南大洋扇区夏季表层海水叶绿素a分布特征及其原因分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Circumpolar Spatial Distribution and Causes of Chlorophyll a in Surface Seawater of the Southern Ocean in Summer
  • 作者:廖静思 ; 陆志波 ; 王娟 ; 李慧蓉 ; 张洁 ; 王硕仁
  • 英文作者:LIAO Jing-si;LU Zhi-bo;WANG Juan;LI Hui-rong;ZHANG Jie;WANG Shuo-ren;Tongji University, College of Environmental Science & Engineering;UN Environment-Tongji Institute of Environment for Sustatinable Development;State Key Laboratory of Pollution Control & Resource Reuse Research;Polar Research Institute of China;
  • 关键词:南大洋 ; 叶绿素a ; 浮游植物爆发 ; 全球变暖
  • 英文关键词:Southern ocean;;chlorophyll a;;phytoplankton bloom;;global warming
  • 中文刊名:四川环境
  • 英文刊名:Sichuan Environment
  • 机构:同济大学环境科学与工程学院;联合国环境署-同济大学环境与可持续发展学院;同济大学污染控制与资源化国家重点实验室;中国极地研究中心;
  • 出版日期:2019-02-26
  • 出版单位:四川环境
  • 年:2019
  • 期:01
  • 语种:中文;
  • 页:111-121
  • 页数:11
  • CN:51-1154/X
  • ISSN:1001-3644
  • 分类号:X145
摘要
研究利用第30次(2013~2014年)南极科学考察所获得的南大洋表层海水叶绿素a、温度以及盐度数据进行分析。结果显示,某些特殊海域如大陆架、岛屿附近海域,或当某一海域存在一些特殊的变化,如海冰融化,海洋锋,底部上升流时,会为浮游植物的生长提供有利条件,进而能够引发浮游植物叶绿素爆发。而在南大洋的5大海域中,罗斯海的叶绿素水平最高,其平均浓度能够达到1.735 mg/m~3。通过一些数据分析我们也发现在南半球夏季,对于浮游植物生长来说,温度水平和光照水平都是很充足的,而限制因素主要是营养物质的缺乏。而高纬度海区浮游植物生长速率对全球气候变暖非常敏感,因此对于浮游植物叶绿素爆发的原因探究也对全球碳循环以及气候变化起着重要作用,同时为后续研究提供数据资源。
        In this study, chlorophyll a, temperature and salinity data of surface seawater in the southern ocean obtained from the 30 th(2013~2014) Antarctic scientific expedition were used for analysis. The results showed that some special sea areas, such as the sea area near the continental shelf and islands, or when there are some special changes in some sea areas, such as sea ice melting, ocean front, bottom upwelling, will provide favorable conditions for the growth of phytoplankton, and then can trigger the phytoplankton chlorophyll explosion. In the five great seas of the southern ocean, the Ross Sea has the highest chlorophyll level, and its average concentration can reach 1.735 mg m~(-3). Through data analysis, it is found that the temperature level and light level are sufficient for phytoplankton growth in the Southern Hemisphere in summer and the limiting factors are nutrient deficiency. The growth rate of phytoplankton in high latitudes is very sensitive to global warming. Therefore, the exploration of phytoplankton chlorophyll outbreaks plays an important role in the global carbon cycle and climate change, also provides data resources for subsequent research.
引文
[1] Chassot E, et al. Global marine primary production constrains fisheries catches[J]. Ecology letters,2010,13:495-505.
    [2] Friedland K D, et al. Pathways between primary production and fisheries yields of large marine ecosystems[J]. PLoS One,2012,7:28945.
    [3] Rigual]Hernández A, Trull T, Bray S, Cortina A. & Armand, L. Latitudinal and temporal distributions of diatom populations in the pelagic waters of the Subantarctic and Polar Frontal zones of the Southern Ocean and their role in the biological pump[J]. Biogeosciences,2015,12:5309-5337.
    [4] Arrigo K R, van Dijken G & Long M. Coastal Southern Ocean: A strong anthropogenic CO2 sink[J]. Geophysical Research Letters 35 (2008).
    [5] Gille S T. Warming of the Southern Ocean since the 1950s[J]. Science,2002,295:1275-1277.
    [6] Passow U. & Carlson C A. The biological pump in a high CO2 world[J]. Mar. Ecol. Prog. Ser,2012,470:249-271.
    [7] Turner J T. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump[J]. Progress in Oceanography,2015,130:205-248.
    [8] Sigman D M, Hain M P. & Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 concentration[J]. Nature,2010,466:47-55.
    [9] Tripathy, S. et al. Deep chlorophyll maximum and primary productivity in Indian Ocean sector of the Southern Ocean: Case study in the Subtropical and Polar Front during austral summer 2011[J]. Deep Sea Research Part II: Topical Studies in Oceanography,2015,118:240-249.
    [10] Gregg, W. W., Conkright, M. E., Ginoux, P., O'Reilly, J. E. & Casey, N. W. Ocean primary production and climate: Global decadal changes[J]. Geophysical Research Letters 30 (2003).
    [11] Arrigo, K. R., van Dijken, G. L. & Bushinsky, S. Primary production in the Southern Ocean, 1997-2006[J]. Journal of Geophysical Research: Oceans (1978-2012) 113 (2008).
    [12] Moore, J. K. & Abbott, M. R. Phytoplankton chlorophyll distributions and primary production in the Southern Ocean[J]. Journal of Geophysical Research: Oceans (1978-2012) 105, 28709-28722 (2000).
    [13] Marrari, M., Hu, C. & Daly, K. Validation of SeaWiFS chlorophyll a concentrations in the Southern Ocean: A revisit[J]. Remote Sensing of Environment,2006,105:367-375.
    [14] Arrigo, K. R., Worthen, D., Schnell, A. & Lizotte, M. P. Primary production in Southern Ocean waters[J]. Journal of Geophysical Research: Oceans (1978-2012) 103, 15587-15600 (1998).
    [15] Brzezinski, M. A., Nelson, D. M., Franck, V. M. & Sigmon, D. E. Silicon dynamics within an intense open ocean diatom bloom in the Pacific sector of the Southern Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography,2001,48:3997-4018.
    [16] Fitzwater, S., Johnson, K., Gordon, R., Coale, K. & Smith, W. Trace metal concentrations in the Ross Sea and their relationship with nutrients and phytoplankton growth[J]. Deep Sea Research Part II: Topical Studies in Oceanography,2000,47:3159-3179.
    [17] Atkinson, A. et al. Oceanic circumpolar habitats of Antarctic krill[J]. Marine Ecology Progress Series,2008,362:1-23.
    [18] Thomalla, S., Fauchereau, N., Swart, S. & Monteiro, P. Regional scale characteristics of the seasonal cycle of chlorophyll in the Southern Ocean[J]. Biogeosciences,2011,8:2849-2866.
    [19] Smith, W. O., Marra, J., Hiscock, M. R. & Barber, R. T. The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea, Antarctica[J]. Deep Sea Research Part II: Topical Studies in Oceanography,2000,47:3119-3140.
    [20] Philibert, R., Waldron, H. & Clark, D. A geographical and seasonal comparison of nitrogen uptake by phytoplankton in the Southern Ocean[J]. Ocean Science Discussions,2014,11:1829-1869.
    [21] Minas, H. & Minas, M. Net community production in high nutrient]low chlorophyll waters of the tropical and Antarctic Oceans]grazing vs iron hypothesis[J]. Oceanologica Acta,1992,15:145-162.
    [22] Banse, K. Low seasonality of low concentrations of surface chlorophyll in the Subantarctic water ring: underwater irradiance, iron, or grazing[J].Progress in Oceanography,1996,37:241-291.
    [23] Holm Hansen, O. & Huntley, M. Feeding requirements of krill in relation to food sources[J]. Journal of Crustacean Biology,1984,4:156-173.
    [24] Wadley, M. R., Jickells, T. D. & Heywood, K. J. The role of iron sources and transport for Southern Ocean productivity[J]. Deep Sea Research Part I: Oceanographic Research Papers,2014,87:82-94.
    [25] Boyd, P. W. ENVIRONMENTAL FACTORS CONTROLLING PHYTOPLANKTON PROCESSES IN THE SOUTHERN OCEAN1[J]. Journal of Phycology,2002,38:844-861.
    [26] Martin, J. H. Glacial interglacial CO2 change[J]. Paleoceanography,1990,5:1-13.
    [27] Cooper, D., Watson, A. & Nightingale, P. Large decrease in ocean-surface CO2 fugacity in response to in situ iron fertilization[J]. (1996).
    [28] Boyd, P. W. et al. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization[J]. Nature,2000,407:695-702.
    [29] BoydPW, J. mesoscaleironenrich- mentexperiments1993- 2005: synthesisandfuturedirections[J]. Science,2007,315:612.
    [30] Assmy, P. et al. Thick]shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current[J]. Proceedings of the National Academy of Sciences,2013,110:20633-20638.
    [31] Tripathy, S. et al. Deep chlorophyll maximum and primary productivity in Indian Ocean sector of the Southern Ocean: Case study in the Subtropical and Polar Front during austral summer 2011[J]. Deep Sea Research Part II: Topical Studies in Oceanography (2015).
    [32] Park, J., Oh, I.S., Kim, H.C. & Yoo, S. Variability of SeaWiFs chlorophyll]a in the southwest Atlantic sector of the Southern Ocean: strong topographic effects and weak seasonality. Deep Sea Research Part I[J]: Oceanographic Research Papers,2010,57:604-620.
    [33] Hense, I., Bathmann, U. V. & Timmermann, R. Plankton dynamics in frontal systems of the Southern Ocean[J]. Journal of Marine Systems,2000,27:235-252.
    [34] Geibert, W. et al. High productivity in an ice melting hot spot at the eastern boundary of the Weddell Gyre[J]. Global Biogeochemical Cycles 24 (2010).
    [35] Lin, H., Rauschenberg, S., Hexel, C. R., Shaw, T. J. & Twining, B. S. Free]drifting icebergs as sources of iron to the Weddell Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography,2011,58:1392-1406.
    [36] Arrigo, K. R. & van Dijken, G. L. Phytoplankton dynamics within 37 Antarctic coastal polynya systems[J]. Journal of Geophysical Research: Oceans (1978-2012) 108 (2003).
    [37] Laubscher, R., Perissinotto, R. & McQuaid, C. Phytoplankton production and biomass at frontal zones in the Atlantic sector of the Southern Ocean[J]. Polar biology,1993,13:471-481.
    [38] Holm Hansen, O., Kahru, M. & Hewes, C. D. Deep chlorophyll a maxima (DCMs) in pelagic Antarctic waters. II. Relation to bathymetric features and dissolved iron concentrations[J]. Marine Ecology Progress Series,2005,297:71-81.
    [39] Graham, R. M., De Boer, A. M., van Sebille, E., Kohfeld, K. E. & Schlosser, C. Inferring source regions and supply mechanisms of iron in the Southern Ocean from satellite chlorophyll data[J]. Deep Sea Research Part I: Oceanographic Research Papers,2015,104:9-25.
    [40] Venables, H. & Moore, C. M. Phytoplankton and light limitation in the Southern Ocean: Learning from high‐nutrient, high‐chlorophyll areas[J]. Journal of Geophysical Research: Oceans (1978-2012) 115 (2010).
    [41] Blain, S. et al. Effect of natural iron fertilization on carbon sequestration in the Southern Ocean[J]. Nature,2007,446:1070-1074.
    [42] Alderkamp, A.C. et al. Iron from melting glaciers fuels phytoplankton blooms in the Amundsen Sea (Southern Ocean): Phytoplankton characteristics and productivity[J]. Deep Sea Research Part II: Topical Studies in Oceanography,2012,71:32-48.
    [43] Atkinson, A. et al. South Georgia, Antarctica: a productive, cold water, pelagic ecosystem[J]. Marine Ecology Progress Series,2001,216:279-308.
    [44] Raiswell, R., Benning, L. G., Tranter, M. & Tulaczyk, S. Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt[J]. Geochem. Trans,2008,9:9.
    [45] Raiswell, R. Iceberg-hosted nanoparticulate Fe in the Southern Ocean: mineralogy, origin, dissolution kinetics and source of bioavailable Fe[J]. Deep Sea Research Part II: Topical Studies in Oceanography,2011,58:1364-1375.
    [46] El Sayed, S. Z. History and evolution of primary productivity studies of the Southern Ocean[J]. Polar Biology,2005,28:423-438.
    [47] Smith, R. C., Martinson, D. G., Stammerjohn, S. E., Iannuzzi, R. A. & Ireson, K. Bellingshausen and western Antarctic Peninsula region: Pigment biomass and sea ice spatial/temporal distributions and interannual variabilty[J]. Deep Sea Research Part II: Topical Studies in Oceanography,2008,55:1949-1963.
    [48] De Baar, H. J. et al. Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean[J].Nature(London),1995,373(6513):412-415.
    [49] Bindoff, N. L., Rosenberg, M. A. & Warner, M. J. On the circulation and water masses over the Antarctic continental slope and rise between 80 and 150 E[J]. Deep Sea Research Part II: Topical Studies in Oceanography,2000,47:2299-2326.
    [50] Heywood, K. J., Naveira Garabato, A. C., Stevens, D. P. & Muench, R. D. On the fate of the Antarctic Slope Front and the origin of the Weddell Front[J]. Journal of Geophysical Research: Oceans (1978-2012) 109 (2004).
    [51] Sarmiento, J., Gruber, N., Brzezinski, M. & Dunne, J. High-latitude controls of thermocline nutrients and low latitude biological productivity[J]. Nature,2004,427:56-60.
    [52] Marshall, J. & Speer, K. Closure of the meridional overturning circulation through Southern Ocean upwelling[J]. Nature Geoscience,2012,5:4171-180.
    [53] Barber, R. & Smith, R. L. Coastal upwelling ecosystems[J]. Analysis of marine ecosystems/AR Longhurst (1981).
    [54] Biller, D. V., Coale, T. H., Till, R. C., Smith, G. J. & Bruland, K. W. Coastal iron and nitrate distributions during the spring and summer upwelling season in the central California Current upwelling regime[J]. Continental Shelf Research,2013,66:58-72.
    [55] Letelier, R. M., Abbott, M. R. & Karl, D. M. Chlorophyll natural fluorescence response to upwelling events in the Southern Ocean[J].Geophys res lett,2013,24(4):409-412.
    [56] Arrigo, K. R., Lowry, K. E. & van Dijken, G. L. Annual changes in sea ice and phytoplankton in polynyas of the Amundsen Sea, Antarctica[J]. Deep Sea Research Part II: Topical Studies in Oceanography,2012,71:5-15.
    [57] Gerringa, L. J. et al. Iron from melting glaciers fuels the phytoplankton blooms in Amundsen Sea (Southern Ocean): Iron biogeochemistry[J]. Deep Sea Research Part II: Topical Studies in Oceanography,2012,71:16-31.
    [58] Thuróczy, C.E. et al. Key role of organic complexation of iron in sustaining phytoplankton blooms in the Pine Island and Amundsen Polynyas (Southern Ocean)[J]. Deep Sea Research Part II: Topical Studies in Oceanography,2012,71:49-60.
    [59] Lee, S. H. et al. Spatial distribution of phytoplankton productivity in the Amundsen Sea, Antarctica[J]. Polar biology,2012,35:1721-1733.
    [60] Jacobs, S., Giulivi, C. & Mele, P. Freshening of the Ross Sea during the late 20th century[J]. Science,2002,297,386-389.
    [61] Martinson, D. G., Killworth, P. D. & Gordon, A. L. A convective model for the Weddell Polynya[J]. Journal of Physical Oceanography,1981,11:466-488.
    [62] Fahrbach, E., Hoppema, M., Rohardt, G., Schr?der, M. & Wisotzki, A. Decadal-scale variations of water mass properties in the deep Weddell Sea[J]. Ocean Dynamics,2004,54:77-91.
    [63] Sanudo-Wilhelmy, S., Olsen, K., Scelfo, J., Foster, T. & Flegal, A. Trace metal distributions off the Antarctic Peninsula in the Weddell Sea[J]. Marine Chemistry,2002,77:157-170.
    [64] Foster, T. D. & Carmack, E. C. Temperature and salinity structure in the Weddell Sea[J]. Journal of Physical Oceanography,1976,6:36-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700