稀土掺杂ZTA复合陶瓷的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锆增韧氧化铝陶瓷(ZTA)由于具有高强度、高硬度、耐腐蚀、价格低廉等优点,在高温、机械、电子领域得道了广泛应用。随着研究的发展,这种单一相强化、韧化氧化铝陶瓷的综合性能还是不能满足航空航天、交通运输等高端工程技术领域的需求。然而利用多元协同强化ZTA复相陶瓷以及多种增韧机制的耦合协同将成为提高ZTA陶瓷断裂韧性和抗弯强度的重要研究和发展方向。
     本文通过调整体系组成和改变陶瓷烧结工艺,改善ZTA陶瓷的粉体性能、烧结性和显微结构,提高材料的综合力学性能。以ZrOCl2·8H2O, Al(NO3)3·9H2O, Y(NO3)3·6H2O, La(NO3)3·6H2O, Ce(NO3)3·6H2O和NH4HCO3为主要原料,采用共沉淀法分别制备了La2O3和CeO2掺杂的ZTA复合粉体,通过TG-DTA、XRD、SEM等手段对粉体的热行为、成分与结构进行表征;并分析了不同的前期处理工艺、煅烧温度以及稀土氧化物种类、含量对复合粉体性能的影响。分别采用传统烧结和微波烧结两种方法制备了稀土掺杂ZTA复合陶瓷,通过研究组成和工艺对复合材料力学性能(维氏硬度、抗弯强度、断裂韧性)以及显微结构的影响,分析了稀上氧化物、烧结工艺对复合材料组织结构与性能的影响,并探讨了其相关机理。
     研究结果表明:采用共沉淀法成功的制备出了粒径为100nm左右,分散性良好的稀土氧化物掺杂ZTA复合粉体。采用水热处理和微波加热方式,对于La2O3和CeO2掺杂ZTA复合前驱粉体,分别在1000℃和1200℃微波煅烧条件下保温5min,得到了主晶相为t-ZrO2和α-Al2O3的复合粉体;La2O3和CeO2的掺杂可以影响ZTA复合粉体的相转变温度,,并改变粉体的物相成分。比较传统烧结与微波烧结两种烧结方式以及不同烧结温度下样品的致密度和力学性能,探索出了最佳的烧结工艺:微波烧结1550℃,保温30min。对于La2O3掺杂的样品,当La2O3含量为1.5mol.%时,样品的相对致密度达到99%,且力学性能最佳,分别为硬度17.2GPa,弯曲强度420MPa,断裂韧性7.1MPa·m1/2,这主要是掺杂La2O3可以使ZTA材料内部原位生成片状LaAl11O18这种片晶既可以阻碍氧化铝、氧化锆颗粒的长大,也可以借助较大的长径比诱发裂纹桥接、晶粒拔出等增韧机制来改善材料的力学性能。对于CeO2掺杂的样品,当CeO2含量为0.5mol%时,样品的相对密度达到93%,且综合力学性能最佳,分别为硬度16.27GPa,弯曲强度450MPa,这主要是由于CeO2的添加可以起到烧结助剂与稳定剂的作用,促进了ZTA复合陶瓷的致密化、提高了四方相氧化锆的稳定性。
Zirconia-toughened alumina (ZTA) ceramics have received widely used in the fields including high temperature service, machine and electronics due to their excellent strength, high hardness, good corrosion resistance and low price. But, the improvement of alumina ceramic by the single phase strengthening and toughening is not enough, and greatly limited its applications as advanced engineering materials in aerospace vehicles, architecture and so on. However, multi-component synergistic strengthening ZTA and coupling effects of multiple toughening mechanisms will be the emphases of research and development direction of improving and enhancing the various performances of ZTA ceramics.
     In this study, measures were adopted to improve the sinter ability and microstructure and enhance the various properties of ZTA ceramics, which included adjusting the system constituent and sintering process. The compounds ZrOCl2·8H2O, A1(NO3)3·9H2O, Y(NO3)3·6H2O, La(NO3)3·6H2O and NH4HCO3were used as initial reactants, and co-precipitation method was used to prepare ZTA composite powders with La2O3or CeO2-addition. Samples were detected for phase analysis by XRD and the micros true ture was examined using SEM. In addition, the combined TG-DTA technique was carried out to detect the thermo-dynamic behavior of ZTA composite powders. The effects of different pretreatment processes, calcining temperature and different kinds of rare earth oxide with various amounts were studied. Rare earth doping ZTA composites were prepared by two different methods of microwave sintering and conventional sintering. Their mechanical properties (Vickers hardness, bending strength, fracture toughness) and microstructure were carefully studied. The effects of preparation process and rare earth oxide on the ZTA composite performance were investigated, and the related mechanism were analyzed and discussed.
     The results were shown as follow. It is an efficient way to prepare ultrafine and well-dispersed La2O3/CeO2doped ZTA composite powders (about100nm) with purely tetragonal zirconia and alpha alumina-by co-precipitation method, using hydro thermal crystallization (180℃,5h), and microwave calcination (1000℃,5min) for La2O3doped composite powders and microwave calcination (1200℃,5min) for CeO2doped composite powders. The XRD diffraction and TG-DTA characterizetion for the samples showed that the phase transition temperature for alumina was retarded in La2O3or CeO2doped samples. The effects of two different methods of microwave sintering and conventional sintering and different sintering temperatures on the ZTA composite relative density were investigated. The samples prepared by microwave sintering can be sintered to full density and the optimized sintering process was1550℃for30min. For insight into the influence of La2O3or CeO2, various properties for a series of samples with different rare earth oxide contents were studied. For samples with La2O3inclusion, the optimal mechanical properties are achieved by doping of1.5mol.%La2O3, with relative density, Vickers hardness, bending strength and fracture toughness being99%,17.2GPa,420MPa and7.1MPa-m1/2, respectively. That can be explained that LaAl11O18plate-like crystals are formed in situ in the ZTA matrix when a certain amount of La2O3is added, and improved fracture toughness is attributed to the crack deflection and crack bridging by plate-like grains. For the CeO2added composites, the enhanced sintering of the samples obtained by a small amount of sintering additives (2.5mol.%CeO2) is beneficial to improve density of the composites. The optimal mechanical properties are achieved by doping of0.5mol.%CeO2, with relative density, Vickers hardness and bending strength being93%,16.27GPa and450MPa respectively. The main reason for improvement is that a small amount of CeO2is used as the sintering aid and stabilizer.
引文
[1]苗赫濯,林旭平,齐龙浩.先进结构陶瓷材料研究进展[J].稀有金属材料与工程,2008,37(1):14-19.
    [2]宋玉泉,贾红杰,徐进等.结构陶瓷及其超塑性[J].金属学报,2009,45(1):1-5.
    [3]Becher P F. Microstructural design of toughening ceramics[J]. Journal of the American Ceramic Society,1991,74:255-269.
    [4]黄勇,汪长安,咎青峰等.高韧性复相陶瓷材料的仿生结构设计、制备与力学性能[J].成都大学学报,2002,21(3):1-7.
    [5]Wada M, Sekino T, Kusunose T, et al. Effects of fine alumina dispersion on ionic conductivity and mechanical properties of ytterbia stabilized cubic zirconia[J]. Materials Research Innovations,2004,8:115-120.
    [6]梁晓峰,杨世源,尹光福.氧化锆增韧氧化铝陶瓷复合粉体的研究进展[J].山东陶瓷,2004,27(1):13-16.
    [7]谢田甜.纳米γ-Al2O3粉体的低成本制各及热处理工艺研究[D].[硕士学位论文].浙江大学,2006.
    [8]曹怡Al2O3-ZrO2复合粉的制备研究[D].[硕士学位论文].西安建筑科技大学,2006.
    [9]马荣骏.湿法制备纳米级氧化铝粉[J].湿法冶金,1999,2:47-49.
    [10]Bodaghi M, Mirhabibi M A R, Zolfonoon Z H, et al. Preparation and characterisation of alpha-Al(2)O(3) powder from gamma-Al(2)O(3) powder using mechanical milling technique[J]. Materials Research Innovations,2008,12:157-161.
    [11]宋文植.牙科氧化锆纳米复合陶瓷的制备及性能研究[D].[博士学位论文].吉林大学,2004.
    [12]Gupta T K, Lange F F, Bechtold J H. Effect of stress-induced phase transformation on the properties of polycrystalline zirconia containing metastable tetragonal phase [J]. Journal of Materials Science,1978,13(7):1464-1470.
    [13]黄勇,路学成,余军.氧化铝陶瓷增韧研究进展[J].江苏陶瓷,2007,40(2):11-15.
    [14]Panova T I, Arsent'ev M Y, Morozova L V,et al. Synthesis and investigation of the structure of ceramic nanopowders in the ZrO2-CeO2-Al2O3 system[J]. Glass Physics and Chemistry,2010, 36(4):470-477.
    [15]吴建华t-ZrO2/α-Al2O3陶瓷纳米复合粉体制备研究[D].[硕士学位论文].湘潭大学,2005.
    [16]武志红, 薛群虎,曹怡等ZrO2/Al2O3复相陶瓷的复合机理、制备、应用及展望[J].材料科学与工艺,2009,17(1):137-140.
    [17]Kinemuchi Y, Mouri H, Suzuki T, et al. Increase in Phase Transition Temperature of Activated Alumina with Nano-Zirconia Synthesized by Pulsed Wire Discharge[J]. Journal of the American Ceramic Society,2003,86(9):1522-1526.
    [18]周振君,杨正方,袁启明等.高可靠性结构陶瓷的增韧研究进展[J].硅酸盐通报,2003,3:57-61.
    [19]赵宏,金宗哲.颗粒增强复相陶瓷残余应力和增韧机制分析[J].硅酸盐学报,1996,24(5):491-497.
    [20]刘小强.复相陶瓷的结构与性能[D].[硕十学位论文].浙江大学,2003.
    [21]何新波,杨辉,张长瑞.连续纤维增强陶瓷基复合材料概述[J].材料科学工程,2002,6:272-278.
    [22]吕君,郑治祥,金志浩.晶须及颗粒增韧氧化铝基陶复合材料的抗热震性能[J].材料工程,2000,12:15-18.
    [23]Evans A G Perspective on the Development of High-Toughness Ceramics[J]. Journal of the American Ceramic Society,1990,73(2):187-206.
    [24]高濂,李蔚著.纳米陶瓷:第一版[M].北京:化学工业出版社,2001:116-128.
    [25]刘欣.氧化铝基复相陶瓷的制备工艺及性能研究[D].[硕士学位论文].太原理工大学,2007.
    [26]Lange L F F. Transformation toughening[J]. Journal of Materials Science,1982,17:225-234.
    [27]Hannink R H J, Kelly P M, Muddle B C. Transformation toughening in zirconia-containing ceramics[J]. Journal of the American Ceramic Society,2005,83:461-487.
    [28]WU YQ, ZHANG YF, HUANG X X, et al. Preparation, sintering and fracture behavior of Al2O3/LaAl11O18 ceramic composites[J]. Journal of Materials Science,2001,36:4195-4199.
    [29]Shevchenko A V, Dudnik E V, Ruban A K. Sintering of self-reinforced ceramics in the ZrO2-Y2O3-CeO2-Al2O3 system[J]. Powder Metallurgy and Metal Ceramics,2010,49:42-49.
    [30]Mokhnachuk O V, Soloviev S O, Kapran AY Effect of rare-earth element oxides (La2O3, Ce2O3) on the structural and physico-chemical characteristics of Pd/Al2O3 monolithic catalysts of nitrogen oxide reduction by methane[J]. Catalysis Today,2007,119(1-4):145-151.
    [31]Li C W, Lee D J, Lui S C. R-curve behavior and strength for in-situ reinforced silicon nitrides with different microstructures[J]. Journal of the American Ceramic Society,1992, 75(7):1777-1785.
    [32]李建保,翟华嶂,黎义等.陶瓷材料的显微结构设计与自补强韧化组元的生成机理[J].材料导报,2001,15(4):16-19.
    [33]黄勇,李翠伟,汪长安等.陶瓷强韧化新纪元——仿生结构设计[J].材料导报,2000,14(8):8-10.
    [34]Garvie R C, Hannink R H, Pascoe R T. Ceramic steel?[J]. nature,1975,258:703-704.
    [35]Wu Z, Shen Y, Dong Y, et al. Study on the morphology of a-Al2O3 precursor prepared by precipitation method[J]. Journal of Alloys and Compounds,2009,467(1-2):600-604.
    [36]董岩,蒋建清,于金等.小粒径a-Al2O3粉体的表征及其晶体生长机制[J].硅酸盐学报,2005,33(11):1344-1347.
    [37]于庆华,王介强,郑少华等.液相沉淀法制备ZTA纳米复相陶瓷[J].复合材料学报,2006,23(3):108-113.
    [38]Taavoni G A, Taheri N E, Naghizadeh R, et al. Properties of sol-gel derived Al2O3-15wt.% ZrO2 (3mol% Y2O3) nanopowders using two different precursors[J]. Ceramics International, 2010,36(3):1147-1153.
    [39]Cai W, Yu J, Gu S, et al. Facile Hydrothermal Synthesis of Hierarchical Boehmite: Sulfate-Mediated Transformation from Nanoflakes to Hollow Microspheres[J]. Crystal Growth & Design,2010,10(9):3977-3982.
    [40]李报厚,张登君,张冠东等.水热法制备Y203-Ce02-Zr02超细陶瓷粉末[J].化工冶金,1997,18(2):97-101.
    [41]Echeberria J, Ollo J, Bocanegra-Bernal M H, et al. Sinter and hot isostatic pressing (HIP) of multi-wall carbon nanotubes (MWCNTs) reinforced ZTA nanocomposite:Microstructure and fracture toughness[J]. International Journal of Refractory Metals and Hard Materials,2010, 28(3):399-406.
    [42]葛曷一,周遥,刘建叶等.微晶粒Al2O3-ZrO2复相陶瓷的制备与性能[J].济南大学学报,2010,24(3):238-242.
    [43]金志浩,高积强,王永兰等.二氧化锆增韧三氧化二铝陶瓷的显微结构与性能的研究[J].西安交通大学学报,1989,23(4):47-52.
    [44]刘彤,谢志鹏,陆继伟等.长柱状晶高韧性氧化铝陶瓷的制备与性能研究[J].材料工程,2001,8:14-17.
    [45]Wu YQ, YuFZ, Shi WW, et al. In-situ synthesis of rodlike LaAl11O18 in Al2O3 powder by a coprecipitation method[J]. Journal of the European Ceramic Society,2001,21:919-923.
    [46]West G D, Perkins J M, Lewis M H. The effect of rare earth dopants on grain boundary cohesion in alum ina[J]. Journal of the European Ceramic Society,2007,27(4):1913-1918.
    [47]Yue B, Zhou R, Wang Y, et al. Effect of rare earths (La, Pr, Nd, Sm and Y) on the methane combustion over Pd/Ce-Zr/Al2O3catalysts[J]. Applied Catalysis A:General,2005,295(1)31-39.
    [48]Shi X L, Xu F M, Zhang Z J, et al. Mechanical properties of hot-pressed Al2O/SiO composites[J]. Materials Science and Engineering A,2010,527(18-19):4646-4649.
    [49]Kim S W, Cockcroft S L, Khalil K A, et al. Sintering behavior of ultra-fine Al2O3-(ZrO2+Xmol% Y2O3) ceramics by high-frequency induction heating[J]. Materials Science and Engineering A,2010,527(18-19):4926-4931.
    [50]Jens S, Martina L, Horst H, et al. Microstructure Evolution During Spark Plasma Sintering of Metastable (ZrO2-3mol% Y2O3)-20 wt% Al2O3 Composite Powders[J]. Journal of the American Ceramic Society,2010,93(9):2864-2870.
    [51]张锐,符水龙,卢红霞等.影响ZTA陶瓷微波烧结的主要工艺过程[J].无机材料学报,2001,16(1):178-182.
    [52]谢志鹏,李建保,张锐等Ce-Y-ZTA复相陶瓷的微波烧结[J].复合材料学报,1998,15(2):48-52.
    [53]艾云龙,何文,刘长虹等.微波烧结ZrO2(n)/Al2O3复合陶瓷工业与组织[J].金属热处理,2010,35(2):24-28.
    [54]Brosnan K H, Messing G L, Agrawal D K. Microwave sintering of alumina at 2.45 GHz[J]. Journal of the American Ceramic Society,2003,86(8):1307-1312.
    [55]杨为佑,谢志鹏,苗赫谬.异向生长晶粒增韧氧化铝陶瓷的研究进展[J].无机材料学报,2003,18(5):961-972.
    [56]黄铭.微波与颗粒物质相互作用的机理及应用研究[D].[博士学位论文].昆明理工大学,2006.
    [57]林伟,白新德,马文军等.微波在陶瓷加工中的应用与进展[J].清华大学学报,2002,42(5):696-700.
    [58]李建保,谢志鹏,黄勇.微波在无机材料热处理中的应用[J].应勇基础与工程科学学报,1996,4(1):45-57.
    [59]Anindita C, Tanmay B, Ayappa K G. Analysis of Microwave Sintering of Ceramics[J]. AIChE Journal,1998,44(10)2302-2311.
    [60]林枞,许业文,徐政.陶瓷微波烧结技术研究进展[J].硅酸盐通报,2006,25(3):132-135.
    [61]Nllhara K, Morena R, Hasselman D P H. Evaluation of KIC of brittle solids by the indentation method with low crack-to-indent ratios[J]. Journal of Materials Science Letters,1982,1:13-16.
    [62]娄彦良,李春花,李元科.溶胶共沉淀过程pH值的确定[J].功能材料,2001,32(3):317-318.
    [63]尚学军,李索平,贾晓林等.水热法合成α-Al2O3粉体的工艺因素研究[J].耐火材料,2008,42(6):437-439.
    [64]秦大可,陈洪龄.水热合成工艺参数对制备ZrO2的影响[J].机械工程材料,2008,32(6):53-69.
    [65]王艳.强碱液在水热反应釜中压强与填充度关系的热力学分析[D].[硕士学位论文].南京工业大学,2006.
    [66]Jang B K, Kishi T. Fabrication and microstructure of Al2O3 Matrix composites by in-situ reaction in the Al2O3-La2O3 system[J]. Journal of the American Ceramic Society,1980, 63:416-419.
    [67]Schaper H, Amesz D J, Doesburg E. The influence of high partial steam pressures on the sintering of lanthanum oxide doped gamma alumina[J]. Applied Catalysis A:General,1984, 9:129-132.
    [68]陈沙鸥.稀土掺杂对氧化铝相变及力学性能的影响[D].[硕士学位论文].青岛大学,2009.
    [69]Meriani S. Features of the Caeria Zirconia System[J]. Materials Science and Engineering A, 1988,109:121-130.
    [70]Janney M A, Kimrey H D, Allen W R, et al. Enhanced diffusion in sapphire during microwave heating[J]. Journal of Materials Science,1997,32:1347-1355.
    [71]ROPP R C, CARROLL B. Solid-state Kinetics of LaAl11O18[J]. Journal of the American Ceramic Society,1980,63:416-419.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700