基于动力学边界的结冰飞机安全预警方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Flight safety warning method for icing aircraft based on dynamic envelope
  • 作者:郑无计 ; 李颖晖 ; 周驰 ; 武朋玮 ; 董泽洪
  • 英文作者:ZHENG Wuji;LI Yinghui;ZHOU Chi;WU Pengwei;DONG Zehong;Aeronautics Engineering College,Airforce Engineering University;
  • 关键词:动力学边界 ; 安全预警 ; 结冰飞机 ; 着陆 ; 飞行仿真
  • 英文关键词:dynamic envelope;;safety warning;;icing aircraft;;landing;;flight simulation
  • 中文刊名:航空学报
  • 英文刊名:Acta Aeronautica et Astronautica Sinica
  • 机构:空军工程大学航空工程学院;
  • 出版日期:2018-09-04 11:00
  • 出版单位:航空学报
  • 年:2019
  • 期:04
  • 基金:国家“973”计划(2015CB755805)~~
  • 语种:中文;
  • 页:175-185
  • 页数:11
  • CN:11-1929/V
  • ISSN:1000-6893
  • 分类号:V328;V321.229
摘要
结冰严重破坏飞机的动力学特性,使飞机的非线性和动力学耦合特性表现明显,导致传统的安全预警方法无法准确有效地评估飞行存在的潜在风险,易引发飞行事故。为解决此问题,提出了一种基于动力学边界的新型安全预警方法,该方法可综合考虑飞机的动力学耦合特性,可为结冰飞机的实时安全预警系统的构建提供有力的理论支撑。首先,基于微分流形理论确定结冰飞机精确的动力学边界,并详细分析了飞机结冰对动力学边界的影响;其次,利用动力学边界相对距离对飞行风险进行量化,结合动力学边界的特性确定了安全预警的方法;最后,搭建了飞行仿真训练系统,并以着陆为训练科目,通过与传统迎角安全预警方法对比,得到基于动力学边界安全预警方法的优越性。研究结果表明,相比于传统迎角限制方法,动力学边界安全预警方法可提前发现飞行中存在的潜在风险,且基于此方法的飞行训练系统可对驾驶员进行结冰安全操纵训练可提高结冰飞机的飞行安全。
        Icing aircraft shows significant nonlinear and coupling characteristics because the dynamic characteristics are seriously destroyed by the icing.Therefore,the traditional safety warning method cannot detect the potential risk effectively and correctly;and it also easily leads to flight accident.In order to solve this problem,a novel safety warning method based on the dynamic envelope is proposed.The method can take coupling dynamic characteristics into account and can be regarded as a theoretical basis of an online safety warning system.First,based on the differential manifold method,the exact dynamic envelope for an icing aircraft is determined and the influence on the dynamic envelope is analyzed in detail.Secondly,based on the relative distance of the dynamic envelope,flight risk is quantified and the safety warning method is determined via taking the characteristics of dynamic into account.Finally,a flight simulation training system is established.Taking landing as the training subject,the advantages of the method are obtained via comparing it with the traditional safety warning method based on the angle of attack.The results show that in comparison with the traditional method,the safety warning method based on the dynamic envelope can detect the potential risk ahead.And the safety maneuvering for icing aircraft can be trained by the flight training system to improve flight safety.
引文
[1]郑无计,李颖晖,屈亮,等.基于正规形法的结冰飞机着陆阶段非线性稳定域[J].航空学报,2017,38(2):520714.ZHENG W J,LI Y H,QU L,et al.Nonlinear stability region of icing aircraft during landing phase based on normal form method[J].Acta Aeronautica et Astronautica Sinica,2017,38(2):520714(in Chinese).
    [2]HILTNERD W.A nonlinear aircraft simulation of ice contaminated tailplane stall[D].Columbus:Ohio State University,1998.
    [3]Safety Advisor.Aircraft icing[EB/OL].(2013-05-01)[2018-05-08].http:∥www.aopa.org_media/Files/AO-PA/Home/Pilot%20Resources/ASI/Safety%20Advisors/sall.pdf.
    [4]TIMOTHYA S,STEPHEN T M.Convection from a simulated NACA 0012with icing roughness of different shape and thermal conductivity:AIAA-2016-3588[R].Reston,VA:AIAA,2016.
    [5]HARIRECHEO,VERDIN P,THOMPSON C P,et al.Explicit finite volume modeling of aircraft anti-icing and de-icing[J].Journal of Aircraft,2008,45(6):1924-1936.
    [6]DEGENNAROA M,ROWLEY C W,MARTINELLI L.Uncertainty quantification for airfoil icing using polynomial chaos expansions[J].Journal of Aircraft,2015,52(5):1404-1411.
    [7]POURYOUSSEFIS G,MIRZAEI M,NAZEMI M M,et al.Experimental study of ice accretion effects on aerodynamic performance of an NACA 23012airfoil[J].Chinese Journal of Aeronautics,2016,29(3):585-595.
    [8]ADDYH E,BROEREN A P,M G POTAPCZUK,et al.Ice accretions and full-scale Iced aerodynamic performance data for a two-dimensional NACA 23012Airfoil:NASA/TP-2016-218348[R].Washington,D.C.:NASA,2016.
    [9]SOMMERWERKH,HORST P,BANSMER S.Studies on electro impulse de-icing of a leading edge structure in an icing wind tunnel:AIAA-2016-3441[R].Reston,VA:AIAA,2016.
    [10]BRAGG M B,HUTCHISON T,OLTMAN R,et al.Effect of ice accretion on aircraft flight dynamics:AIAA-2000-0360[R].Reston,VA:AIAA,2000.
    [11]RANAUDOR,MARTOS B,NORTON B,et al.Piloted simulation to evaluate the utility of a real time envelope protection system for mitigating in-flight icing hazards:AIAA-2010-7987[R].Reston,VA:AIAA,2010.
    [12]DICKEYE D,PRINCEN N H,BONET J T,et al.Wind tunnel model design and fabrication of a 5.75%scale blended-wing-body twin jet configuration:AIAA-2016-0008[R].Reston,VA:AIAA,2016.
    [13]BALACHANDRANS,ATKINS E M.Flight safety assessment and management to prevent loss of control due to in-flight icing:AIAA-2016-0094[R].Reston,VA:AIAA,2016.
    [14]常士楠,杨波,冷梦尧,等.飞机热气防冰系统研究[J].航空动力学报,2017,32(5):1025-1034.CHANG S N,YANG B,LENG M Y,et al.Study on bleed air anti-icing system of aircraft[J].Journal of Aerospace Power,2017,32(5):1025-1034(in Chinese).
    [15]易贤,王斌,李伟斌,等.飞机结冰冰形测量方法研究进展[J].航空学报,2017,38(2):520700.YI X,WANG B,LI W B,et al.Research progress on ice shape measurement approaches for aircraft icing[J].Acta Aeronautica et Astronautica Sinica,2017,38(2):520700(in Chinese).
    [16]郭向东,王梓旭,李明,等.结冰风洞中液滴过冷特性数值研究[J].航空学报,2017,38(10):121254.GUO X D,WANG Z X,LI M,et al.Numerical study of supercooling characteristics of droplet in icing wind tunnel[J].Acta Aeronautica et Astronautica Sinica,2017,38(10):121254(in Chinese).
    [17]杜雁霞,桂业伟,柯鹏,等.飞机结冰冰型微结构特征的分形研究[J].航空动力学报,2011,26(5):997-1002.DU Y X,GUI Y W,KE P,et al.Investigation on the ice type microstructure characteristics of aircraft icing based on the fractal theories[J].Journal of Aerospace Power,2011,26(5):997-1002(in Chinese).
    [18]POKHARIYALD,BRAGG M B,HUTCHISON T,et al.Aircraft flight dynamics with simulated ice accretion:AIAA-2001-0541[R].Reston,VA:AIAA,2001.
    [19]REEHORSTA L,ADDY H E,COLANTONIO R O.Examination of icing induced loss of control and its mitigations:NASA/TM-2010-216912[R].Washington,D.C.:NASA,2010.
    [20]ADDYH E.Ice accretions and icing effects for modern airfoils:NASA/TP-2000-210031[R].Washington,D.C.:NASA,2000.
    [21]GINGRASD R,BAMHART B P,RANAUDO R J,et al.Development and implementation of a model driven envelope protection system for in-flight ice contamination:NASA/TM-2011-216960[R].Washington,D.C.:NASA,2011.
    [22]GINGRASD R,BAMHART B P,RANAUDO R J,et al.Envelope protection for in-flight ice contamination:NASA/TM-2010-216072[R].Washington,D.C.:NASA,2010.
    [23]ADDYH E,ORCHARD D,WRIGHT W B,et al.Altitude effects on thermal ice protection system performance:A study of an alternative approach:NASA/TM-2016-219081[R].Washington,D.C.:NASA,2016.
    [24]DETERSR W,DIMOCK G A,SELIG M S.Icing encounter flight simulator[J].Journal of Aircraft,2016,43(5):1528-1537.
    [25]GUOL L,ZHU M H,NIE B W,et al.Initial virtual flight test for a dynamically similar aircraft model with control augmentation system[J].Chinese Journal of Aeronautics,2017,30(2):602-210.
    [26]MERRETJ M,HOSSAIN K N,BRAGG M B.Envelope protection and atmospheric disturbances in icing encounters:AIAA-2002-0814[R].Reston,VA:AIAA,2002.
    [27]ZHENGW J,LI Y H,QU L,et al.Dynamic envelope determination based on differential manifold theory[J].Journal of Aircraft,2017,54(5):2005-2009.
    [28]KRAUSKOPFB,OSINGA H M,DOEDEL E J,et al.Asurvey of methods for computing(un)stable manifolds of vector fields[J].International Journal of Bifurcation and Chaos,2005,15(3):763-791.
    [29]JORDANT,LANGFORD W,BELCASTRO C,et al.Development of a dynamically scaled generic transport model tested for flight research experiments[R].Washington,D.C.:NASA,2004.
    [30]KWATNYH G,DONGMO J T,CHANG B C,et al.Nonlinear analysis of aircraft loss of control[J].Journal of Guidance,Control and Dynamics,2013:36(1):149-162.
    [31]蒋启登.陆基飞机大下沉速度对称着陆试验方法[J].北京航空航天大学学报,2013,39(11):1421-1425.JIANG Q D.Flight test of high sink speed symmetric landing used in land-based aircraft strength verification[J].Journal of Beijing University of Aeronautics and Astronautics,2013,39(11):1421-1425(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700