2017―2018年西江干流水体高锰酸盐指数的变化特征及环境质量评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic patterns of the permanganate index from 2017 to 2018 in surface waters of the mainstream of the Xijiang River and water environment evaluations
  • 作者:刘乾 ; 赖子尼 ; 李跃飞 ; 高原 ; 杜浩
  • 英文作者:LIU Qianfu;LAI Zini;LI Yuefei;GAO Yuan;DU Hao;Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences;Key Laborary of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences;
  • 关键词:西江干流 ; COD_(Mn) ; 污染状况 ; 水质评价
  • 英文关键词:mainstream of the Xijiang River;;COD_(Mn);;pollution conditions;;water quality evaluation
  • 中文刊名:中国水产科学
  • 英文刊名:Journal of Fishery Sciences of China
  • 机构:中国水产科学研究院珠江水产研究所;农业农村部淡水生物多样性保护重点实验室中国水产科学研究院长江水产研究所;
  • 出版日期:2019-11-15
  • 出版单位:中国水产科学
  • 年:2019
  • 期:06
  • 基金:农业农村部淡水生物多样性保护重点实验室开放课题(LFBC0909);; 中国水产科学研究院基本科研业务费项目(2017HY-ZC0704);; 珠江重要渔业水域常规监测(9020190036)
  • 语种:中文;
  • 页:169-179
  • 页数:11
  • CN:11-3446/S
  • ISSN:1005-8737
  • 分类号:S931;X824
摘要
为了解西江干流水体高锰酸盐指数(COD_(Mn))的时空特征及影响因素,分别于2017年9月、12月和2018年3月、6月对西江红水河大湾至肇庆江段进行了季节调查,并对其水环境质量进行了初步分析与评价。结果表明:该水域COD_(Mn)质量浓度变化范围为0.73~4.83 mg/L,均值为2.67 mg/L;季节均值呈6月(3.08 mg/L)>12月(3.03 mg/L)>9月(2.94 mg/L)>3月(1.62 mg/L)的变化特征;依据COD_(Mn)水平, 13个样点可聚为3个类群, COD_(Mn)数值上呈聚群Ⅲ>聚群Ⅰ>聚群Ⅱ情况;水体COD_(Mn)污染指数(Pi)范围在0.18~1.21之间,处于"无污染–轻污染"状况,不同月份COD_(Mn)超标率为12月>6月>9月> 3月;水质标识指数评价结果得到西江干流大部分时期水质类别为Ⅰ~Ⅱ类,少数时期为Ⅲ类,其中3月水质最好,都为Ⅰ类, 9月、12月为Ⅱ类, 6月为Ⅱ~Ⅲ类;统计分析结果显示COD_(Mn)与水温(WT)、TP呈显著正相关,与盐度(Sal)、DO、透明度(SD)、NO3-N、NO2-N、叶绿素a (Chl a)和N/P比值呈显著负相关,并受到TP和PO4-P和DO的显著性影响。西江干流水体污染目前尚不严重,水质优于中国境内其他主要河流;分析认为河流水动力情势及周边人类活动干扰是决定水体COD_(Mn)含量高低的重要因素;水体还原性有机质与TP具有一定的同源性,来自区域点源。
        To understand the dynamic patterns of the permanganate index(COD_(Mn)) and impact factors in the surface water of the mainstream of Xijiang River, seasonal investigations were conducted between Dawan of Hongshui River and Zhaoqing of Xijiang River from September 2017 to June 2018. The water quality was analyzed and evaluated basing on the present study. During the investigation, the COD_(Mn) concentration varied in the range of 0.73~4.83 mg/L, and the mean value was 2.67 mg/L. The seasonal COD_(Mn) mean value were 3.08 mg/L(June), 3.03 mg/L(December), 2.94 mg/L(September), and 1.62 mg/L(March). The 13 sample stations were clustered in three groups, and the highest content of COD_(Mn) was found in cluster Ш, followed by cluster Ⅰ, with the lowest in cluster Ⅱ. Results of pollution conditions based on COD_(Mn) were in the range of 0.18~1.21, whereas the corresponding water quality levels were "no pollution" to "light pollution." The temporal water pollution for the annual average content of COD_(Mn) in water from the 13 sites in descending order was December, June, September, and March. The water quality identification index and levels based on COD_(Mn) showed that at most times in one year the water quality classification belonged to class Ⅰ or Ⅱ, and the last times belonged to class Ⅲ. Specifically, water quality in March was best with assigned to class Ⅰ, followed by periods in September and December, which was belonged to class Ⅱ, and the worst water quality was in June, which belonged to class Ⅱ to Ⅲ. Correlation analysis with other physical and chemical factors showed that COD_(Mn) had a significant positive correlation with water temperature and total phos phorus, and it was significantly negatively correlated with salinity, dissolved oxygen(DO), secchi depth, total phosphorus, nitrate nitrogen, nitrite nitrogen chlorophyll a, and N:P. Stepwise regression analysis showed that COD_(Mn) concentration was significantly affected by total phosphorus, phosphate, and DO. According to the present study, it was determined that the water environment in mainstream of Xijiang River was lightly polluted and the water quality was better than most of the other rivers in our country. It was also concluded that the hydrodynamic situation of the river and human settlements near the sampling area were the factors affecting the COD_(Mn) concentration. Additionally, it was determined that the reducibility of organic matter came from "point source pollution" in the investigation area, which was in common with the sources of water total phosphorus mass.
引文
[1] The State Environmental Protection Administration. Water and Wastewater Monitoring and Analysis Method[M].Fourth Edition. Beijing:China Environmental Science Press,2002:243-257.[国家环境保护总局.水和废水检测分析方法[M].第4版.北京:中国环境科学出版社, 2002:243-257.]
    [2] Chen J H, Yang L, Zhou A S, et al. Contributions of non-point pollution of CODMn to rivers in Songhua River Basin in Heilongjiang Province[J]. Environmental Monitoring in China, 2010, 26(6):53-55.[陈家厚,杨林,周爱申,等.黑龙江省松花江流域河流中高锰酸盐指数非点源污染负荷分析[J].中国环境监测, 2010, 26(6):53-55.]
    [3] Lee J, Lee S, Yu S, et al. Relationships between water quality parameters in rivers and lakes:BOD5, COD, NBOPs, and TOC[J]. Environmental Monitoring and Assessment, 2016,188(4):252.
    [4] Liu Q F, Lai Z N, Yang W L, et al. Assessment of water quality of intensive ponds in the Pearl River Delta Region[J].South China Fisheries Science, 2014, 10(6):36-43.[刘乾甫,赖子尼,杨婉玲,等.珠江三角洲地区密养淡水鱼塘水质状况分析与评价[J].南方水产科学, 2014, 10(6):36-43.]
    [5] Li Z Y, Wang J Y, Guo C. A universal index formula for eutrophic evaluation using a logarithmic power function[J].Acta Scientiae Circumstantiae, 2010, 30(3):664-672.[李祚泳,汪嘉杨,郭淳.富营养化评价的对数型幂函数普适指数公式[J].环境科学学报, 2010, 30(3):664-672.]
    [6] Hu C, Su D. Application of comprehensive water quality identification index in water quality assessment of Hun River[J]. Ecology and Environmental Sciences, 2011, 20(1):186-192.[胡成,苏丹.综合水质标识指数法在浑河水质评价中的应用[J].生态环境学报, 2011, 20(1):186-192.]
    [7] Sakai N, Mohamad Z F, Nasaruddin A, et al. Eco-heart index as a tool for community-based water quality monitoring and assessment[J]. Ecological Indicators, 2018, 91:38-46.
    [8] Yang K, Yu Z Y, Luo Y, et al. Spatial and temporal variations in the relationship between lake water surface temperatures and water quality–A case study of Dianchi Lake[J].Science of the Total Environment, 2018, 624:859-871.
    [9] Ngwira L, Lakudzala D. Assessment of the quality of SOBO industrial wastewater and its impact on water quality in Nankhaka River[J]. Physics and Chemistry Earth, 2018, 108:9-12.
    [10] Bavar M, Sarrafzadeh M H, Asgharnejad H, et al. Water management methods in food industry:Corn refinery as a case study[J]. Journal of Food Engineering, 2018, 238:78-84.
    [11] Kuo Y M, Liu W W, Zhao E M, et al. Water quality variability in the middle and down streams of Han River under the influence of the Middle Route of South-North Water diversion project, China[J]. Journal of Hydrology, 2019, 569:218-229.
    [12] Xie Z. Composition of Fish and Protection of Water Resources in Pearl River[M]. Beijing:China Agriculture Press,2017:1-9.[谢诤.珠江鱼类组成与水资源保护[M].北京:中国农业出版社, 2017:1-9.]
    [13] Lu K X. Fishery Resources in the Pearl River[M]. Guangzhou:Guangdong Science&Technology Press, 1990.[陆奎贤.珠江水系渔业资源[M].广州:广东科技出版社,1990.]
    [14] Li J, Li X H, Tan X C, et al. Species diversity of fish community of provincial Xijiang River Rare Fishes Natural Reserve in Zhaoqing City, Guangdong Province[J]. Journal of Lake Sciences, 2009, 21(4):556-562.[李捷,李新辉,谭细畅,等.广东肇庆西江珍稀鱼类省级自然保护区鱼类多样性.湖泊科学, 2009, 21(4):556-562.]
    [15] Li Y F, Li X H, Yang J P, et al. Status of Elopichthys bambusa recruitment stock after the impoundment of Changzhou hydro-junction in Pearl River[J]. Journal of Lake Sciences,2015, 27(5):917-924.[李跃飞,李新辉,杨计平,等.珠江干流长洲水利枢纽蓄水后珠江鳡鱼(Elopichthys bambusa)早期资源现状[J].湖泊科学, 2015, 27(5):917-924.]
    [16] Wang D P, Shi J, Lei J J, et al. Changes in the fishery ecological environment of Yantan Reservoir[J]. Journal of Hydroecology, 2016, 37(3):76-81.[王大鹏,施军,雷建军,等.岩滩水库渔业生态环境变动研究[J].水生态学杂志, 2016,37(3):76-81.]
    [17] Shuai F M, Li X H, Liu Q F, et al. Spatial patterns of fish diversity and distribution in the Pearl River[J]. Acta Ecologica Sinica, 2017, 37(9):3182-3192.[帅方敏,李新辉,刘乾甫,等.珠江水系鱼类群落多样性空间分布格局[J].生态学报, 2017, 37(9):3182-3192.]
    [18] Wei P, Huang L M, Feng J H, et al. Distribution characteristics of COD and DO and its influencing factors in the Guangzhou sea zone of the Pearl River Estuary[J]. Ecology and Environmental Sciences, 2009, 18(5):1631-1637.[魏鹏,黄良民,冯佳和,等.珠江口广州海域COD与DO的分布特征及影响因素[J].生态环境学报, 2009, 18(5):1631-1637.]
    [19] Yang W L, Lai Z N, Zeng Y Y, et al. Spatio-temporal characteristics of CODMn in surface waters of middle and downstream of the Pearl River and water environment evaluations[J]. Ecology and Environmental Sciences, 2017, 26(4):643-648.[杨婉玲,赖子尼,曾艳艺,等.珠江中下游表层水体CODMn时空分布特征及水环境评价[J].生态环境学报, 2017, 26(4):643-648.]
    [20] Li Y F, Li X H, Tan X C, et al. Occurrence and interannual variability of larval Xenocyprininae in the mid and lower reaches of the Pearl River[J]. Journal of Fishery Sciences of China, 2013, 20(4):816-823.[李跃飞,李新辉,谭细畅,等.珠江中下游鲴亚科鱼苗发生规律与年际变化[J].中国水产科学, 2013, 20(4):816-823.]
    [21] Wang C, Han X Y, Chang X L, et al. Community structure characteristics of phytoplankton and water quality assessment in cascade reservoirs in Hongshui River drainage in Autumn[J]. Chinese Journal of Fisheries, 2015, 28(5):42-47.[王崇,憨雪莹,常秀岭,等.红水河干流梯级水库秋季浮游植物群落结构特征与水质评价[J].水产学杂志, 2015,28(5):42-47.]
    [22] Wu Z, Li X H, Li J, et al. Acoustic survey of fish resources in Yantan Reservoir in the Red River[J]. South China Fisheries Science, 2017, 13(3):20-25.[武智,李新辉,李捷,等.红水河岩滩水库鱼类资源声学评估[J].南方水产科学,2017, 13(3):20-25.]
    [23] Xu T Z, Li X H, Li Y F, et al. Status of early resources in Yujiang Jinling River section[J]. South China Fisheries Science, 2018, 14(2):19-25.[徐田振,李新辉,李跃飞,等.郁江中游金陵江段鱼类早期资源现状[J].南方水产科学,2018, 14(2):19-25.]
    [24] Tan X C, Tao J P, Huang D M, et al. A preliminary assessment of fish migration through the Changzhou Fishway[J].Journal of Hydroecology, 2013, 34(4):58-62.[谭细畅,陶江平,黄道明,等.长洲水利枢纽鱼道功能的初步研究[J].水生态学杂志, 2013, 34(4):58-62.]
    [25] Zhang Z S, Huang X F. Research Methods of Freshwater Plankton[M]. Beijing:Science Press, 1991.[章宗涉,黄祥飞.淡水浮游生物研究方法[M].北京:科学出版社,1991.]
    [26] Zou L Y, Cheng X C. Water quality eveluation index and conversion method of UIA[J]. Fisheries Science, 2002, 21(2):42-43.[邹玲媛.承宪成. 2002.非离子氨(UIA)水质评价指标及换算方法[J].水产科学, 2002, 21(2):42-43.]
    [27] Mao F J, He Y L, Xu Z M, et al. Water quality evaluation of Heyuan reach of Dongjiang River based on the single factor water quality identification index[J]. Journal of Safety and Environment, 2014, 14(5):327-331.[毛飞剑,何义亮,徐智敏,等.基于单因子水质标识指数法的东江河源段水质评价[J].安全与环境学报, 2014, 14(5):327-331.]
    [28] Yu S, He L, Lu H W. An environmental fairness based optimisation model for the decision-support of joint control over the water quantity and quality of a river basin[J]. Journal of Hydrology, 2016, 472(535):366-376.
    [29] Wang H Y. Correlation analysis on CODMn and CODCr of surface water[J]. Environmental Science and Management,2011, 36(9):118-121.[王鹤扬.地表水高锰酸盐指数与化学需氧量相关关系研究[J].环境科学与管理, 2011, 36(9):118-121.]
    [30] Sun H W, Giesy J P, Jin X W, et al. Tiered probabilistic assessment of organohalogen compounds in the Han River and Danjiangkou Reservoir, central China[J]. Science of the Total Environment, 2017, 586:163-173.
    [31] Long S, Zhao L, Shi T T, et al. Pollution control and cost analysis of wastewater treatment at industrial parks in Taihu and Haihe water basins, China[J]. Journal of Cleaner Production, 2018, 172:2435-2442.
    [32] Zhang Y L, Yang L Y, Qin B Q, et al. Spatial distribution of COD and the correlations with other parameters in the northern region of lake Taihu[J]. Environmental Science,2008, 29(6):1457-1462.[张运林,杨龙元,秦伯强,等.太湖北部湖区COD浓度空间分布及与其他要素的相关性研究[J].环境科学, 2008, 29(6):1457-1462.]
    [33] Wu Z S, Wang X L, Chen Y W, et al. Assessing river water quality using water quality index in Lake Taihu Basin, China[J]. Science of the Total Environment, 2018, 612:914-922.
    [34] Ni M, Yuan J L, Liu M, et al. Assessment of water quality and phytoplankton community of Limpenaeus vannamei pond in intertidal zone of Hangzhou Bay, China[J]. Aquaculture Reports, 2018, 11:53-58.
    [35] Wang L, Cai Q H, Tan L, et al. Phytoplankton development and ecological status during a cyanobacterial bloom in a tributary bay of the Three Gorges Reservoir, China[J]. Science of the Total Environment, 2011, 409(19):3820-3828
    [36] Lu W J, Zhang T. Comparison and analysis of several appraisal methods for river water quality[J]. Environmental Science and Management, 2009, 34(6):174-176.[陆卫军,张涛.几种河流水质评价方法的比较分析[J].环境科学与管理, 2009, 34(6):174-176.]
    [37] Qian X H. Determination and analysis of the CODMn changes in Xinyu city’s main river[J]. Guangdong Chemical Industry,2014, 41(18):161-164.[钱小华.袁河新余市区段水中CODMn的测定与分析[J].广东化工, 2014, 41(18):161-164.]
    [38] Xu T H, Zhang Y, Zhai P Y, et al. Analysis of important monitoring sections of water environmental condition of Heilong River[J]. Journal of Harbin University of Commerce(Natural Sciences Edition), 2008, 24(1):43-45.[徐太海,张颖,翟平阳,等.界河黑龙江重点监测断面水环境状况分析[J].哈尔滨商业大学学报(自然科学版), 2008, 24(1):43-45.]
    [39] Fan Z F, Wang L Q, Chen L X, et al. Application of water quality identification index to environmental quality assessment of Dianshan Lake[J]. Journal of Shanghai Ocean University, 2009, 18(3):314-320.[范志锋,王丽卿,陈林兴,等.水质标识指数法在淀山湖水质评价中的应用[J].上海海洋大学学报, 2009, 18(3):314-320.]
    [40] Wang Z, Tie B Q, Liu Z Y. Distribution characteristics of COD and DO in the Liuyang River(the Changsha zone)[J].Anhui Agricultural Science Bulletin, 2010, 16(21):100-101.[王庄,铁柏清,刘作云.浏阳河(长沙段)COD与DO的分布特征[J].安徽农学通报, 2010, 16(21):100-101.]
    [41] Zhou J F, Liu D F, Yang Z J, et al. Spatial and temporal distributions of CODMn and their influencing factors in Xiangxi Bay during spring[J]. Resources and Environment in the Yangtza Basin, 2014, 23(3):358-365.[周家飞,刘德富,杨正健,等.春季香溪河库湾CODMn时空分布及其影响因子初探[J].长江流域资源与环境, 2014, 23(3):358-365.]
    [42] Wang X L, Lei K, Yang L B, et al. Space-temporal distribution of phosphorus and CODMn in Tieling River Net[J].Guangdong Chemical Industry, 2015, 42(2):16-17.[王小龙,雷坤,杨丽标,等.铁岭市河流磷与CODMn时空分布特征[J].广东化工, 2015, 42(2):16-17.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700