NiTi形状记忆合金增韧Al_2O_3陶瓷的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陶瓷因具有高强度、高硬度、耐磨性、耐腐蚀性、电绝缘性等特性,被广泛地应用在日常生活、工业生产以及高科技领域,但韧性低一直是阻碍其进一步应用的重要原因。因此,对于如何改善陶瓷的韧性和制备具有非常重要的意义。多年来,人们通过各种增韧手段来改善陶瓷的韧性,常用的增韧方式有颗粒弥散增韧、纤维和晶须增韧、氧化锆相变增韧、复合增韧与自增韧等。
     目前,NiTi形状记忆合金因具有丰富的相变现象,已广泛应用在航天航空、建筑、生物医学及日常生活等领域。本文选用氧化铝陶瓷为基体,NiTi合金颗粒为第二相,将其复合到氧化铝陶瓷基体中,利用NiTi合金的马氏体相变(形状记忆效应和超弹性均是由其来体现)改善氧化铝陶瓷的韧性。
     本文采用CMT5105型微机控制电子万能试验机研究了NiTi合金对氧化铝陶瓷抗弯强度和断裂韧性的影响;采用HD-1875型布洛维硬度计研究了复合陶瓷硬度;采用X射线衍射仪研究了复合陶瓷的物相组成;采用扫描电子显微镜对复合陶瓷材料的断口形貌进行观察分析,并对增韧机理进行探讨。
     本文利用机械合金化法制备非晶NiTi合金粉末,经晶化处理后,使其均匀分散到氧化铝陶瓷基体中,采用热压烧结工艺,在1300℃和1400℃的烧结温度下制备复合陶瓷。同时选用等原子比的NiTi合金加入到氧化铝陶瓷基体中,在13000℃的烧结温度下制备复合陶瓷;与相同温度下加入机械合金化制备NiTi合金的复合陶瓷的性能作对比。
     研究表明:利用机械合金化法可制得非晶NiTi合金粉末,晶化处理后可得到晶体结构为体心立方的NiTi合金;将晶化处理后得到的合金粉末加入到氧化铝陶瓷基体中,在1300℃和1400℃烧结温度下制备复合陶瓷,随着加入合金含量的增加,复合陶瓷的抗弯强度和断裂韧性均有明显的提高。将等原子比的NiTi合金加入到氧化铝陶瓷基体中,在1300℃的烧结温度下制备复合陶瓷,随着NiTi合金含量的不断增加,复合陶瓷的力学性能也不断地提高,但硬度变化不大;与1300℃的烧结温度下加入机械合金化制备NiTi合金的复合陶瓷的性能相比,加入等原子比的NiTi合金的复合陶瓷的性能较好,这主要是因为在混料过程中,延长了混料时间,使合金在试样中的分散性得到改善,提高烧结试样的致密度,从而提高复合陶瓷的强度和韧性。
     研究结果表明:受到外力的作用时,复合陶瓷中的NiTi合金发生应力诱导相变,相变过程中产生的体积膨胀会消耗裂纹扩展的能量,抑制裂纹扩展并使裂纹发生偏转,提高复合陶瓷断裂韧性;同时NiTi合金颗粒的桥联作用可抑制裂纹的继续扩展,改善陶瓷韧性。
Ceramic has high strength, high hardness, wear resistance, corrosion resistance, electrical insulation features, so it is widely used in daily life, industrial production and high-tech fields, but the roadblock to its application is poor fracture toughness. Therefore, how to improve ceramic toughness and preparation has the extremely vital significance.
     Over the years, the people through various toughening methods to improve ceramic toughness. The common toughening methods have particle dispersion toughening, fiber and whisker toughening, zirconia phase transformation toughening, composite toughening and self-toughening, etc.
     At present, because NiTi shape memory alloy with rich phase transition phenomenon, so it is widely used in aerospace, architecture, biomedical and daily life, etc. This paper selects alumina ceramics as substrate, NiTi alloy particles as the second phase composite to alumina ceramic substrate. Through the NiTi alloy martensite transformation to improve the characteristics of alumina ceramic toughness.
     In this paper, the effect of NiTi alloy on alumina ceramic flexural strength and fracture toughness were tested with a CMT5105 Electromechanical universal testing machine;A HD-1875 hardness testing machine was employed to test the hardness of the composite ceramic;this paper researched the phase composition of composite;by scanning electron microscope to observe and analyze the fracture morphology of ceramic materials, and discuss the toughening mechanism.
     This paper prepared amorphous NiTi alloy powder by mechanical alloying. After the crystallization processing, made the alloy dispersed homogeneously to alumina substrate. Under 1400℃and 1300℃sintering temperature prepared composite ceramic by hot-press sintering process. Meanwhile this paper made equiatomic NiTi alloy composited to alumina substrate, under 1300℃sintering temperature prepared composites. In the meantime, this paper contrasted their mechanical property to the composite ceramics which were composited NiTi alloy by mechanical alloying.
     The result indicates that mechanical alloying can prepare amorphous NiTi alloy powder and obtain NiTi alloy which crystalline strcture is body centered cubic after the crystallization. This paper made the alloy powder composited to alumina substrate. Under 1400℃and 1300℃sintering temperature prepared composites, their flexural strength and fracture toughness were obviously improved with the increase of the content of NiTi alloy powder. In the same time, this paper made equiatomic NiTi alloy powder composited to alumina substrate, under 1300℃sintering temperature prepared composites, which mechanical properties constantly improved with the increase of the content of alloy powder, but the hardness remained almost unchanged. Compared to the composites whose second phase was NiTi alloy powder which prepared by mechanical alloying, the mechanical properties of the composites whose second phase was equiatomic NiTi alloy powder were better. Because in mixing process we extended the mixing time which could make alloy powder equably dispersed in alumina substrate, and this could improve the composites density, so the composites strength and toughness could be enhanced.
     The results of the study show that:when external force in composites, NiTi alloy produced stress induced phase transition. The volume dilatancy in phase transition process could consume energy of crack propagation, in the same time, it could restrain the crack propagation and make the crack deflection which improved the composites fracture toughness;Meanwhile NiTi alloy particle bridge league action could inhibit crack continue to expand and improve the composites toughness.
引文
[1]毕见强,赵萍,邵明梁,吴玉敏.特种陶瓷工艺与性能[M].哈尔滨:哈尔滨工业大学出版社,2008:1-3.
    [2]闫冬.无机非金属材料行业的发展趋势[J].科技咨询,2010,(22):106.
    [3]陈伟,赵清杰,马艳红,李晋峰.细观力学理论在氧化铝陶瓷材料中的应用进展[J].机械强度,2004,26(S):89-92.
    [4]Casellas D, Nagl MM, Llanes L. Fracture toughness of alumina and ZTA ceramics:microstructural coarsening effects [J]. Journal of Materials Processing Technology,2003,143-144:148-152.
    [5]Senthil Kumar A. Raja Durai A, Sornakumar T. Wear behavior of alumina based ceramic cutting tools on machining steels [J]. Tribology International,2006, 39(3):191-197.
    [6]张敬强,荣守范,丰崇友.氧化铝陶瓷增韧的研究现状[J].铸造设备研究,2006,(2):40-43.
    [7]张延峰,郝春成.纳米Ni3Al/Al2O3复合陶瓷的制备及性能[J].青岛科技大学学报,2010,31(2):144-147.
    [8]李旺兴,李东红,沈湘黔.提高氧化铝陶瓷断裂韧性的先进途径[J].矿冶工程,2005,225(4):73-76.
    [9]杨治华,贾德昌,褚雷阳,段小明,罗芳,周玉,张培峰.纳米TiN-Al2O3基复相陶瓷的电学及力学性能[J].硅酸盐学报,2010,38(8):1480-1483.
    [10]郭景坤.关于陶瓷材料的脆性问题[J].复旦学报(自然科学版),2003,42(6):822-827.
    [11]袁好杰,于乐海.莫来石纤维含量对氧化铝基陶瓷复合材料性能的影响[J].山东陶瓷,2008,31(5):3-7.
    [12]黄政仁,沈志坚,凌律巍,谭寿洪,Nygren M,江东亮.碳化硅晶须补强莫来石复合材料的SPS烧结致密化研究[J].陶瓷学报,2002,22(3):115-120.
    [13]尹衍升,张景德.氧化铝陶瓷及其复合材料[M].北京:化学工业出版社.2001:125.
    [14]张希华,张建华,刘长霞.氧化铝基陶瓷材料增韧研究现状及其发展方向[J].山东大学学报,2004,34(5):14-17.
    [15]单妍,王听,尹衍生.ZTA纳米复相陶瓷的研究[J].硅酸盐通报,2002,(2):43-46.
    [16]Niihara K. New design concept of structural ceramic nanocomposites [J]. Journal of the European Ceramic Society,1992,75(9):2363-2372.
    [17]高翔,丘泰,焦宝祥.ZrO2-Al2O3复相陶瓷的研究[J].2004,40(3):9-13.
    [18]黄勇,路学成,余军.氧化铝陶瓷增韧研究进展[J].江苏陶瓷,2007,40(2):11-14.
    [19]左洪波,郭英奎,李明飞.WC及Zr02复合增韧A1203基复合陶瓷材料的透射电镜分析[J].材料工程,1999,(4):46-28.
    [20]李风梅,管葆青,赵家培.自增韧热压氮化硅陶瓷的研究[J].复合材料学报,1997,14(2):30-33.
    [21]Lange FF. Fracture toughness of as a function of the initial α-phase Content [J]. Journal of American Ceramic Society,1979,62:428.
    [22]Matsuhiro K, Takshashi T. The effect of grain size on the toughness of sintered Si3N4[J]. Ceramic Engineering and Science Proceedings,1989,10(7/8):807.
    [23]Chen IW, Petzow G, Yen TS, Becher PF, Mitomo M. Silicon Nitride Ceramics Scientific and technological Advances [M]. Materials Research Society,1993.
    [24]钟长荣,毕松,苏勋家,侯根良.A1203陶瓷自增韧研究进展[J].粉末冶金材料科学与工程,2007,12(4):193-195.
    [25]王刚,娄海琴,周继伟,周军,杨彬.自增韧氧化铝陶瓷的制备与力学性能的研究[J].稀有金属材料与工程,2008,37(1):512-513.
    [26]于超.Ni-Ti合金对Ti(C,N)基金属陶瓷组织和力学性能的影响[D].安徽,合肥工业大学,2007:4-63.
    [27]Buehler WJ, Gilfrich JW, Wiley RC. Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi [J]. Journal of Applied Physics,1963, (34):1475-1477.
    [28]Wayman CM. Some applications of shape memory alloys [J]. Journal of Metals, 1980, (32):129-137.
    [29]Otsuka K, Shimizu K. Characteristics of the martensitic transformation in TiNi and the memory effect [J]. Metallurgical and materials transactions B,1971, 2(9):2583-2588.
    [30]Tadaki T, Otsuka K, Shimizu K. Shape Memory Alloys [J]. Annual Review Materials Research,1988,18:25-45.
    [31]Maki T, Furutani S, Tamura I. Shape-memory effect related to thin-plate Martensite with large thermal hysteresis in ausaged Fe-Ni-Co-Ti alloys [J]. ISIJ International,1989,29(5):438-445.
    [32]Sato A, Chishima E, Soma K, et al. Shape memory effect in γ(?)ε transformation in Fe-30Mn-1Si alloy singe crystal [J]. Acta Metallurgica,1982,30(6): 1177-1183.
    [33]徐祖耀.形状记忆合金材料[M].上海,上海交通大学出版社,2000:4.
    [34]Humbeeek JV. Non-medical applications of shape memory alloys [J]. Materials Science and Engineering A,1999,273-275:134-148.
    [35]夏兰,彭强.形状记忆合金及其应用研究[J].沙洋师范高等专科学校学报,2002,(1):66-69.
    [36]Xu Z. Perspective in development of shape memory materials associated with martensitic transformation [J]. Materials Sciences and Technology,1994,10(4): 107-110.
    [37]马超.形状记忆材料的应用与发展[J].辽宁化工学报,2006,35(1):30-32.
    [38]罗洪艳,牟波,廖彦剑.热机械循环方法对训练NiTi合金双程形状记忆效应的影响[J].材料导报,2009,23(12):55-57.
    [39]吴波,孙科学,李惠,唐卫胜.热处理对形状记忆合金超弹性滞回性能的影响[J].振动工程学报,2000,9(3):449-454.
    [40]Ling HC, Kaplow R. Phase transitions and shape memory in NiTi [J]. Metallurgical and materials transactions A,1980,11(1):77-83.
    [41]Otsuka K, Sawamura T, Shimizu K. Crystal strcture and internal defects of equiatomic TiNi martensite [J]. Physica Status Solidi (a),1971,5(2):457.
    [42]王亚芳.复合加载下NiTi形状记忆合金超弹性性能研究[D].西安,西北工业大学,2007:1-131.
    [43]缪卫东,米绪军,栗华矗,朱明,高兆祖.钛镍形状记忆合金制备技术进展[J].稀有金属材料与工程,2005,34(3):144-147.
    [44]Battezzati L, Antonione C, Fracchia F. Ni-Al intermetallics produced by cold-rolling elemental sheets [J]. Intermetallics.1995,3(1):67-71.
    [45]Suryanarayana C. Mechanical alloying and milling [J]. Progress in Materials Science,2001,46(1-2):1-184.
    [46]冉广,周敬恩,席生岐.机械合金化制备非晶机制研究[J].金属热处理,2005,30(11):9-10.
    [47]梁国宪,王尔德.球磨条件对Ni-Ti粉末结构转变及机械合金化速度的影响[J].材料研究学报,1994,8(4):297-303.
    [48]崔立山,杨大智.吸氢形状记忆合金NiTi球磨法制备颗粒的研究[J].金属热处理学报,1994,15(3):39-43.
    [49]李自强,陈运法,牛求彬,谢裕生.还原扩散法直接制备金属间化合物粉末[J].材料导报,1999,13(3):18-19.
    [50]李自强,陈运法,牛求彬,王树民,谢裕生.还原扩散法直接制备TiNi合金粉末的研究[J].新技术新工艺,1998,(3):32-34.
    [51]杨建峰.熔盐法制备KBT和KNN无铅压电陶瓷[D].北京,北京工业大学,2008:1-62.
    [52]Zhao J, Cui L, Gao W, et al. Synthesis of NiTi particles by chemical reaction in molten salts [J]. Intermetallics,2005,13(3-4):301-303.
    [53]于东,张博明,梁军,戴福洪.形状记忆合金在航空工业中的应用研究进展[J].金属功能材料,2007,14(6):27-31.
    [54]欧阳雪琼,龙卧云,唐武彪,李婧,卢安贤.机械合金化制备Zr50Al15Ni10Cu25非晶合金粉末的非晶化机制[J].粉末冶金材料科学与工程,2010,15(3):225-228.
    [55]颜景平,易红,史金飞.行星式球磨机研制及其节能机理[J].东南大学学报,2008,38(1):27-31.
    [56]张纯.机械合金化制备Ti基非晶合金粉末[D].河北,燕山大学,2010:5-85.
    [57]Johnson WL, Crystal-to-glass Transformation in Metallic Materials [J]. Materials Science and Engineering,1988,97:1-13.
    [58]Gu YW. Goh CW, Goi LS, et al. Solid state synthesis of nanocrystalline and/or amorphous 50Ni-50Ti alloy[J]. Materials Science and Engineering A,2005, 392(1-2):222-228.
    [59]Takasaki A. Mechanical alloying of the Ti-Ni system [J]. Physica Status Solidi (a),1998,169(2):183-191.
    [60]徐智谋,易新建,郑家燊,熊维皓,胡茂中.纳米TiC增强Ti(C、N)基金属陶瓷材料的组织与性能研究[J].功能材料,2003,34(6):696-698.
    [61]闫洪,窦明民,李和平.二氧化锆陶瓷的相变增韧机理和应用[J].陶瓷学报,2000,21(1):46-50.
    [62]李金涛.氧化锆增韧氧化铝陶瓷材料的研究进展[J].科教文化,2008,(3):197.
    [63]刘志刚.Al2O3/ZrO2陶瓷复合材料的制备和强韧化机理研究[D].青岛,中国海洋大学,2009:1-66.
    [64]刘鹏飞,俞学中,陶伟明.纤维增强复合材料桥联增韧模型[J].浙江大学学报,2006,40(5):903-909.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700