微生物硫酸盐同化的调控及其在提高重金属抗性中的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress in the Regulation of Microbial Sulfate Assimilation and Its Improvement in Resistance to Heavy Metals
  • 作者:毛娟 ; 王小雨
  • 英文作者:MAO Juan;WANG Xiao-yu;School of Environment,Northeast Normal University;
  • 关键词:硫酸盐同化途径 ; 微生物 ; 重金属抗性 ; 解毒
  • 英文关键词:Sulfate assimilation pathway;;microorganism;;heavy metal resistance;;detoxification
  • 中文刊名:四川环境
  • 英文刊名:Sichuan Environment
  • 机构:东北师范大学环境学院;
  • 出版日期:2019-08-26
  • 出版单位:四川环境
  • 年:2019
  • 期:04
  • 语种:中文;
  • 页:188-195
  • 页数:8
  • CN:51-1154/X
  • ISSN:1001-3644
  • 分类号:Q935
摘要
硫酸盐同化是微生物将环境中硫元素整合到细胞内的主要途径,在微生物硫代谢中发挥至关重要的作用。近年来,基因组学和转录组学研究发现硫酸盐同化途径参与调控了微生物的重金属抗性。综述了微生物硫酸盐同化途径调控的最新研究进展,分析其在重金属抗性中的作用,旨在为深入揭示微生物硫酸盐同化途径及其与重金属抗性的关系提供参考。
        Sulfate assimilation is the main way for microorganisms to integrate sulfur in the environment into cells,which plays a vital role in microbial sulfur metabolism. In recent years,genomics and transcriptomics studies have found that the sulfate assimilation pathway is also involved in the regulation of microbial heavy metal resistance. In this paper,the latest research progress of the regulation in microbial sulfate assimilation pathway is reviewed,and its role in heavy metal resistance is analyzed.The aim is to provide a reference for further revealing the relationship between microbial sulfate assimilation pathway and its resistance to heavy metals.
引文
[1] Kaneyoshi Y,Masahiro N,Akira I. Regulatory role of transcription factor Sut R(YdcN)in sulfur utilization in Escherichia coli[J]. Microbiology,2015,161(1):99-111.
    [2] Stanislav K,Thomas B,Gunter F,et al. The presence of an iron-sulfur cluster in adenosine 5'-phosphosulfate reductase separates organisms utilizing adenosine 5'-phosphosulfate and phosphoadenosine 5'-phosphosulfate for sulfate assimilation[J]. Journal of Biological Chemistry,2002,277(24):21786-21791.
    [3]张礼,孙堆,王晓,等.半胱氨酸参与生物体重金属抗性的研究进展[J].生物技术通报,2017,33(5):26-33.
    [4] Colin S,Hilton M E,Coppin C W,et al. A global response to sulfur starvation in Pseudomonas putida and its relationship to the expression of low-sulfur-content proteins[J]. Fems Microbiology Letters,2010,267(2):184-193.
    [5] Ezraty B,Gennaris A,Barras F,et al. Oxidative stress,protein damage and repair in bacteria[J]. Nature Reviews Microbiology,2017,15(7):385-396.
    [6] Barbara C,Marco P,Samanta R,et al. Inhibitors of the sulfur assimilation pathway in bacterial pathogens as enhancers of antibiotic therapy[J]. Current Medicinal Chemistry,2015,22(2):187-213.
    [7] David M C,Herminia L T,Andrea H N,et al. Sulfur assimilation and glutathione metabolism under cadmium stress in yeast,protists and plants[J]. Fems Microbiology Reviews,2010,29(4):653-671.
    [8] Carlo V,Emmanuela M,Francesca D,et al. Molecular mechanisms of Cr(VI)resistance in bacteria and fungi[J]. Fems Microbiology Reviews,2014,38(4):633-659.
    [9]宋超,郑春丽,王建英.微生物硫酸盐的同化途径及其与重金属抗性的关系[J].安徽农业科学,2012,40(11):6368-6370.
    [10] Hébert A,Casaregola S,Beckerich J. M. Biodiversity in sulfur metabolism in hemiascomycetous yeasts[J]. Fems Yeast Research,2011,11(4):366-378.
    [11] Kertesz M A,Wietek C. Desulfurization and desulfonation:applications of sulfur-controlled gene expression in bacteria[J].Applied Microbiology&Biotechnology,2001,57(4):460-466.
    [12] Aguilar-Barajas E,Díaz-Pérez C,Ramírez-Díaz M. I,et al.Bacterial transport of sulfate,molybdate,and related oxyanions[J]. BioMetals,2011,24(4):687-707.
    [13] Kawano Y,Suzuki K,Ohtsu I. Current understanding of sulfur assimilation metabolism to biosynthesize L-cysteine and recent progress of its fermentative overproduction in microorganisms[J]. Vivo,2018,32(4):799.
    [14] Autry A R,Fitzgerald J W. Sulfonate S:A major form of forest soil organic sulfur[J]. Biology and Fertility of Soils,1990,10(1):50-56.
    [15] Eichhorn E,Van d P J R,Leisinger T. Characterization of a two-component alkanesulfonate monooxygenase from Escherichia coli[J]. Journal of Biological Chemistry,1999,274(38):26639-26646.
    [16] Thurmond,Stephanie. Regulation of cysteine biosynthesis in Acinetobacter baylyi ADP1[D]. 2014.
    [17] Nakatani T,Ohtsu I,Nonaka G,et al. Enhancement of thioredoxin/glutaredoxin-mediated L-cysteine synthesis from S-sulfocysteine increases L-cysteine production in Escherichia coli[J].Microbial Cell Factories,2012,11(1):62.
    [18] Eichhorn E,Ploeg J R,Van Der,Leisinger T,. Deletion analysis of the Escherichia coli taurine and alkanesulfonate transport systems[J]. Journal of Bacteriology,2000,182(10):2687.
    [19] Brzywczy J,Paszewski A. Sulfur amino acid metabolism in Schizosaccharomyces pombe:occurrence of two O-acetylhomoserine sulfhydrylases and the lack of the reverse transsulfuration pathway[J]. Fems Microbiology Letters,2010,121(2):171-174.
    [20] Brzywczy J,Sieńko M,Kucharska A,et al. Sulphur amino acid synthesis in Schizosaccharomyces pombe represents a specific variant of sulphur metabolism in fungi[J]. Yeast,2010,19(1):29-35.
    [21] Mansouri-Bauly H,Kruse J,SykorováZ,et al. Sulfur uptake in the ectomycorrhizal fungus Laccaria bicolor S238N[J]. Mycorrhiza,2006,16(6):421-427.
    [22] Erickson A I,Sarsam R D,Fisher A J. Crystal structures of Mycobacterium tuberculosis CysQ,with substrate and products bound[J]. Biochemistry,2015,54(45):6830-6841.
    [23] Nisamedtinov I,Kevvai K,Orumets K,et al. Glutathione accumulation in ethanol-stat fed-batch culture of Saccharomyces cerevisiae with a switch to cysteine feeding[J]. Applied Microbiology&Biotechnology,2010,87(1):175-183.
    [24] Linder T. ATP sulfurylase is essential for the utilization of sulfamate as a sulfur source in the yeast Komagataella pastoris(syn.Pichia pastoris)[J]. Current Microbiology,2017,74(9):1021-1025.
    [25] Zu-Jun L,Yong-Qiang C,Wen-Jie L,et al. Isolation and characterization of an operon involved in sulfate and sulfite metabolism in Sinorhizobium fredii[J]. Fems Microbiology Letters,2010,282(1):89-99.
    [26] Fischer M,Schmidt C,Falke D,et al. Terminal reduction reactions of nitrate and sulfate assimilation in Streptomyces coelicolor A3(2):identification of genes encoding nitrite and sulfite reductases[J]. Research in Microbiology,2012,163(5):340-348.
    [27]宋张杨,马婷婷,周燕,等.不同根瘤菌中突变cys DN基因对硫酸盐同化途径的影响[J].应用与环境生物学报,2015,21(2):242-247.
    [28]马婷婷.不同根瘤菌中cys DN基因对硫同化代谢影响的研究[D].南宁:广西大学,2014.
    [29]张武,田润,申佩弘,等.费氏中华根瘤菌15142的cysDN基因克隆及其相关功能[J].应用与环境生物学报,2011,17(6):864-868.
    [30] Song Z,Shen P,Ma T,et al. Isolation and characterization of a gene associated with sulfate assimilation in Sinorhizobium fredii WGF03[J]. World Journal of Microbiology&Biotechnology,2014,30(12):3027-3035.
    [31] Lewis T A,Angela G,Justin H,et al. Role for ferredoxin:NAD(P)H oxidoreductase(Fpr A)in sulfate assimilation and siderophore biosynthesis in Pseudomonads[J]. Journal of Bacteriology,2013,195(17):3876-3887.
    [32] Motl N,Skiba M A,Kabil O,et al. Structural and biochemical analyses indicate that a bacterial persulfide dioxygenase-rhodanese fusion protein functions in sulfur assimilation[J]. Journal of Biological Chemistry,2017,292(34):14026–14038
    [33] Yamazaki S,Takei K,Nonaka G. ydj N encodes an S-sulfocysteine transporter required by Escherichia coli for growth on S-sulfocysteine as a sulfur source[J]. FEMS Microbiology Letters,2016,363(17)
    [34] Almárcegui R J,Navarro C A,Alberto P,et al. New copper resistance determinants in the extremophile Acidithiobacillus ferrooxidans:a quantitative proteomic analysis[J]. Journal of Proteome Research,2014,13(2):946-960.
    [35] Salazar C N,Acosta M,Galleguillos P A,et al. Analysis of Gene Expression in Response to Copper Stress in Acidithiobacillus ferrooxidans Strain D2,Isolated from a Copper Bioleaching Operation[J]. Advanced Materials Research,2013,825(2):157-161.
    [36] Wheaton G H,Mukherjee A,Kelly R M. Transcriptomes of the extremely thermoacidophilic archaeon Metallosphaera sedula exposed to metal“shock”reveal generic and specific metal responses[J]. Applied&Environmental Microbiology,2016,82(15):4613.
    [37] Vido K,Spector D,Lagniel G,et al. A proteome analysis of the cadmium response in Saccharomyces cerevisiae[J]. Journal of Biological Chemistry,2001,276(11):8469-8474.
    [38]贠妮.沼泽红假单胞菌(Rhodopseudomonas palustris)转化去除铅镉污染的研究[D].太原:中北大学,2007.
    [39] Edwards C D,Beatty J. C,Loiselle J. B,et al. Aerobic transformation of zinc into metal sulfide by photosynthetic microorganisms[J]. Applied Microbiology&Biotechnology,2013,97(8):3613-3623.
    [40] Edwards C D,Beatty J. C,Loiselle J. B,et al. Aerobic transformation of cadmium through metal sulfide biosynthesis in photosynthetic microorganisms[J]. BMC Microbiology,,2013,13(1):1-11.
    [41] Lefebvre D D,Kelly D,Budd K. Biotransformation of Hg(II)by cyanobacteria[J]. Applied&Environmental Microbiology,2007,73(1):243-249.
    [42] Marijke J,Tony R,Jaco V,et al. Glutathione is a key player in metal-induced oxidative stress defenses[J]. International Journal of Molecular Sciences,2012,13(3):3145-3175.
    [43]唐杰.基于半胱氨酸与重金属离子相互作用的分析应用研究[D].重庆:西南大学,2011.
    [44] Blencowe D K,Sawsan A J,Morby A P. Identification of a novel function for the Fts L cell division protein from Escherichia coli K12[J]. Biochem Biophys Res Commun,2011,411(1):44-49.
    [45] Fahey R C,Sundquist A R. Evolution of glutathione metabolism[J]. Adv Enzymol Relat Areas Mol Biol,1991,64:1-53.
    [46] Rubino F M. Toxicity of glutathione-binding metals:A review of targets and mechanisms[J]. Toxics,2015,3(1):20-62.
    [47]郑春丽.浸矿微生物硫酸盐同化与重金属抗性耦合作用机制的研究[D].上海:东华大学,2013.
    [48] Zheng C,Chen M,Tao Z,et al. Differential expression of sulfur assimilation pathway genes in Acidithiobacillus ferrooxidans under Cd2+stress:evidence from transcriptional,enzymatic,and metabolic profiles[J]. Extremophiles Life Under Extreme Conditions,2015,19(2):429-436.
    [49] Momose Y,Iwahashi H. Bioassay of cadmium using a DNA microarray:Genome-wide expression patterns of Saccharomyces cerevisiae response to cadmium[J]. Environmental Toxicology&Chemistry,2010,20(10):2353-2360.
    [50] Zhao D,Li T,Shen M,et al. Diverse strategies conferring extreme cadmium(Cd)tolerance in the dark septate endophyte(DSE),Exophiala pisciphila:Evidence from RNA-seq data[J]. Microbiological Research,2015,170:27-35.
    [51] Lexian X,Chu Y,Liyuan C,et al. Metabolic changes of Acidithiobacillus caldus under Cu2+stress[J]. Journal of Basic Microbiology,2011,50(6):591-598.
    [52] Thorgersen M P,Downs D M. Oxidative stress and disruption of labile iron generate specific auxotrophic requirements in Salmonella enterica[J]. Microbiology,2009,155(Pt 1):295-304.
    [53] Wang C L,Maratukulam P D,Lum A. M,et al. Metabolic engineering of an aerobic sulfate reduction pathway and its application to precipitation of cadmium on the cell surface[J]. Applied&Environmental Microbiology,2000,66(10):4497-4502.
    [54] Wang C L,Clark D S,Keasling J D. Analysis of an engineered sulfate reduction pathway and cadmium precipitation on the cell surface[J]. Biotechnology&Bioengineering,2010,75(3):285-291.
    [55]陈诚,林朝晖,董玉莲,等.调整pH值的化学沉淀法、硫化物沉淀法、活性炭吸附法在处理不同水质污染物中的应用[J].城镇供水,2010,(2):26-30.
    [56]杨柳,李贵,何丹,等.重金属废水处理技术研究进展[J].四川环境,2014,33(3):148-152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700