用户名: 密码: 验证码:
生物絮团技术在水产养殖水处理系统中作用与管理的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress on the Application and Management of Biofloc Technology
  • 作者:王涛 ; 刘青松 ; 李华 ; 董宏标 ; 段亚飞 ; 张家松
  • 英文作者:WANG Tao;LIU Qingsong;LI Hua;DONG Hongbiao;DUAN Yafei;ZHANG Jiasong;Key Lab of South China Sea Fishery Resources Exploitation & Utilization,Ministry of Agriculture South China Sea Fisheries Research Institute,Chinese Academy of Fishery Science;National Demonstration Center for Experimental Fisheries Science Education,Shanghai Engineering Research Center of Aquaculture,Centre for Research on Environmental Ecology and Fish Nutrion(CREEFN) of the Ministry of Agriculture,Shanghai Ocean University;
  • 关键词:生物絮团技术 ; 水产养殖 ; 氮素 ; 应用 ; 管理
  • 英文关键词:Biofloc Technology;;Aquaculture;;Nitrogen;;Application;;Management
  • 中文刊名:海洋湖沼通报
  • 英文刊名:Transactions of Oceanology and Limnology
  • 机构:中国水产科学研究院南海水产研究所农业部南海渔业资源开发利用重点实验室;水产科学国家级实验教学示范中心上海水产养殖工程技术研究中心农业部鱼类营养与环境生态研究中心(上海海洋大学);
  • 出版日期:2019-02-15
  • 出版单位:海洋湖沼通报
  • 年:2019
  • 期:01
  • 基金:深圳市战略性新兴产业和未来产业发展专项资金项目(201608081135);; 广东省海洋渔业科技与产业发展专项科技攻关与研发项目(A201508B05);; 广东省海洋经济创新发展区域示范专项(GD2013-B03-005);; 中央级公益性科研院所基本科研业务费专项(2015TS11)资助
  • 语种:中文;
  • 页:121-127
  • 页数:7
  • CN:37-1141/P
  • ISSN:1003-6482
  • 分类号:X714
摘要
生物絮团技术(Biofloc Technology,BFT)利用微生物的新陈代谢作用对含氮废物高效处理,在水产养殖水处理中具有独特优势。文章评述了生物絮团技术在水产养殖水处理中的研究进展,重点总结了该技术对水中有害氮素的转化处理机制,探讨了氮转化过程中不同培养条件对生物絮团菌群结构的影响,并提出了生物絮团技术的调控和管理方式。最后,分析了当前技术应用存在的问题,展望了未来的研究方向,以期为其在水产养殖水处理中的应用提供参考。
        Biofloc Technology(BFT) uses metabolic action of microorganisms to treat nitrogenous wastewater efficiently, which has a unique advantage in aquaculture water treatment. In this paper, the research progress of BFT in aquaculture water treatment and a variety of treatment mechanisms on harmful nitrogen in aquaculture water were reviewed. The effects of different culture conditions on the structure of microbial community in the nitrogen transformation process of aquaculture wastewater were discussed. Some process control and management measures of BFT were put forward. Finally, the existing problems of technology application are analyzed, and the future research directions are put forward, which provide reference for its application in aquaculture water treatment.
引文
[1] Aaen S M, Helgesen K O, Bakke M J, et al. Drug resistance in sea lice: a threat to salmonid aquaculture[J].United States:Trends Parasitol,2015,31(2):72-81.
    [2] Zhang Jia Ming ,Yang Xiao Wei , Kuang Dai, et al. Prevalence of antimicrobial resistance of non-typhoidalSalmonellaserovars in retail aquaculture products[J].Netherlands: IntJ Food Microbiol,2015,210:47-52.
    [3] Avnimelech Y. Control of microbial activity in aquaculture systems: active suspension ponds[J].World Aquaculture,2003,34(4):19-21.
    [4] Crab R, Defoirdt T, Bossier P, et al. Biofloc technology in aquaculture: Beneficial effects and future challenges [J].Netherlands:Aquaculture,2012,356-357(4):351-356.
    [5] 陈文霞. 不同养殖策略对凡纳滨对虾生长,摄食及氮收支的影响[D].湛江:广东海洋大学, 2012.
    [6] 杨逸萍, 王增焕, 孙建, 等. 精养虾池主要水化学因子变化规律和氮的收支[J].青岛:海洋科学, 1999,1:15-17.
    [7] 于赫男. 环境胁迫对罗氏沼虾和凡纳滨对虾行为, 生长及生理活动的影响[D].广州:暨南大学,2007.
    [8] 王振华, 刘晃, 宿墨,等. 吉富罗非鱼生长过程中氮收支变化的研究[J].广州:南方水产科学, 2013,9(3):85-89.
    [9] Hewitt D R, Irving M G. Oxygen consumption and ammonia excretion of the brown tiger prawn Penaeusesculentus fed diets of varying protein content [J].Comparative Biochemistry and Physiology Part A: Physiology,1990,96 (3):373-378.
    [10] Dosdat A, Servais F, Metailler R, et al. Comparison of nitrogenous losses in five teleost fish species [J]. Netherlands:Aquaculture,1996,141(1):107-127.
    [11] Timmons M B, Ebeling J M, Wheaton F W, et al. Recirculating aquaculture systems[M].New York:Cayuga Aqua Ventures Ltd,2002:101.
    [12] 董双林, 堵南山, 赖伟.日本沼虾生理生态学研究. pH、Ca2+和NaCl对耗氧率和氨排泄的影响[A].北京:中国动物学会成立60周年纪念论文集[C],1994, 176-182.
    [13] 李沐. 斑节对虾幼虾生长特性和能量收支的研究[D].上海:上海海洋大学,2014.
    [14] Perez‐Velazquez M, González‐Félix M L, Gómez‐Jiménez S, et al. Nitrogen budget for a low‐salinity, zero‐water exchange culture system: II. Evaluation of isonitrogenous feeding of various dietary protein levels to Litopenaeusvannamei (Boone) [J]. England: Aquac Res, 2008,39(9):995-1004.
    [15] Hargreaves J A. Biofloc production systems for aquaculture [M]. Southern Regional Aquaculture Center,2013.
    [16] 张庆华, 戴习林, 李怡,等. 凡纳滨对虾养殖池水中氨化细菌的鉴定及系统发育分析[J]. 上海:水产学报,2007,31(5):692-698.
    [17] 王娟, 戴习林, 宋增福,等. 一株氨化细菌的分离、鉴定及氨氮降解能力的初步分析[J]. 武汉:水生生物学报,2010,34(6):1198-1201.
    [18] Schneider O, Sereti V, Eding E H, et al. Analysis of nutrient flows in integrated intensive aquaculture systems[J].Netherlands:Aquacult Eng,2005, 32 (3): 379 401.
    [19] Avnimelech Y, Kochva M., Diab S. Development of controlled intensive aquaculture systems with a limited water exchange and adjusted carbon to nitrogen ratio[J].Israel: Isr J Aquacult-Bamid,1994,46(3), 119–131.
    [20] 赵培. 生物絮团技术在海水养殖中的研究与应用[D].上海:上海海洋大学,2011.
    [21] Sinha B , Annachhatre A P. Partial nitrification-operational parameters and microorganisms involved [J]. Reviews in Environmental Science and Bio/Technology,2007,6(4): 285-313.
    [22] Perry L. Biological denitrification of wastewaters by addition of oragnic materials[C]//Proceedings of the 24th Industrial waste Conference. 1969: 1271-1285.
    [23] Samocha T M, Wilkenfeld J, Morris T, et al. Intensive raceways without water exchange analyzed for white shrimp culture[J]. Global Aquaculture Advocate,2010,13:22-24.
    [24] Xu W J, Pan L Q, Sun X H, et al. Effects of bioflocs on water quality, and survival, growth and digestive enzyme activities of Litopenaeusvannamei (Boone) in zero‐water exchange culture tanks[J]. England: Aquac Res,2013,44(7):1093-1102.
    [25] 刘文畅,罗国芝,谭洪新,等. 生物絮凝反应器对中试循环水养殖系统中污水的处理效果[J].北京:农业工程学报,2016,32(8).
    [26] Hao B B, Zhan P R, Wei Y Y, et al.Identification and Characterization of an Aerobic Denitrifier from MBR on Treatment of Aquaculture Waste Water[C]//Advanced Materials Research. Trans Tech Publications,2014,864:1816-1821.
    [27] Pungrasmi W, Phinitthanaphak P, Powtongsook S. Nitrogen removal from a recirculating aquaculture system using a pumice bottom substrate nitrification-denitrification tank [J].Netherlands:Ecol Eng,2016,95: 357-363.
    [28] Pochana K, Keller J. Study of factors affecting simultaneous nitrification and denitrification (SND) [J].England: Water Sci Technol,1999,39(6): 61-68.
    [29] Luo G, Li L, Liu Q, et al. Effect of dissolved oxygen on heterotrophic denitrification using poly (butylene succinate) as the carbon source and biofilm carrier [J].Netherlands:Bioresourcetechnol, 2014, 171: 152-158.
    [30] 孙振. 产絮团微生物在凡纳滨对虾养殖中的作用[D].青岛:中国海洋大学, 2013.
    [31] Suita S M, Ballester E L C, Abreu P C, et al. Dextrose as carbon source in the culture of Litopenaeusvannamei in a zero exchange system[J].Chile: Lat Am J Aquat Res,2015, 43(3):526-533.
    [32] Hu X J, Cao Y C, Wen G L, et al. Effects of combined use of Bacillus and molasses on microbial communities in shrimp cultural enclosure systems[J]. England: Aquac Res,2016,1-15.
    [33] 邓吉明,黄建华,江世贵,等. 生物絮团在斑节对虾养殖系统中的形成条件及作用效果[J]. 广州:南方水产科学,2014,10(3):29-37.
    [34] Nootong K, Pavasant P, Powtongsook S. Effects of Organic Carbon Addition in Controlling Inorganic Nitrogen Concentrations in a Biofloc System[J].United States: J World Aquacult Soc,2011,42(3):339-346.
    [35] 朱锦裕, 卜弘毅, 胡冲冲,等. 泼洒糖蜜对池塘养殖罗氏沼虾生长和水质的影响[J].大连:水产科学, 36(2):202-206.
    [36] Correia E S, Wilkenfeld J S, Morris T C, et al. Intensive nursery production of the Pacific white shrimp Litopenaeusvannamei using two commercial feeds with high and low protein content in a biofloc-dominated system[J]. Netherlands: AquacultEng,2014, 59(4):48-54.
    [37] Avnimelech Y. Biofloc Technology --A practical guide book [M]. Second edition. Baton rouge, Louisiana, United States: The world aquaculture society, 2012.
    [38] Laanbroek H J,Bodelier P L E,Gerards S.Oxygen consumption kinetics of Nitrosomoaseuropaea and Nitrobacterhamburgensis grown in mixed continuous cultures at different oxygen concentrations [J]. Germany?:Arch Microbiol, 1994,161:156-162.
    [39] Luo G, Li L, Liu Q, et al. Effect of dissolved oxygen on heterotrophic denitrification using poly (butylene succinate) as the carbon source and biofilm carrier [J].Netherlands:Bioresourcetechnol, 2014, 171: 152-158.
    [40] Zhao P, Huang J, Wang X H, et al. The application of bioflocs technology in high-intensive, zero exchange farming systems of Marsupenaeusjaponicus[J]. Netherlands:Aquaculture, 2012, 354: 97-106.
    [41] 李奕雯, 徐武杰. 生物絮团零换水养虾模式[J].广州:海洋与渔业,2016 (1): 46-47.
    [42] Lara G, Krummenauer D, Abreu P C, et al. The use of different areators on LitopenaeusVannameibiofloc culture system: effects on water quality, shrimp growth and biofloc composition [J].Netherlands:AquacultInt, ,2016: 1-16.
    [43] Chen S, Ling J, Blancheton J P. Nitrification kinetics of biofilm as affected by water quality factors [J]. Netherlands: AquacultEng, 2006,34(3): 179-197.
    [44] Ebeling J M, Timmons M B, Bisogni J J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems[J]. Netherlands:Aquaculture, 2006, 257(1-4): 346-358.
    [45] 马涛,罗国芝,谭洪新,等. 碱度对水产养殖絮团生物学特性及氨氮转化的影响[J].大连:水产科学, 2017, 36(4): 421-428.
    [46] Furtado P S, Poersch L H, Jr W W. Effect of calcium hydroxide, carbonate and sodium bicarbonate on water quality and zootechnical performance of shrimpLitopenaeusvannamei reared in bio-flocs technology(BFT)systems[J].Netherlands: Aquaculture,2011,321(1-2):130-135.
    [47] Furtado P S, Poersch L H, Wasielesky W. The effect of different alkalinity levels onLitopenaeusvannameireared with biofloc technology (BFT) [J]. Netherlands:AquacultInt, 2015, 23(1):345-358.
    [48] 孙霓,左薇,张军,等.污泥停留时间对菌藻共生系统水处理效能的影响研究[J].杭州:水处理技术, 2017,43(1):52-61.
    [49] 李凌云,彭永臻,杨庆,等. SBR工艺短程硝化快速启动条件的优化[J].北京:中国环境科学, 2009,29(3):312-317.
    [50] Liu W C, Luo G Z, Tan H X, et al. Effects of sludge retention time on water quality and biofloc yield, nutritional composition, apparent digestibility coefficients treating recirculating aquaculture system effluent in sequencing batch reactor[J]Netherlands:Aquacult Eng,2016,72-72:58-64.
    [51] Cydzik-Kwiatkowska A. Bacterial structure of aerobic granules is determined by aeration mode and nitrogen load in the reactor cycle [J].Netherlands:Bioresource technol,2015,181: 312-320.
    [52] 李军,徐影,王秀玲,等.固体碳源填充床反应器反硝化性能的研究[J].天津:农业环境科学学报, 2012,31(6):1230-1235.
    [53] Gaona C A P, Almeida M S D, Viau V, et al. Effect of different total suspended solids levels on a LitopenaeusvannameiBFT culture system during bioflocformation [J].England?: Aquac Res,2015,1-10.
    [54] Ray A J, Dillon K S, Lotz J M. Water quality dynamics and shrimp (Litopenaeusvannamei) production in intensive, mesohaline culture systems with two levels of biofloc management[J]. Netherlands: AquacultEng,2011, 45(3): 127-136.
    [55] Poli M A, Schveitzer R, Nuner A P de O. The use of biofloc technology in south American catfish(Rhamdiaquelen)hatchery: Effect of suspended solids in the performance of larvae[J]. Netherlands:Aquacult Eng,2015,66:17-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700