TiC/(Ti-Al+ZrO_2)复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳化钛具有高的熔点、优异的高温强度、热稳定性,同时还具有高的弹性模量、高的硬度和好的耐磨性,已被广泛应用于刀具、模具等金属陶瓷材料领域。金属陶瓷中粘结相对于金属陶瓷的整体性能有重要的影响,TiC基金属陶瓷中的粘结相一般采用金属Co和Ni,其熔点和高温强度一般较低、高温抗氧化性较差,这导致硬质合金的高温性能和抗氧化性能较差,从而限制了其应用,特别是高温应用。
     具有较高熔点、较好高温强度的金属间化合物的出现,为TiC基金属陶瓷提供了新的粘结剂。其中,Ti-Al系金属间化合物具有密度低,高温强度高,抗蠕变和抗氧化能力强等优点,成为研究的热点。ZrO_2熔点高,莫氏硬度8~9,化学稳定性好,且其相变时伴有体积效应和剪切应变,常利用其相变特性作为陶瓷材料的增强相。基于以上分析,本文以TiC为基体设计和制备了一种新型的TiC/(Ti-Al+ZrO_2)多元复合材料,对复合材料的成份优化、制备工艺、力学性能、烧结机理、微观结构及增韧机制进行了系统研究。主要研究内容如下;
     通过将Ti/Al混合粉体进行高能球磨,对其机械合金化进行了理论和实验研究,并进行热处理使其转化为金属间化合物。通过对行星式高能球磨机进行运动学分析更深入认识了球磨过程;进一步通过XRD和TEM对球磨粉体的结构、形貌进行了检测和观察,结果发现;Ti/Al粉体在高能球磨过程中结构、形貌发生很大变化,相继出现过饱和固溶体、非晶、金属间化合物等物相;球磨10 h的粉体经过600℃真空热处理30 min后将完全转变为Ti_3Al和金属间化合物。
     通过一系列实验对复合材料中Ti-Al金属间化合物的添加方式、ZrO_2的用量和烧结工艺进行研究,根据烧结体性能,最终确定Ti-Al金属间化合物的添加方式为;球磨Ti-Al粉体不经热处理直接与TiC、ZrO_2粉混合,在随后的烧结过程中于600℃保温30 min转变为Ti-Al金属间化合物;ZrO_2的最佳用量确定为15wt%(质量分数,下同);真空热压烧结工艺最终确定为烧结温度1550℃,于600℃、1100℃和1550℃分别保温30 min,升温速度为20℃/min,压力为30 MPa。
     分别使用不同含量的Ti_3Al和TiAl作为粘结剂加入复合材料中进行烧结,通过烧结体力学性能的比较,确定最适合的粘结剂及其用量。结果表明;随着金属间化合物用量的增加,烧结体趋于致密化,性能相应提高,但当金属间化合物含量超过一定量时性能反而下降;Ti_3Al最佳用量为20 wt%,而TiM为25wt%。综合性能最佳的复合材料成分为TiAl 25 wt%,ZrO_2 15 wt%,TiC 60 wt%,抗弯强度653.5MPa,断裂韧性7.11 MPa·m~(1/2),硬度HRA 92.0。为了确定ZrO_2在复合材料中所发挥的作用,本文还制备了一系列的TiC/(Ti_3Al+Al_2O_3)进行对比研究。虽然其具有较好的抗弯强度,但内部存在大量气孔和层状结构,同时缺少ZrO_2的增韧作用,断裂韧性为6.12 MPa·m~(1/2),低于TiC/(Ti-Al+ZrO_2)复合材料。
     对复合材料烧结过程中存在的机制进行分析,详细讨论了液相烧结、热压烧结和真空烧结机制对TiC/(Ti-Al+ZrO_2)复合材料烧结的影响。然后分别烧结不含ZrO_2和Ti-Al金属间化合物的试样,通过断口形貌SEM图片观察其烧结情况,结果发现不含TiAl的试样中,虽然有些TiC颗粒长大,但总体未烧结致密;而含有TiAl的试样已经致密化,颗粒也比较细小均匀,得到了较好的烧结,充分说明Ti-Al金属间化合物在烧结中起到了粘结相的作用使烧结得以顺利进行。
     对成分为TiM 25 wt%,ZrO_2 15 wt%,TiC 60 wt%的复合材料进行了不同时间(5,15,30,60 min)的烧结,结合其微观结构和力学性能对烧结过程进行分析。结果发现复合材料的烧结过程与硬质合金的烧结相似,液相烧结过程是烧结中的主要过程,烧结过程中TiC与Ti-Al液相优先形成大的聚集体。两次颗粒重排,尤其是二次重排对烧结起到了较大的促进作用,15—30 min聚集的颗粒被打碎,从而使复合材料获得了细化结构。并接下来通过溶解—析出和固相烧结实现了颗粒的合理分布和结合,获得较好的结构和性能。
     通过对不同Ti-Al含量复合材料的力学性能及断口形貌的分析,确认了液相的量对烧结起决定性作用,Ti_3Al用量需要20 wt%,而TiAl用量需要25 wt%才能获得足够的液相使烧结顺利进行,获得烧结致密、性能较好的材料,而过多的液相反而会使烧结恶化。且Ti在烧结中起到的作用比Al的作用大,在混合熔液中的含量比较重要。
     液相的粘度与数量随温度的变化而剧烈变化,所以温度的控制是液相烧结的重要因素。当复合材料的烧结温度进一步提高至1600℃时,烧结中出现过烧现象,晶粒异常长大且发生流渗,本来应该存在于TiC颗粒周围的Ti-Al流失,使烧结体内部出现大量孔洞,只剩TiC颗粒直接的少量的脆弱结合,结构和性能都变差。
     为了进一步了解TiC/(Ti-Al+ZrO_2)复合材料的烧结规律并改善材料性能,以及改善TiC的脱碳情况,向复合材料中添加少量对烧结有较大影响的C元素,对复合材料烧结的变化和性能的改变进行分析。结果表明,通过少量C的添加,使复合材料的液相烧结发生重大变化;少量的C(1 wt%)使液相粘度增加,导致二次重排和溶解—析出被抑制;添加2 wt%时,由于Ti、Al混合液产生的毛细管力足够破碎大TiC颗粒促进了烧结体的晶粒细化;而随C含量继续增加(5 wt%)由于放热反应而使烧结体过烧。复合材料的性能与烧结情况相对应,当C含量为2 wt%时,烧结合理进行且TiC与金属间化合物结合紧密,材料的性能最佳,抗弯强度712.6 MPa,韧性9.11 MPa·m~(1/2),超过了未添加C的复合材料。
     通过SEM和TEM对TiC/(Ti-Al+ZrO_2)复合材料的微观结构进行了观察,对相的分布及作用进行讨论并进一步揭示其中的增韧补强机制。发现添加Ti-Al金属间化合物和ZrO_2对复合材料的微观组织结构有很大的影响,TiAl较为均匀地分布TiC颗粒间,而细小的ZrO_2则分布在TiC、TiAl晶间和晶内,有利于性能的提高。Ti-Al金属间化合物的增韧补强作用主要表现在;烧结过程中通过二次重排和溶解—析出使晶粒细化均匀,减小了原始裂纹尺寸;塑性比TiC好,断裂时能够起到桥联作用阻碍裂纹扩展;此外,Ti-Al存在于TiC晶问,改善了TiC之间的脆性结合,提高了材料的抗冲击能力。ZrO_2的强韧化作用是;一部分ZrO_2颗粒被固定在晶界形成晶间型结构,在烧结过程中不断粗化;一部分得到细化的纳米颗粒被其它生长晶粒包裹形成晶内型结构,利用其相变增韧机制,在晶问、晶内充分发挥作用,阻碍裂纹扩展,起到了一定程度的协同增韧作用。C的添加一方面可以调整基体TiC中C/Ti原子比,保持其颗粒的性能;另一方面通过对烧结的影响,使复合材料中的各相结合增强,有利于复合材料性能的提高。
     总之,本论文较系统地研究了TiC/(Ti-Al+ZrO_2)复合材料设计与制备工艺,以及烧结机理、微观结构及性能的改善方法,尤其在添加2 wt%C后,获得了抗弯强度和断裂韧性分别为712.6 MPa,9.11 MPa·m~(1/2)的复合材料,为该材料的发展和应用提供了一定的实验和理论基础。
Titanium carbide has been extensively applied in cutting tools,die tools owing to their high melting point and Young's modulus,excellent high-temperature strength, thermal stability,hardness and wear-resisting property.But the metals,Co and Ni, which are used as binders in cemented carbide have lower melting points and thermal strength.The application,especially the high temperature application of TiC is greatly limited.
     With the invention of intermetallics which have high melting points and excellent thermal strength,cermets with TiC matrix got a new kind of binder.Ti-Al intermetallics exhibit some excellent properties such as low density,high specific strength and high melting temperature and environmental resistance at elevated temperature,which makes it a suitable binder.ZrO_2 has high melting point and good chemical stability and its Mohs hardness is 8-9.As it's phase transformations occur, there are volume effect and shearing strain,which can toughen many composites. According to the philosophy mentioned above,the application of Ti-Al intermetallics and ZrO_2 as reinforcement in TiC matrix with the aim of preparing one new TiC/(Ti-Al+ZrO_2)composite is conducted.We systematically study the optimization of components,preparation process,mechanical properties,microstructure and strengthening mechanism of this composite.
     The mechanical alloying of Ti/Al powder mixture was studied firstly.According to the analyzing of planetary high-energy ball mill's kinematics,we preliminary learned about the deforming of powder in ball-milling process.Then the milled powder is heat-treated after its microstructure and morphology are detected and observed.The results showed that structure and morphology of milled Ti/Al powder mixture will greatly change,and supersaturated solid solution,amorphous phases and intermetallics with lots of defects and stress will form in consequence during ball milling.The powder milled for 10 h will completely transform into intermetallics after 30 min heat treatment at 600℃in vacuum.
     The sintering process,adding type of Ti-Al and the content of ZrO_2 are studied by a series of experimental.At last,it was confirmed that the adding type of Ti-Al intermetallics is by directly blending the untreated milled powder with TiC and ZrO_2 powder,and then heating at 600℃for 30 min in sintering process.The optimal content of ZrO_2 is 15 wt%(mass fraction),and the sintering progress have been established as that the sintering temperature is 1550℃,holding temperature at 600℃,1100℃and 1550℃for 30min,heating rate is 20℃/min,pressure is 30 MPa.
     Composite samples with different dosages of Ti_3Al or TiAl as binder were sintered.According to their mechanical properties,we can find out the best binder and its suitable dosage.The results showed that with the increasing of intermetallics, the sintered samples tend to have more compact structure and improved properties. But when the dosages of intermetallics exceed a certain extent the properties of composite will deteriorate,and the best dosage of Ti_3Al and TiAl is 20 wt%and 25 wt%respectively.As a whole,the best content of composite is 25 wt%TiAl,15 wt% ZrO_2 60 wt%TiC with respective bending strength 653.5 MPa,fracture toughness 7.11 MPa.m~(1/2)and hardness HRA 92.0.A series of TiC/(Ti_3Al+Al_2O_3)composites have been prepared as contrast.Though they have good bending strength,there are many pores and lamellar structures in them,which made them have poorer fracture toughness,6.12 MPa.m~(1/2).
     The sintering mechanisms in sintering process of composite were analyzed, which conclude liquid phase sintering,hot-pressing sintering and vacuum sintering mechanisms.Samples respectively without ZrO_2 and Ti-Al are prepared to study their effects on the sintering process.According to the SEM figures of fracture morphology, we can find out that the sample without TiAl have not densified only with very few grown grains,while the sample without ZrO_2 are quite compact with fine and uniform grains.So we concluded that Ti-Al intermetallics play an important role in sintering process.
     The composites with same content,TiAl 25 wt%,ZrO_2 15 wt%,TiC 60 wt%,are sintered for different time(5,15,30,60 min).According to their microstructures and mechanical properties,we can find out that sintering process of this kind of composites is similar to that of cemented carbide,in which the liquid phase sintering is the main process,and the second-arranged and dissolution-precipitation mechanism play an important role.TiC grains undergo particular transition from 15 to 30 rain.
     The sintering statuses of composites with different Ti-Al dosage are analyzed base on their properties and fracture morphologies.It was confirmed that the quantity of liquid play an most important role,and the corresponding best dosages of Ti_3Al and TiAl are 20 wt%and 25wt%respectively.And when the dosages increase sequentially,the sintering process will deteriorate.Further analyze showed that the effect of Ti liquid is more significant and its dosage is the key factor for sintering.
     When sintering temperature was increased to 1600℃,the composite overburned with abnormity grown grains and metal losing.Lots of porosities occurred around the grown TiC grains,which made the combination between TiC grains very friability and the structures,properties deteriorate.
     In order to ulteriorly know about the sintering rules of the composite,a small quantity of carbon was added.The varieties of sintering and properties showed that with the addition of carbon,the sintering process greatly changed with the second-arrange and dissolution-precipitation mechanism restrained.But when the dosage of carbon is 2 wt%,the mixture melt liquor of Ti and Al has a lower viscosity and large capillary force which may promote sintering and the refinement of TiC grains.With such content,the composite has quite excellent chemical properties,bending strength 712.6 MPa,fracture toughness 9.11 MPa.m~(1/2),which are higher than the composites without carbon.
     According to SEM and TEM photos,the microstructures of TiC/(Ti-Al+ZrO_2) composites were observed,and the phase distribution is discussed to fred out the toughening mechanism in these composites.It was discovered that with the addition of Ti-Al and ZrO_2 the microstructures of composites will greatly change and become more compatible,which may improve the properties.The effects of Ti-Al intermetallics exhibit in followed aspect.First,Ti-Al promote sintering and refine the grains;secondly,it have better plasticity which may toughening composite by crack-bridging;in addition Ti-Al grains locate between TiC grains and strengthen their combination,which may improve the shock-resistance property and increase the possibility of transgranular fracture.Some refined ZrO_2 particles were restricted on grain boundaries to form intergranular structure,and other particles were incorporated by grown TiC or Ti-Al grains to form intragranular structure.In a word,by its phase transformation characteristic,ZrO_2 operate in grains or at grain boundaries to toughen the composites cooperating with Ti-Al.
     Based on the results mentioned above,the sintering mechanism,the improvement of microstructures and properties of TiC/(Ti-Al+ZrO_2)composites are investigated,which may provide an experimental and theoretical foundation for the practical application.The best bending strength and fracture toughness of TiC/(Ti-Al+ZrO_2)composites are improved to712.6 MPa and 9.11 MPa.m~(1/2).
引文
[1]孙康宁,尹衍升,李爱民.金属间化合物/陶瓷基复合材料[M].北京;机械工业出版社,2003
    [2]王零森.特种陶瓷[M].长沙;中南大学出版社,2005
    [3]李世普.特种陶瓷工艺学[M].武汉;武汉工业大学出版社,1990
    [4]Limin Liu,Shaoqing Wang,Hengqiang Ye.First-Principles study of the polar TiC/Ti interface[J].J.Mater.Sci.Technol.,2003,19(6);540-544
    [5]秦思贵,周武平,熊宁,等.TiC/Cu复合材料的研究进展[J].粉末冶金工业,2006,16(2);38-42
    [6]毛小南,赵永庆,杨冠军.国外航空发动机用钛合金的发展现状[J].稀有金属快报,2007,26(5);1-7
    [7]吴波,徐先平,金志雄,等.TiC陶瓷颗粒增强Al基复合材料中杂质相的观察[J].电子显微学报,2005,24(4);327-327
    [8]金云学,李俊刚.TiC/Ti复合材料动态拉伸的裂纹形成及扩展机制[J].稀有金属材料与工程,2007,36(5);764-768
    [9]张丽华,金云学,郭宇航.原位生成TiC_p增强钛基复合材料的高温氧化[J].江苏科技大学学报(自然科学版),2007,21(2);80-84
    [10]陈丽芳,刘咏,汤慧萍,等.原位生成TiC颗粒增强Ti基复合材料的显微组织[J].稀有金属材料与工程,2005,34(10);1609-1612
    [11]Dongtao Jang,Jianting Guo.Influence of hot isostatic pressing on microstructures and properties of NiAl/Cr(Mo)-TiC in-situ multiphase composites[J].J.Mater.Sci.Technol.,1998,14;331-334
    [12]L.Z.Zhou,J.T.Guo.Microstructure and compressive properties of reaction-milled NiAl-10 wt%TiC composite[J].Acta Metallurgica Sinica(English Letters),1998,11(4);281-285
    [13]W.L.Xu,Y.S.Sun,S.S.Ding.Microstructure and tensile properties of Fe_3Al-based alloys with VC and TiC additions[J].Acta Metallurgica Sinica(English Letters),2001,14(4); 248-252
    [14]蔡志勇,曹顺华,谢湛.TiC晶须的制备及应用[J].粉末冶金材料科学与工程,2007,Vol.(2);77-81
    [15]Bingqiang Liu,Chuanzhen Huang,Xinyu Lu,etc..In situ growth of TiC whiskers in Al_2O_3 matrix for ceramic machine tools[J].Ceram.Inter.,2007,33;1475-1480
    [16]斯庭智,曹荐.Rietveld法定量分析Al_2O_3-TiC复合陶瓷含量[J].硬质合金,2007,24(2);115-118
    [17]汤波.TiC基金属陶瓷的性能与发展[J].湖南冶金,2004,32(5);7-10
    [18]王盘鑫.粉末冶金学[M].北京;冶金工业出版社,1997
    [19]曾德麟.粉末冶金材料[M].北京;冶金工业出版社,1989
    [20]陈怡元,邹正光,龙飞.TiC基金属陶瓷的合成及其应用现状[J].钛合金进展,2007,24(3),5-9
    [21]张勇,赵红,张幸红,等.平面Fe基体TiC/Fe金属陶瓷涂层自蔓延高温合成与耐磨性研究[J].中国表面工程,2007,20(1),25-28
    [22]李荣久.陶瓷金属复合材料[M].北京;冶金工业出版社,2004
    [23]刘瑶,何柏林.无压渗透制备金属间化合物陶瓷基复合材料的研究进展[J].热加工工艺,2006,35(18);61-63
    [24]王志伟,施雨湘,杨圣品.自蔓延高温合成技术新进展[J].材料保护,2001,35(5);1-3
    [25]蔡杰.自蔓延高温合成法在陶瓷领域的应用[J].材料科学,1996,7;36-37
    [26]松山芳质.粉末冶金学[M].周安生译.北京;科学出版社,1978
    [27]李细锋,张凯锋,韩文波.TiC/Ti复合材料的高温塑性变形行为及微观组织[J].稀有金属材料与工程,2005,34(12);1994-1997
    [28]张永刚,韩雅芳,陈国良,等.金属间化合物结构材料[M].北京;国防工业出版社,2001
    [29]张旭东,张玉军,刘曙光.无机非金属材料学[M].济南;山东大学出版社,2000
    [30]李静,尹衍升,潘悦飞.Fe_3Al基复合材料摩擦表面的分形特性研究[J].润滑与密封,2006,(11);31-34
    [31]Chen Guoqing,Zhang B inggang,He Jingshan,etc.Effect of cooling rate on the microstructure of electron beam welded joints of two-phase TiAl-based alloy.CHNA WELDING.2007,16(2);11-15
    [32]黄旭,齐立春,李臻熙.TiAl基复合材料的研究进展[J].稀有金属材料与工程,2006,35(11);1845-1848
    [33]侯世香,刘东雨,刘宗德.NiAl金属间化合物的研究概述[J].金属热处理,2007,32(7);60-64
    [34]Liu C.T.,Cahn R.W.,Sauthoff G..Ordered intermetallic-physical metallurgy and mechanical behavior,NATO ASI series,Vol.213,Bostion,MA;Kluwer Academic Publishers,1992
    [35]Stoloff N.S..Ordered alloys-physical metallurgy and sturctrural application.Int.Met.Rev.,1984,29(3);125-135
    [36]张玉军,尹衍升.Fe-Al金属间化合物/Al_2O_3陶瓷复合材料研究[J].硅酸盐通报,2000(4);39-42
    [37]张玉军,尹衍升.金属间化合物陶瓷复合材料研究进展[J]_兵器材料科学与工程,2000,23(1);8-11
    [38]李嘉,尹衍升.ZrO_2/Fe_3Al复合材料的界面电子结构计算及材料制备[J].人工晶体学报.2003,32(3);204-209
    [39]李嘉,尹衍升,刘俊友,等.3Y-TZP/FeAl复合材料化学相容性分析[J]_无机材料学报,2004,19(4);859-864
    [40]李嘉,尹衍升,王英姿,等.ZrO_2(3Y)/Fe-3AL复合材料的裂纹扩展阻力曲线与增韧机制[J].硅酸盐学报,2004,32(2);144-150
    [41]Chou W.B.,Tuan W.H.,Chang S.T..Preparation of NiA1 toughened Al_2O_3 by vacuum hot pressing[J].Brit Ceram Trans,1996,95(2);71-74
    [42]W.H.Tuan,W.B.Chou,H.C.You,etc.The effects of microstructure on the mechanical properties of Al_2O_3-NiAl composites[J].Materials Chemistry and Physics,1998,56;157-162
    [43]V.M.Sglavo,F.Marino,B.R.Zhang.Ni_3Al intermetallic compound as second phase in Al_2O_3 ceramic composites[J].Mater.Sci.Eng.A,1997,239-240;665-671
    [44]Je-Won Choi,Young-Min Kong and Hyoun-Ee Kim,Reinforcement of Hydroxyapatite Bioceramic by Addition of Ni_3Al and Al_2O_3,J.Am.Ceram.Soc.,1998,81(7);
    [45]B.R.Zhang,F.Marino.Reaction-Bonding preparation of Si_3N_4/MoSi_2 and Si_3N_4/WSi_2 composites from elemental powders[J].J.Am.Cram.Soc.1996,80(1);269-272
    [46]B.R.Zhang,F.Marino,V.M.Sglavo.Post-pressing and high-temperature bending strength of reaction-bonded silicon nitride-molybdenum disilicide and silicon nitride-tungsten silicide composites[J].J.Am.Cram.Soc.,1998,81(5);1344-134
    [47]R.Subramanian,J.H.Schneibel.FeAl-TiC cermets—melt infiltration processing and mechanical properties[J].Materials Science and Engineering,1997,A239-240;633-639
    [48]边涛.TiC/Ni_3Al复合材料的制备及组织和性能研究[硕士论文],杭州;浙江大学,2002
    [49]高明霞,潘颐,F.J.Oliveria,等.自发熔渗法制备TiC/NiAl复合材料和其微观组织特征[J].复合材料学报,2004,21(5),11-15
    [50]华文深,吴杏芳,陆华,等.TiC_x/Ni-Al复合材料界面纳米硬度与弹性模量分布[J].机械工程材料,2003,27(3);8-12
    [51]华文深.TiC_x/Ni-Al复合材料的性能和显微结构研究[博士论文],北京;北京科技大学,2002
    [52]梅炳初,袁润章,王为民.自蔓延-熔制合成Ni_3Al-TiC系统复合材料的力学性能[J].武汉工业大学学报,1993,15(3);24-26
    [53]梅炳初,袁润章.自蔓延高温合成技术制备TiC/Ni_3Al复合材料的研究[J].硅酸盐学报,1994,22(2);168-172
    [54]梅炳初,傅正义,王为民,等.Ni_3Al含量对热爆合成Ni_3Al/TiC复合材料的影响[J].金属学报,1996,32(10),1107-1110
    [55]杨开明,朱敏,刘峰晓,等.反应热压制备FeAl/TiC复合材料的研究[J].硬质合金,2004,21(1);21-26
    [56]刘峰晓,刘咏,黄伯云,等.加Ni的FeAl/TiC复合材料的制备与性能研究[J].矿冶工程,2004,24(5),86-88
    [57]Liu Fengxiao,Liu Yong,Huang Baiyun,etc.Fabrication and mechanical properties of FeAl/TiC composites[J].Trans.Nonferrous Met.Soc.China,2005,15(1);97-102
    [58]Liu Fengxiao,Liu Yong,Huang Baiyun,etc.Fabrication of FeAl/TiC composites through reactive hot pressing[J].J.Cent.South Univ.Technol.,2004,11(4);343-347
    [59]R.C.Garvie,R.H.J.Hanink,R.T.Pascoe,ceramic steel,Nature,1975,258;103-704
    [60]尹衍升,李嘉.氧化锆陶瓷及其复合材料[M].北京;化学工业出版社,2004
    [61]林振汉.氧化锆材料的特性及在结构陶瓷中的应用和发展[J].稀有金属快报,2004,23(6);6-10
    [62]陈守刚,尹衍升,周春华,等.氧化锆相变稳定机制的研究进展及应用[J].硅酸盐通报,2004,3;73-76
    [63]高翔,丘泰,焦宝祥,等.ZrO_2-Al_2O_3复相陶瓷的研究[J].中国陶瓷,2004,40(3);9-13
    [64]高翔,丘泰,焦宝祥,等.纳米ZrO_2对Al_2O_3陶瓷性能的影响[J].硅酸盐通报,2005,1;12-16
    [65]饶平根,吴建青,叶建东,等.添加氧化锆对氧化铝陶瓷的性能的影响[J].兵器材料科学与工程,2006,29(3);13-17
    [66]饶平根,吴建青,叶建东,等.低温烧结Al_2O_3/3Y-TZP复合材料的力学性能[J].华南理工大学学报(自然科学版),2004,32(7);1-4
    [67]于薛刚,王昕,单妍,等.液相烧结对微-纳复合ZTA陶瓷组织性能的影响[J].材料热处理学报,2004,24(2);5-9
    [68]单妍,王昕,尹衍升,等.ZTA纳米复相陶瓷的研究[J].硅酸盐通报,2002,2;43-46
    [69]蔡舒,袁启明,孟佳宏,等.氧化锆(氧化钇)增韧莫来石陶瓷的组成与强韧化机理的研究[J].硅酸盐通报,2000,6;11-15
    [70]刘继进,阮建明,邹俭鹏.羟基磷灰石—氧化锆复合材料的致密化及其力学性能[J].中国有色金属学报,2005,15(6);952-957
    [71]张林,范仕刚.ZrO_2增韧陶瓷的研究进展[J].现代技术陶瓷,2002,4;23-26
    [72]A.Conteras,C.A.Leon,R.A.L Drew,etc.Wettability and spreading kinetics of Al and Mg on TiC[J].Scripta Materialia,2003,48;1625-1630
    [73]Davis R M,Mcdermott B,and Koch C C.Mechanical Alloying of Brittle Materials[J].Metal.Trans.,1988,19A;2867-2874
    [74]Koch C C,Whittenherger J D.Mechanical milling/alloying of intermetallics[J].Intermetallics.1996,(4);339-355
    [75]C.Suryanarayana,E.Ivanov,V.V.Boldyrev.The science and technology of mechanical alloying[J],materials science and engineering A,2001,304-306;151-158
    [76]A.E.Yermakov,E.E.Yurchikov and V.A.Barinov.Magnetic properties of amorphous powders of Y-Co alloys obtained by mechanical alloying[J].Phys.Met.Metall.,52(1981);50
    [77]C.C.Koch,O.B.Cavin,C.G.Mckamey and J.O.Scarbrough.Preparation of 'amorphous' Ni60 Nb40 by mechanical alloying[J].Appl.Phys.Lett.,43(11)(1983)1017
    [78]Qi Min,Zhu Min,et al.Thermodynamic analysis of meta-stable phase in A1-Ti system during high-energy ball milling[J].Materials Science and Engineering.1994,12(3);61
    [79]Uenishi K,Kobagashi K F,Ishihara K N,Shingu PH.Mater.Sci.Eng.,1991,A134;1342
    [80]Cui Xiao-long,Qi Min,et al.Control of oxidation and formation of non-equilibrium phase in Cu-Cr alloys during MA[J].Journal of Dalian University of Technology.2001,41(2);181-186
    [81]席生岐,周敬恩等.高能球磨制备Al_3Ti/Al块体纳米晶复合材料[J],中国有色金属学报,2002,12(s1);115-119
    [82]Yang Zheng-guo,Ren Rui-ming,et al.Evolution of microstructures and nitrogen sorption during high-energy milling of silicon in ammonia[J].J Am Ceram.Soc.,2000,83(8);1897-904
    [83]Aoki K,Itoh Y,Park J,et al.Preparation of nanocrystalline bulk TiA1 by a combination of HDDR and hot pressing[J].Intermetallics.,1996,(4);s103—s111
    [84]Fecht J,Hellstem E,Fu Z,Johnson W L.Metall Trans,1990,A21;2333
    [85]马乃恒,方小汉,梁工英,等.高能球磨对Al-Ti-C 粉料混合物粒度和组织的影响[J].复合材料学报,2002,19(2);33-36
    [86]Vladimir V.Volkov,Klavdi G.Myakishev.Mechanochemical reactions in the chemistry of boranes[J].Inorganica Chimica Acta,1999,289;51-57
    [87]W.Ostwald.Handbuch der Allgemeinen Chemie[M],Vol.1,Akad.Verlagsanstalt,Leipzig,1919,70
    [88]P.Balaz.Mechanical activation in hydrometallurgy,Int.J.Miner.Process.,2003,72;341-354
    [89]吴建其,卢迪芬.无机非金属材料粉磨过程中的机械力化学效应[J].材料导报,1999,13(5);13-14
    [90]李凡,吴炳尧.机械合金化—新型的固态合金化方法[J].机械工程材料,1999,23(4);22-24
    [91]杨南如.机械力化学过程及效应(I)[J].建筑材料学报,2000,3(1);19-26
    [92]李竟先,吴基球,黄康明.机械力化学效应在无机非金属材料制备中的应用研究[J]_硅酸盐学报,2002,30(增刊);152-154
    [93]Liao Jiefan,Senna M.Enhanced dehydration and amorphization of Mg(OH)_2 in the oresence of ultrafine SiO_2 under mechnochemical conditions[J].Thermochimica Acta,1992,210;89-102
    [94]吴其胜.机械力化学效应及应用于钛酸盐纳米粉体的制备[博士论文],南京;南京工业大学,2002
    [95]杨君友,张同俊,崔崑,胡镇华.球磨过程中的碰撞行为分析[J].金属学报,1998,33(4);381-385
    [96]李小强.大塑性变形—反应烧结制备TiAl基合金的研究[博士论文],哈尔滨;哈尔滨工业大学,2002
    [97]G.Tzvetkov,G.Mulas,L.Schiffini,et al.Application ofmechanochemistry treatment to the synthesis of A-and G-forms of La_2Si_2O_7[J],Solid State Ionics,1999,116;241-248
    [98]E Zhang,W.A.Kaczmarek,L.Lu,et al.Formation of Al-TiN metal matrix composite via mechanochrnical route[J].Scipta Mater.,2000,43;1097-1102
    [99]F.Delogu,G.Cocco.Impact-induced disordering of intermetallic phases during mechanical processing[J],Materials Science and Engineering A,2003,343;314-317
    [100]李小强,胡连喜,王尔德.Ti/Al二元粉末的机械合金化[J].中国有色金属学报,2001,11(1);55-58
    [101]李小强,胡连喜,王尔德.机械球磨与反应制备TiAl基合金[J].粉末冶金技术,2001,19(3);131-135
    [102]王天国.机械合金化与热压烧结制备TiAl基合金的研究[硕士论文],武汉;武汉理工大学,2006
    [103]郭庚辰.液相烧结粉末冶金材料[M].北京;化学工业出版社,2003
    [104]李江田,孙康宁,赵萍,等.Ti-Al/TiC+Al_2O_3复合材料的制备与性能[J].机械工程材料,2005,29(1);42-44.
    [105]黄伯云.钛铝基金属间化合物[M].长沙;中南大学出版社,1998
    [106]果世驹.粉末烧结理论[M].北京;冶金工业出版社,2002
    [107]黄晓巍.液相烧结3Y-TZP/Al_2O_3陶瓷的制备与性能研究[博士论文],上海;中国科学院上海硅酸盐研究所,2003
    [108]A.Conteras,C.A.Leon,R.A.L Drew,etc.Wettability and spreading kinetics of Al and Mg on TiC[J].Scripta Materialia,2003,48;1625-1630
    [109]王国栋.硬质合金生产原理[M].北京;冶金工业出版社,1988
    [110]莫畏,邓国珠.钛冶金[M].北京;冶金工业出版社,1998
    [111]R.M.German and B.H.Rabin.Enhanced sintering through second phase additions[J].Powder Met.,1985(28)7-12
    [112]谭训彦.特种陶瓷工艺学[M].济南;山东大学,2000
    [113]叶瑞伦,方永汗,陆佩文.无机材料物理化学[M].北京;中国建筑工业出版社,1986
    [114]《国外硬质合金》 编写组编.国外硬质合金[M].北京;冶金工业出版社,1976
    [115]严有为,威伯康,林汉同,等.化学成分对TiC_p/Fe复合材料组织和性能的影响[J].中国有色金属学报,1999,9(2);225-230
    [116]于丽娜,王海梅,刘相法,等.微量TiC、TiB_2引起铝熔体粘度的突变现象[J].铸造,2002,51(11);687-689
    [117]Lina Yu,Xiangfa Liu.Ti transition zone on the interface between TiC and Aluminum Melt and its influence on melt viscosity.Jorunal of Materials Processing Technology,2007,182;519-524
    [118]王洪涛.液相烧结WC-Co硬质合金的研究[硕士论文],北京;北京科技大学,2005
    [119]高立春,李文超,徐利华,等.晶种诱导长柱状晶生长规律与高韧性氧化铝陶瓷材料[J],中国科学 E,2003,33(1);11-17
    [120]龚江宏.陶瓷材料断裂力学[M].北京;清华大学出版社,2001
    [121]关振铎,张中太,焦金生.无机材料物理性能[M].北京;清华大学出版社,1992
    [122]王昕,单妍,于薛刚,等.纳米ZrO_2—微米Al_2O_3复合陶瓷中“内晶型”结构的形成与机理[J].硅酸盐学报,2003,31(12);1145-1149
    [123]张玉军,张伟儒,等.结构陶瓷材料及其应用[M].北京;化学工业出版社,2005
    [124]陈守刚,尹衍升,周春华,等.氧化锆相变稳定机制的研究进展及应用[J].硅酸盐通报,2004,3;73-76
    [125]孙义海,张玉峰,郭景坤.3Y-TZP材料的液相烧结[J].硅酸盐通报,2003,2;3-6
    [126]申玉芳,芦令超,程新,等.Al_2O_3基纳米复相陶瓷的研究进展[J].济南大学学报(自然科学版),2002,16(1);105-107
    [127]焦绥隆,C.E.Bors.氧化铝/碳化硅纳米复合材料的力学性能和强化机理[J].材料导报,1996,增刊;89-93
    [128]孙旭东,李继光,张民,等.Al_2O_3/SiC纳米陶瓷复合材料的强化机理[J].金属学报,1999,35(8);879-882

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700