesoporous materials in the sonophotocatalytic decomposition of aqueous organic pollutants: the role of the support[J]. Applied Catalysis B. 2003, 33(18): 3689-3694.
    [34] Reddy E P, Davydov L, Smirniotis P. Synthesis, characterization and photocatalytic activity of titania loaded Cd-MCM-41[J]. Catalysis Letters. 2002, 79(1-4): 183-189.
    [35] Nikazar M, Gholivand K, Mahanpoor K. Photocatalytic degradation of azo dye Acid Red 114 in water with TiO_2 supported on clinoptilolite as a catalyst[J]. Desalination. 2008, 219(1-3): 293-300.
    [36] Kim Y, Yoon M. TiO_2/Y-Zeolite encapsulating intramolecular charge transfer molecules: a new photocatalyst for photoreduction of methyl orange in aqueous medium[J]. Journal of Molecular Catalysis A. 2001, 4(1): 5-18.
    [37] Hisanaga T, Tanaka K. Photocatalytic degradation of benzene on zeolite-incorporated TiO_2 film[J]. Journal of Hazardous Materials. 2002, 137(2): 947-951.
    [38] Takeuchi M, Kimura T, Hidaka M, et al. Photocatalytic oxidation of acetaldehyde with oxygen on TiO_2/ZSM-5 photocatalysts: Effect of hydrophobicity of zeolites[J]. Journal of Catalysis. 2007, 246(2): 235-240.
    [39] Monneyron P, Manero M H, Foussard J N, et al. Heterogeneous photocatalysis of butanol and methyl ethyl ketone-characterization of catalyst and dynamic study[J]. Chemical Engineering Science. 2003, 58(11): 2255-2267.
    [40] Ichiura H, Kitaoka T, Tanaka H. Preparation of composite TiO_2/zeolite sheets using a papermaking technique and their application to environmental improvement - Part I - Removal of acetaldehyde with and without UV irradiation[J]. Journal of Materials Science. 2002, 37(14): 2937-2941.
    [41] Fukahori S, Ichiura H, Kitaoka T, et al. Capturing of bisphenol A photodecomposition intermediates by composite TiO_2/zeolite sheets[J]. Applied Catalysis B. 2003, 53(10): 1193-1199.
    [42] Ichiura H, Kitaoka T, Tanaka H. Removal of indoor pollutants under UV irradiation by a composite TiO_2/zeolite sheet prepared using a papermaking technique[J]. Chemosphere. 2003, 46(3): 453-462.
    [43]唐艳,呼世斌,王俊华,等. TiO_2/沸石光催化剂的制备及其光催化性能研究[J].西北农林科技大学学报. 2007, 35(7): 180-182.
    [44]周天亮,宋绵新,敬晓峰,等. TiO_2/沸石光催化性能的研究[J].太阳能学报. 2006, 27(12): 1270-1275.
    [45]马惠言,简丽,杨瑞芳,等. TiO_2/高岭土负载型催化剂的制备及其结构性能研究[J].内蒙古工业大学学报:自然科学版. 2007, 26(1): 42-46.
    [46]李静谊,斯琴高娃,刘丽娜. TiO_2膨润土光催化降解有机污染物[J].物理化学学报. 2007, 23(1): 16-20.
    [47]曹怀宝,卢园,王剑波.沸石负载TiO_2的光催化性能[J].工业催化. 2007, 15(8): 40-43.
    [48]方送生,蒋引珊,王玉洁,等.天然斜发沸石负载TiO_2的光催化性能[J].环境科学. 2003, 24(4): 113-116.
    [49]黄燕.疏水性沸石分子筛的特性及表面改性研究[J].精细化工中间体. 2002, 32(6): 36-37.
    [50]徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学[M].北京:科学出版社, 2004: 39.
    [51]袁凤英,程明.饱和改性沸石再生技术研究[J].新疆环境保护. 2004, 26(003): 16-18.
    [52] Zhao X S, Lu G Q. Modification of MCM-41 by Surface Sialylation with Trimethylchlorosilane and Adsorption[J]. Journal of Physical Chemistry B. 1998, 102: 1556-1561.
    [53] Qin Q, Ma J, Liu K. Adsorption of anionic dyes on ammonium-functionalized MCM-41[J]. Journal of Hazardous Materials. 2009, 10(11): 1577-1583.
    [54] Kimura T, Suzuki M, Maeda M, et al. Water adsorption behavior of ordered mesoporous silicas modified with an organosilane composed of hydrophobic alkyl chain and hydrophilic polyethylene oxide groups[J]. Microporous and Mesoporous Materials. 2006, 95(1-3): 213-219.
    [55] Park D, Nishiyama N, Egashira Y, et al. Separation of organic/water mixtures with silylated MCM-48 silica membranes[J]. Microporous and Mesoporous Materials. 2003, 66(1): 69-76.
    [56]李惠云,华伟明,王绍梅,等.介孔分子筛的表面硅烷化与疏水性[J].应用化学. 2006, 23(10): 1124-1128.
    [57]李惠云,王绍梅,刘立新,等.全硅介孔分子筛MCM-41的表面修饰及其疏水性[J].化学世界. 2006, 47(9): 517-520.
    [58]郭金福,李惠云.疏水性介孔KIT-1分子筛的制备与表征[J].石油化工. 2006, 35(9): 828-831.
    [59]李惠云,刘立新. FT IR、MASNMR和TG-DSC法研究分子筛表面接枝的硅烷基团[J].化学世界. 2008, 49(5): 272-274.
    [60] Ghiaci M, Kia R, Abbaspur A, et al. Adsorption of chromate by surfactant-modified zeolites and MCM-41 molecular sieve[J]. Separation and Purification Technology. 2004, 40(3): 285-295.
    [61] Mangrulkar P A, Kamble S P, Meshram J, et al. Adsorption of phenol and o-chlorophenol by mesoporous MCM-41[J]. Journal of Hazardous Materials. 2008, 156(1): 643-648.
    [62] Li L, Wang L, Du X, et al. Adsolubilization of dihydroxybenzenes into CTAB layers onsilica particles[J]. Journal of Colloid and Interface Science. 2007, 315(2): 671-677.
    [63] Anirudhan T S, Ramachandran M. Adsorptive removal of tannin from aqueous solutions by cationic surfactant-modified bentonite clay[J]. Journal of Colloid and Interface Science. 2006, 299(1): 116-124.
    [64] Zhu R, Wang T, Ge F, et al. Intercalation of both CTMAB and Al13 into montmorillonite[J]. Journal of Colloid and Interface Science. 2009, 335(1): 77-83.
    [65] Khenifi A, Zohra B, Kahina B, et al. Removal of 2, 4-DCP from wastewater by CTAB/bentonite using one-step and two-step methods: A comparative study[J]. Chemical Engineering Journal. 2009, 146(3): 345-354.
    [66]舒月红,贾晓珊. CTMAB-膨润土从水中吸附氯苯类化合物的机理——吸附动力学与热力学[J].环境科学学报. 2005, 25(11): 1530-1536.
    [67]舒月红,黄小仁,贾晓珊.共存污染物对1, 2, 4-三氯苯在CTMAB-膨润土上吸附的影响[J].环境科学学报. 2006, 26(004): 613-619.
    [68]吴平霄.有机插层蛭石对有机污染物苯酚和氢苯的吸附特性研究[J].矿物学报. 2003, 23(001): 17-22.
    [69]包军杰,余贵芬,牛牧晨.邻硝基苯酚在有机改性凹凸棒土上的吸附行为[J].环境化学. 2007, 26(003): 339-342.
    [70]吴建军,徐仁扣,肖双成,等.阳离子表面活性剂改性沸石对铬酸根的吸附机制[J].环境科学学报. 2007, 27(001): 119-123.
    [71]吴建军,徐仁扣,肖双成,等.阳离子表面活性剂用量对改性沸石吸附铬酸根的影响[J].生态与农村环境学报. 2007, 23(003): 82-85.
    [72]朱利中,苏玉红.阴-阳离子有机膨润土协同吸附作用及其机理研究[J].中国环境科学. 2001, 21(5): 408-411.
    [73] Ananthanarayanan K, Natarajan P. Fabrication and photophysical studies of phenosafranine and proflavine dyes encapsulated in mesoporous MCM-41 along with titanium dioxide nanoparticles[J]. Microporous and Mesoporous Materials. 2009, 57(2): 199-209.
    [74] Kuwahara Y, Kamegawa T, Mori K, et al. Fabrication of hydrophobic zeolites using triethoxyfluorosilane and their application as supports for TiO_2 photocatalysts[J]. Chemical Communications. 2008(39): 4783-4785.
    [75] Kuwahara Y, Maki K, Matsumura Y, et al. Hydrophobic Modification of a Mesoporous Silica Surface Using a Fluorine-Containing Silylation Agent and Its Application as an Advantageous Host Material for the TiO_2 Photocatalyst[J]. Journal of Physical Chemistry. 2009, 113(4): 1552-1559.
    [76] Yuan S, Shi L, Mori K, et al. Preparation of highly dispersed TiO_2 in hydrophobic mesopores by simultaneous grafting and fluorinating[J]. Microporous and Mesoporous Materials. 2009, 62(17): 3028-3030.
    [77] An T, Chen J, Li G, et al. Characterization and the photocatalytic activity of TiO_2 immobilized hydrophobic montmorillonite photocatalysts Degradation of decabromodiphenyl ether (BDE 209)[J]. Catalysis Today. 2008, 139(1-2): 69-76.
    [78] Yamashita H, Nakao H, Okazaki M, et al. Preparation of Hydrophobic Ti-containing Mesoporous Silica by the F-modification and Their Photocatalytic Degradation of Organic Pollutant Diluted in Water[J]. Studies in Surface Science and Catalysis. 2003, 9(5): 817-821.
    [79] Yamashita H, Maekawa K, Nakao H, et al. Efficient adsorption and photocatalytic degradation of organic pollutants diluted in water using fluoride-modified hydrophobic mesoporous silica[J]. Applied Surface Science. 2004, 9(5): 817-821.
    [80] Maekawa K, Chiyoda O, Ohshiro S, et al. Photocatalytic degradation of organic pollutants diluted in water using TiO_2 loaded on fluoride-modified hydrophobic mesoporous silica[J]. Comptes Rendus Chimie. 2006, 237(1): 393-397.
    [81] Yamashita H, Kawasaki S, Yuan S, et al. Efficient adsorption and photocatalytic degradation of organic pollutants diluted in water using the fluoride-modified hydrophobic titanium oxide photocatalysts: Ti-containing Beta zeolite and TiO_2 loaded on HMS mesoporous silica[J]. Catalysis Today. 2007, 9(5): 817-821.
    [82]王侃,陈英旭,叶芬霞. SiOB2B负载的TiO_2光催化剂可见光催化降解染料污染物[J].催化学报. 2004, 25(012): 931-936.
    [83] Sabde D P, Hegde S G, Dongare M K. Synthesis of titanium silicalite-1 using ethyl silicate-40: a new silica source for zeolite synthesis[J]. Journal of Materials Chemistry. 2000, 10(6): 1365-1370.
    [84]刘鑫,刘福田,张宁,等.沸石负载纳米TiO_2光催化剂水处理研究进展[J].硅酸盐通报. 2006, 25(006): 135-139.
    [85] Shi J, Zheng J, Wu P, et al. Immobilization of TiO_2 films on activated carbon fiber and their photocatalytic degradation properties for dye compounds with different molecular size[J]. Catalysis Communications. 2008, 9(9): 1846-1850.
    [86] Yahiro H, Miyamoto T, Watanabe N, et al. Photocatalytic partial oxidation ofα-methylstyrene over TiO_2 supported on zeolites[J]. Catalysis Today. 2007, 120(2): 158-162.
    [87] Liqiang J, Xiaojun S, Weimin C, et al. The preparation and characterization of nanoparticle TiO_2/Ti films and their photocatalytic activity[J]. Journal of Physics and Chemistry of Solids. 2003, 64(4): 615-623.
    [88] Petkowicz D I, Brambilla R, Radtke C, et al. Photodegradation of methylene blue by in situ generated titania supported on a NaA zeolite[J]. Applied Catalysis A, General. 2009, 357(2): 125-134.
    [89]李玉梅,陆光华.氯代苯类化合物对江水细菌的毒性及QSAR研究[J].环境科学研究. 2005, 18(006): 116-119.
    [90] Kruk M, Jaroniec M, Ko C H, et al. Characterization of the porous structure of SBA-15[J]. Chemistry of Materials. 2000, 12(7): 1961-1968.
    [91] Kruk M, Jaroniec M, Ryoo R, et al. Characterization of MCM-48 silicas with tailored pore sizes synthesized via a highly efficient procedure[J]. Chemistry of Materials. 2000, 12(5): 1414-1421.
    [92] Kruk M, Jaroniec M, Sakamoto Y, et al. Determination of pore size and pore wall structure of MCM-41 by using nitrogen adsorption, transmission electron microscopy, and X-ray diffraction[J]. The Journal of Physical Chemistry B. 2000, 104(2): 292-301.
    [93] Samanta S, Giri S, Sastry P U, et al. Synthesis and characterization of iron-rich highly ordered mesoporous Fe-MCM-41[J]. Industrial and Engineering Chemistry Research. 2003, 42(13): 3012-3018.
    [94] Kleitz F, Schmidt W, Schüth F. Evolution of mesoporous materials during the calcination process: structural and chemical behavior[J]. Microporous and Mesoporous Materials. 2001, 44: 95-109.
    [95] Xiao L. Effect of cationic template on the adsorption of aromatic compounds in MCM-41[J]. Microporous and Mesoporous Materials. 2007, 98(3): 330-338.
    [96] Xubiao Yu, Chaohai Wei, Lin Ke, et al. Development of organovermiculite-basedadsorbent for removing anionic dye from aqueous solution[J]. Journal of Hazardous Materials. 2010, doi:10.1016/j.jhazmat.2010.04.059.
    [97] L. Zhu, J. Ma, Simultaneous removal of acid dye and cationic surfactant from water by bentonite in one-step process[J]. Chemical Engneering Journal. 2008, 139: 503–509.
    [98] H F. Over the adsorption in solution[J]. Zeitschrift für Physikalische Chemie. 1906, 57A: 385-470.
    [99] Ho Y S, McKay G.. Pseudo-second order model for sorption processes[J]. Process Biochemistry. 1999, 34(5): 451-465.
    [100] Ilisz I, Dombi A, Mogyorósi K, et al. Removal of 2-chlorophenol from water by adsorption combined with TiO_2 photocatalysis[J]. Applied Catalysis B: Environmental. 2002, 39(3): 247-256.
    [101] Rao N N, Dubey A K, Mohanty S, et al. Photocatalytic degradation of 2-chlorophenol: a study of kinetics, intermediates and biodegradability[J]. Journal of Hazardous Materials. 2003, 101(3): 301-314.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700