水体内源污染及环保疏浚措施研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research of internal pollution and environmental dredging
  • 作者:周铭浩 ; 邱静 ; 洪昌红 ; 杜欢欢
  • 英文作者:ZHOU Minghao;QIU Jing;HONG Changhong;DU Huanhuan;Guangdong Research Institute of Water Resources and Hydropower;Guangdong Key Laboratory of Hydrodynamic Research;National and Local Joint Engineering Laboratory of Estuarine water technology;
  • 关键词:内源污染 ; 环保疏浚 ; 疏浚条件
  • 英文关键词:Internal pollution;;Environment pollution;;Dredging depth
  • 中文刊名:江西水利科技
  • 英文刊名:Jiangxi Hydraulic Science & Technology
  • 机构:广东省水利水电科学研究院;广东省水动力学应用研究重点实验室;河口水利技术国家地方联合工程实验室;
  • 出版日期:2019-08-15
  • 出版单位:江西水利科技
  • 年:2019
  • 期:04
  • 基金:广东省水利科技创新项目(编号:2017-21)
  • 语种:中文;
  • 页:60-64+82
  • 页数:6
  • CN:36-1112/TV
  • ISSN:1004-4701
  • 分类号:X524
摘要
简述水体内源污染的形成机制、影响因素和研究技术.环保疏浚是应用广泛的水体内源污染控制措施.概述环保疏浚的作用、相关技术和评估手段.环保疏浚可对水体指标及水生动植物产生负面作用.选择合适的疏浚厚度、频率和季节可提高环保疏浚效果.综合考虑水体环境并改进水动力学模型、泥沙输移模型和污染物质量平衡模型可揭示底泥污染的释放机制,以制定有效的疏浚策略.
        The formation mechanism, influencing factors and research techniques of internal pollution has been described. Environmental dredging has become the most widely used measure to control the internal pollution of water body. The function,related technology and evaluation methods of environmental dredging has been summarized. It has been reported that environmental dredging has negative effect on the watery condition improvement and watery living organisms. Results showed that choosing appropriate dredging depths, frequency and seasons can largely improve environmental dredging effects. To aid in analyzing watery environments and improving hydrodynamic,mass balance,sediment particle transport and dispersion models, it is available to further reveal the transformation and migration mechanism of sediment pollution and establish effective environmental dredging strategy.
引文
[1]Luoma S N. Bioavailability of trace metals to aquatic organisms-a review[J]. Science of the total environment,1983,28(1-3):1~22.
    [2]Eggleton J,Thomas K V. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events[J]. Environment international,2004,30(7):973~980.
    [3]SITE,HUDSON RIVER PCBs SUPERFUND. First FiveYear Review Report for[J]. 2005.
    [4]张丹,张勇,何岩,等.河道底泥环保疏浚研究进展[J].淨水技術,2011,30(1):1~3.
    [5]Pang Y,Zhu W,Tang H W,et al. Water Quality Improvement and Ecological Restoration in Waterfront Bodies[J]. Beijing,Sci. Press 2008.
    [6]Zhuang Y,Allen H E,Fu G. Effect of aeration of sediment on cadmium binding[J]. Environmental Toxicology and Chemistry,2010,13(5):717~724.
    [7]Yu J,Ding S,Zhong J,et al. Evaluation of simulated dredging to control internal phosphorus release from sediments:Focused on phosphorus transfer and resupply across the sediment-water interface[J]. Science of the Total Environment,2017,592:662~673.
    [8]Chen M,Ding S,Zhang L,et al. An investigation of the effects of elevated phosphorus in water on the release of heavy metals in sediments at a high resolution[J]. Science of the Total Environment,2017,575:330~337.
    [9]Wang Y,Ding S,Gong M,et al. Diffusion characteristics of agarose hydrogel used in diffusive gradients in thin films for measurements of cations and anions[J]. Analytica chimica acta,2016,945:47~56.
    [10]Qin B,Hu W,Gao G,et al. Dynamics of sediment resuspension and the conceptual schema of nutrient release in the large shallow Lake Taihu,China[J]. Chinese Science Bulletin,2004,49(1):54~64.
    [11]Desprez M. Physical and biological impact of marine aggregate extraction along the French coast of the Eastern English Channel:short-and long-term post-dredging restoration[J].ICES Journal of Marine Science,2000,57(5):1428~1438.
    [12]Cornwell J C,Owens M S. Quantifying sediment nitrogen releases associated with estuarine dredging[J]. Aquatic geochemistry,2011,17(4-5):499.
    [13]Yu J,Fan C,Zhong J,et al. Effects of sediment dredging on nitrogen cycling in Lake Taihu,China:insight from mass balance based on a 2-year field study[J]. Environmental Science and Pollution Research,2016,23(4):3871~3883.
    [14]National Research Council. Sediment dredging at Superfund megasites:Assessing the effectiveness[M]. National Academies Press,2007.
    [15]Cutroneo L,Castellano M,Pieracci A,et al. The use of a combined monitoring system for following a turbid plume generated by dredging activities in a port[J]. Journal of soils and sediments,2012,12(5):797~809.
    [16]Wasserman J C,Wasserman M A V,Barrocas P R G,et al.Predicting pollutant concentrations in the water column during dredging operations:Implications for sediment quality criteria[J]. Marine pollution bulletin,2016,108(1-2):24~32.
    [17]Eggleton J,Thomas K V. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events[J]. Environment international,2004,30(7):973~980.
    [18]Chen M,Cui J,Lin J,et al. Successful control of internal phosphorus loading after sediment dredging for 6 years:a field assessment using high-resolution sampling techniques[J]. Science of the total environment,2018,616:927~936.
    [19]Connolly J P,Quadrini J D,McShea L J. Overview of the2005 Grasse River remedial options pilot study[J].Proceedings,Remediation of Contaminated Sediments-2007.Savannah,GA. Columbus(OH):Battelle,2007.
    [20]Lepori F,Roberts J J. Effects of internal phosphorus loadings and food-web structure on the recovery of a deep lake from eutrophication[J]. Journal of Great Lakes Research,2017,43(2):255~264.
    [21]Zahir F,Rizwi S J,Haq S K,et al. Low dose mercury toxicity and human health[J]. Environmental toxicology and pharmacology,2005,20(2):351~360.
    [22]Cooke G D,Welch E B,Peterson S,et al. Restoration and management of lakes and reservoirs[M]. CRC press,2016.
    [23]Cooper K M,Curtis M,Hussin W M R W,et al. Implications of dredging induced changes in sediment partile size composition for the structure and function of marine benthic macrofaunal communities[J]. Marine pollution bulletin,2011,62(10):2087~2094.
    [24]Roberts D A. Causes and ecological effects of resuspended contaminated sediments(RCS)in marine environments[J].Environment international,2012,40:230~243.
    [25]杨浩.内源污染治理技术研究进展[J].节能,2018,37(10):112~113.
    [26]Liu C,Shen Q,Zhou Q,et al. Precontrol of algae-induced black blooms through sediment dredging at appropriate depth in a typical eutrophic shallow lake[J]. Ecological Engineering,2015,77:139~145.
    [27]沈乐.苏州重污染河道底泥疏浚程度对水环境的影响[D].河海大学,2007.
    [28]丁涛,田英杰,刘进宝,等.杭州市河道底泥重金属污染评价与环保疏浚深度研究[J].环境科学学报,2015(3):911~917.
    [29]Hu X,Wu S,Zhu M,et al. Study on the changes of nitrogen and phosphorus release with time from sediment in Taihu Lake after ecological dredging[J]. IOP Conference Series:Earth and Environmental Science,2017,69:012058.
    [30]Liu C,Zhong J,Wang J,et al. Fifteen-year study of environmental dredging effect on variation of nitrogen and phosphorus exchange across the sediment-water interface of an urban lake[J]. Environmental pollution,2016,219:639~648.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700